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Abstract. Dynamical systems with nonlinear damping show interesting behavior in the periodic
and chaotic phases. The Froude pendulum with cubical and linear damping is a paradigm for such
a system. In this work the driven Froude pendulum is studied by the harmonic balancing method;
the resulting nonlinear response curves are studied further for resonance and stability of symmetric
oscillations with relatively low damping. The stability analysis is carried out by transforming the
system of equations to the linear Mathieu equation.
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1. Introduction

Nonlinear pendulum systems with regular and chaotic dynamics serve as classic models
for the analysis of nonlinear phenomena. The Froude pendulum (FP) is one such mechan-
ical system [1-3] involving a pendulum mounted on a rotating shaft which introduces an
additional nonlinearity due to dry friction between the shaft and the pivot of the pendulum.
This leads to generation of self excited limit cycles [4] in the system that can be driven to
chaos by adding a forcing term [5-7].

One of the analytic methods to study the transition between periodic and chaotic be-
havior is the Melnikov technique. The effect of parametric modulation and secondary har-
monic forcing in this transition have been analyzed in detail and reported earlier by the
authors [5,7]. A survey of the periodic and chaotic regimes of the pendulum has recently
been analyzed in detail by Dai and Singh [8].

In the present work, the crossover from periodicity to chaos is discussed with a detailed
stability analysis using Mathieu equation together with harmonic balance (HB) method.
The stability studies have been reported in similar systems earlier in the literature [9,10]
where approximate solutions are obtained by harmonic balance method [11,12], and sta-
bility of these solutions are studied usually using Floguet-like techniques.

The paper is organized in the following way. §& a description of the Froude pendu-
lum and its complex behavior in selected domains of the system parameters are given with

445



K | Thomas and G Ambika

the help of bifurcation diagrams, phase space plots, Parsstions and Lyapunov ex-
ponent. I§3 approximate solutions of the pendulum are obtained using HB method with
specific attention given to the analysis of the resonance curves. Section 4 is devoted to dis-
cussion of the stability of the periodic modes of the driven Froude pendulum, employing
Mathieu equation. The final section contains our comments and conclusions about the sta-
bility regions of the FP in parameter space which indeed is a useful information, especially
for mechanical engineering problems.

2. The Froude pendulum

The Froude pendulum is essentially a pendulum suspended from a dry horizontal shaft of
circular cross-section by a ring or loop [1-3]. When the shaft rotates with suitable constant
angular velocityw,, the pendulum oscillates with gradually increasing amplitude, which
reaches an ultimate value. The differential equation of motion with a sinusoidal driving
torque is of the type

6 + 2k (6) + Asind = f cosait, 1)

where X (6) is the viscous damping.

The motion guided by (1) may eventually be led to limit cycle behavior when the ampli-
tude decay due to viscous damping is balanced by the amplitude growth due to the energy
supplied by the rotating shaft to the pivot (suspension) [1,3] or the motion shall become
chaotic. Under this condition, (1) takes the form of the FP equation

6 +q,0[0,6° — 1] + Asind = G(y) + f cosut, 2

whereG(wy) is a constant torquey, andg, are the coefficients of linear and cubic damp-
ing.

Figures 1a—d depicts the complex behavior of the pendulum in selected parameter re-
gions. Here the restoring couple is taken a®diyy puttingA = 1 and the constant torque
G(wy) is assumed to be zero. Figure 1a is the bifurcation diagram where the angular ve-
locity of the pendulum@) is plotted against the drive amplitud€) stroboscopically. The
numerical analysis is done using fourth-order Runge—Kutta—Gills algorithm and the first
200 (500 in some cases) drive cycles are neglected for settling of transients. In figures
1b and 1c the phase space plots for tivealues showing the chaotic and periodic states
respectively are shown. Variation of the maximal Lyapunov expofenas a function of
f is shown in figure 1d.

3. Analysis using harmonic balance method

Approximate solutions for the amplitude of harmonic oscillations undergone by the FP can
be obtained by the method of harmonic balance [11,12]. We assume a steady state solution
for the FP equation (2) as

6y (t) = a + Bsin(wt + @), (3)

with the periodicity condition
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Figure 1. (a) Bifurcation diagram of the FP fay; = 0.2, g, = 0.435w = 0.7. The
velocity 6 is plotted as a function of the drive amplitufle Chaotic behavior sets in at
f ~ 0.56. (b,c). The phase space plots of the pendulum for the sgng, w values
as in @). The chaotic behavior fof = 0.6 is shown in ) and periodic behavior for
f = 0.4 is shown in €). In (b) and €) 6 is plotted against sifl. The variation of the
maximal Lyapunov exponenit is plotted as a function of in (d). The transition from
periodic to chaotic region dt~ 0.56 can be seen.

By (t) = By(t + 1) = 6,(t +m1),

wheret = 271/ w is the period of the drive term and an integer. Substituting (3) in (2),
retaining terms up tmm = 2 only in the Bessel expansion for $8in) and equating the
coefficients of sifiwt), cogwt) and constant terms on either side of the equation, we get

Asina J, = G(w,) =G, (4)
3,3\ 2
(2Acosa J; — Bw?)? + <qlﬁw— w> = f2, (5)
_ 2,3
B(9,@— 30,0, w"/4) — tang, (6)

(2Acosa J; — Bw?)

whereJ, stands fod, (), the Bessel functions of the first kind. With the constant torque
absent G = 0) three distinct possibilities can arise here by (4):a(i= 0, corresponding
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to symmetric oscillations; (ii) & |a| < 1, corresponding to asymmetric oscillations with
B = Bs whereJ,(Bs) = 0 and (iii) a = m, corresponding to inverted symmetric oscillations.
The error involved in the approximation (3) is obtained by comparing the frequenoy
free oscillations of (2) fog, = g, = f = a = G = 0 with the exact frequencgoe. In
addition to these, taking =1 in (4)—(6)
> 2 p*  p*
wf_BJl(B)_Q_l 8 +192+ . @)

The exact frequency is given by

2 (BN 2, B (BT
2_ | < P —1_F £
we_[nK<S|n2ﬂ 1 8 + 1928 +- (8)
whereK is an elliptic integral of the first kind [3,13]. It can be shown that the errorin (7) is
small and is of second order in the amplitude of the third harmonic in (3). Including higher
harmonics in (3), more accurate results can be obtained.

Settinga = 0, eq. (5) can be solved numerically, for symmetric oscillations in the har-
monic amplitudg3. Thus withA =1 anda = 0in (5), we obtain

2
BOPY s

@,(8) - P+ (aypo- 4% ©
This can be rewritten with the help of (7) as
3 3003 2
B2(Q - p)+ (qlﬁw— %) 12 (10)

wherep = w?. At resonance the two frequencies coincide (&= p) corresponding to
@ =r11/2. Hence

30,0,83w*

fres=q,Bw— 4

(11)

The drive amplitude at resonanfigs has a maximuni.. corresponding to fies/d3 = 0.
Only belowf, resonance is possible. Thus the upper limit of drive amplitude for resonance
is

4q 2
fo=—2 L, () = —. 12
N BB =5 (12)
The corresponding frequency is given by
2
W, = . 13
3By, (13)

The variation of the amplitudg8| with the drive frequencw is shown in figures 2a,b.
If f < f,, the resonance curve has lower and upper branghes. andp > B, in figure
2b). The lower branch is similar to the typical response curves for a soft-spring oscillator.
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Figure 2. The response diagrams: The amplit@lef the FP oscillations is shown as

a function of the drive frequenay, for ¢, = 0.2, g, = 0.435. Colored portions of the

curve correspond to unstable oscillations and the black sections represent stable oscilla-
tions. @) The response curves fér= 0.08,0.1,...(0.02),0.22 are labelled 2,...,8.

Curves 4 to 8 comprise of nonjoint left and right branches; their right branches are la-
belled 4,5, ...8'. (b) Curves forf = 0.094,0.114,0.134(f,),0.154 Resonance jump

can be seen in 2 and 3. Herg213 comprise of the lower branches bearing the labels
and closed loop (bubble)-like upper branches labellgl, 3. Resonance is possible

for these curves. Curve 4 is fér> f.(= 0.134) and this is disjoint.

If g, andq, are sufficiently small and if / f,. is close to unity, this branch is triple valued
between the turning points correspondingda/dp = 0. These turning points correspond

to hysteresis jumps. The right turning point,{Gs a saddle node fold where a jump takes
place to resonance under increasimgSimilarly whenw decreases, hysteresis jump from
resonance takes place at the left turning poinj)(Crresponding to another fold [14].

In the region of this hysteresis between the folds, two harmonic steady states exist: the
large amplitude resonant attractor and the low amplitude nonresonant attractor. The lower
segment connecting,Gand G, is an unstable saddle cycle, the stable manifold of which

is the separatrix between the basins of the resonant and nonresonant attractors. The upper
branch develops a bubble structuref ascreases. Depending on the magnitudes,cind

g,, one or more bubbles have been observed (figure 2b). The lower segment of this bubble
consists of only unstable points. In the upper segment, regions Ifle\Bs are stable

while those abovg8s are unstablef3s corresponds to a symmetry breaking bifurcation.
Nevertheless, in simulations by numerical integration these stable regions are difficult to
materialise because the lower nonresonant segment in the response curve has a much larger
basin of attraction.

Whenf > f,, the resonance curve consists of two separate branches. The lower branch
is stable below the (only one) turning point and unstable above that. In the upper branch
states abovgs are unstable and below are stable due to a symmetry breaking bifurcation,
as in the case fof < f,.

The values of,, f., andw. for differentq, values are plotted in figure 3. The minimum
value ofg, above which only resonance can take place is given by

2

Tomin- §B3 (B e~ 0.1781 (14
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Figure 3. Variation of the quantitieg,, f. andw, plotted in @), (b), and €) respec-
tively againstr, for g; = 0.2. Existence ofy, ,,;,(~ 0.178) can be seen in all the three
diagrams.

Condition for the resonance curve (5) to have a maxinfump, is

27
Tea30°B* — 3ata,p* +2(p — Q)+t = 0.

The values ofo = p, for which response amplitug@ is maximum(f,) is given by
solutions of the equation

2 1/2
o — 8(3070,8% - 2) 8{(3q%qzl32 —2)%— (27/8)Re3B* (P — ZQ)}
o 27(%(1%34 27q§q§B4 .

(15)

In general, thisp, is two vaIued(pol,poz) suggesting the existence of two maxima

for the resonance curves. These two maxima may coincide giving a single maximum if
Po, = Po,» the condition for which is

27
(3% - 2)* = - aRopB* (af - 20). (16)
The general conditions for thgevalues to coincide for an§ can be obtained by treating
(10) as an equation ipn. There are two necessary conditions for this, of which one is the
same as (16) and the other is

32(2— 3439,%)°.

fZ — QZBZ _
37qjq38°8

(17)
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The maximum value of the drive amplitudebelow which onlyp’s coincide and3 is
maximum is given by
4y
5
The condition (18) is obtained using the fact thathould not be negative. Thér has

the maximum value .164 atf3x = 1.841 corresponding tg, =11241t is observed that
in generalfy is less tharf,.

fx=23,(B). Q= (18)

4. Stability analysis of the solutions

The solutions (5) of the FP obtained by harmonic analysis can be tested for stability by
applying a small perturbatia»®d to the assumed steady state solutions (3). Withl and
G = 0, the variational equation for the FP (2) is given by

56" +30,0,64256' — q,50' + cosh,sin(56,) = O. (19)

Here prime stands for differentiation with respect to timéssuming the disturbane®
to be of the form

56 = eMy(t), (20)
whereu(t) is a periodic function in, the variational equation takes the form
U+ U (2V +30,0,65% — 0;) +u (V' +V? +39,0,68V — g,V +cosdy) = 0.
(21)

The stability of the solutions depends primarily on the functi@h. The essential con-
dition for asymptotic stability is that(t) should be negative. On substituting #ifrom
(3), (21) gives

i+ U{2V— (d;/w) + 30, 0,8°w/2+ (3q,0,B°wcos ') /2}
HU{V? +V—qy7 ((1/ @) — 30,8%w/2) + (300, B% wicos ') /2+ Jo/
+23,(cos2’) /w?} =0, (22)

where dot denotes differentiation with respect te= wt + @.
The equation can be brought to the form of standard (linear) Mathieu equation [15], if
the coefficient ofi vanishes. This happens when

ve (G _ 30,087 r— 3q,0,B%wsin 2’
2w 4 8 .

(23)

The assumed solution (3) can be stable only i negative. From this condition we
define a critical amplitudB. = /2/3q,w? below which only the oscillations are bounded.
If g, is negative, the condition just reverses. In short, for stable oscillgficng. (> )
for gq; > (<)0. Incorporating this restriction, (22) gets modified as
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U+ uf{a+2qcos(2r)} =0 (24)
with
J
a= 502,
1
a=5{(23,/w*)* + (3u,0,B°w/2)*}/?,
mo€
r=wt+ (045 -3).
and

& = arctan(3q,0,8%w?/43,) .
The stability analysis can further be carried out by perturbation method [3,16]. When
is small, expanding anda of (24) in power series iq
u(t) = Up (1) +auy (1) + 02Uy (1) + - +q"un (1),
a(q) = ag+9a, +q°a, +---+q"an. (25)
Here the perturbation series &nis required for eliminating the secular terms arising

while solving forun(1), n=1,2,.... Substituting (25) in (24), taking terms of the same
order inq and equating to zero, we get

Uj + agly = O. (26)

uf +agU; + a,Uy — 2c0g21)uy = 0. (27)
and

U3 + agU, + a,u; + a,uy — 2cog21)u; = 0. (28)

In (26)—(28) primes denote differentiation with respeat.t&quation (28) can be solved
for u,. This gives

Uy = AgCOS,/a,T + By sin, /a,T (29)
whereA, andB, are constants to be determined from initial conditions. Generally solutions

of periodicity 1T or 21T are sought and this depends in this case on the valiethobugh
ay,a,, etc.. Hence we differentiate the following three cases of lowest valugg of

4.1 Case A

ag=1
With this restriction (29) gives

Uy = Ay COST + BysinT. (30)
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The solution is periodic with periodr2 Substituting this value in (27), the differential
equation fow, is obtained

uf +u; = —(a; —1)Ajcost — (a, +1)BysinT + AjcosJ + Bysin3r.  (31)

The first two terms on the right side cause secular growth of the solutions. Either of
these can be removed by fixiag properly. Accordingly
(i) Whena,; =1 the first term goes, and we get

. 1 :
Uy = A, COST + B, sinT — {Aycosd + B,sin3r} + By cost,

A,andB; being constants depending Ap andB,,.

The first three terms when combined together give a penpaseillation; the last term
is unbounded and hence causes instability. Now by (25) the boundary for transition from
stable to unstable mode is located at

a=1+q=M(1). (32)

(i) Whena, = —1 the second term in (31) vanishes to give a general solution
. 1 .
Uy = A COST + B, SinT — = {AycOsI + B,sin3r} -+ A,T COST. (33)

The situation is similar to that fa;, = 1, except that the corresponding stability bound-
ary is

a=1-q=N(1) (34)
where the functions labelldd(i) andN(i) in (32) and (34) respectively are truncated forms
of the Mathieu functions with= , /a; [3], for g small enough and relevant for solutions of
periodrand 2t.

A point exactly on the transition boundary gives rise to a solution with a periodic stable
part and a growing unstable part. The boundary is therefore unstable in general.

4.2 Case B

Whena, = 4 in (29), the general solution is
Uy = AgCOSZ +Bysin2r. (35)
It is obvious that this equation gives a perimgolution. With this (27) becomes

uf +4u; = —a; (AgCoSZ + BySin2r) + Ay + AyCOS 4 + By sin4r.

The first term here causes secular growth. On taking 0, this can be removed. This
results in

. 1 .
ulelcos2r+Bls|n2r+%—1—2(Aocos4r+BOsm4r). (36)
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Rewriting (28) using (36), we get
. 5 1 .
Up+4u,=—|a,— 17 AjcosZT — | a, + I Bysin2r
. 1 .
+A; (1+cos4) + B, sin(47) — - (Ajcos6r +Bgysin6r). (37)

Here the two harmonic terms it Zause secular growth. Either of these (not both,
simultaneously) can be removed by suitable choice,0fThus, whera, = l%, first term
vanishes; ifa, = —liz, the second term goes. Correspondingly the transition boundaries in

thea— qplane, are given by

. 4.5 0 5
(i) a—4+—12q =M(2) foraz_—12
(ii) azd— g =N(2) for __ 1 (38)
DR TEE =73

4.3 Case C

Takinga, = 0, the differential equation (26) for the zeroth order solutiggivesug = 0,
the solution for which has the form

Uy = Ag+BqT.
NeglectingB,, the term which grows unboundedt@s) — o we obtain
Uy = Ay (39)

Using this in (27) the equation for; becomes

uj = —a,Aq+ 2A,COS .
Secular growth in this solution due to the presence of constant term can be checked by
puttinga, = 0. The resulting bounded solution is

u, = —% CosSZ. (40)
This is a periodt solution. Now considering (28), to avoid secular grovath should be
—%. Consequently the transition boundary becomes
R
a=—— =M(0). (412)
2
Regions witha € (M(0),N(1)), a€ (M(1),N(2) anda € (M(2),N(3)) are stable. The
unstable regions correspondaa (M(1),N(1)), a€ (M(2),N(2)) anda < M(0). So-
lutions witha = M(0),...,N(2) are in general unstable. The regions of stable solutions
based on all the three cases above, are marked in figure #-He parameter plane. Here
the regions with stable solutions (depending on the number of coexisting solutions) and
unstable solutions are marked differently.
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Figure 4. Regions of stable and unstable solutions, differentiated by Mathieu equation
analysis in thef—w plane. Regions in blue correspond to one stable solution while
purple regions correspond to two stable solutions. Regions with three stable solutions
coexisting are shown in green color and the red regions correspond to unstable solu-
tions.

5. Conclusion

In this paper we have studied the dynamics of the Froude pendulum by harmonic bal-
ancing method. The regions of resonance are identified with respect to the amplitude and
frequency of the periodic forcing. With the help of standard tools like bifurcation diagrams,
p.s plots and their Poinaasections and Lyapunov exponents regions in parameter space
where stable and unstable oscillations occur have been identified, numerically. Analytic
study of the pendulum with regard to stability has been done imothfieplane by trans-
forming the nonlinear equation of the FP to a (linear) Mathieu equation.

It is found that the regions predicted by the Mathieu equation analysis almost coincide
with the ones identified by the numerical study. Thusifoe 0.7 the LCE plot shows that
regions inf < 0.56 as stable. This is also suggested by the bifurcation diagram (figure 1a).
The prediction by the Mathieu equation analysis shown in figure 4 agrees with this. But
the analytical study is restricted to only the symmetric oscillations. Further, the results of
the analysis will be error free only belofy and.. A more accurate study by including
higher harmonics in (3) and higher order Bessel functions in (5) can extend the results to
almost the complete parameter space.

References

[1] N Minorsky, Nonlinear oscillationgVan Nostrand, Princeton, NJ, 1962)

[2] S P StreklovZ. Tech. Fiz11, 93 (1933)

[3] N W Maclachan,Ordinary nonlinear differential equations in engineering and physical sci-
enceqOxford University Press, 1956)

[4] H T Davis, Introduction to nonlinear differential and integral equatiof®over Publications
Inc., NY, 1960)

[5] K1 Thomas and G AmbikaPramana — J. Phys2(4), 375 (1999)

[6] K1 Thomas and G Ambika, it€Computational aspects in chaos and nonlinear dynareiised
by G Ambika and V M Nandakumaran (Wiley Eastern, New Delhi, 1994)

Pramana — J. Phys.Vol. 59, No. 3, September 2002 455



K | Thomas and G Ambika

[7] K1 Thomas and G Ambika, ifNonlinear dynamics — integrability and chaeslited by M
Daniel, K M Thamizhmakan and R Sahadevan (Narosa, New Delhi, 2000)
[8] L Dai and M C Singh|nt. J. Nonlinear Mech33, 947 (1998)
[9] D D'Humieres, M R Beasley, B A Huberman and A Libchalfttys. RevA26, 3483 (1982)
[10] S Narayanan and K JayaramdnSound Vib146 17 (1991)
[11] R E MickensJ. Sound Vib94, 456 (1984)
[12] R E MickensJ. Sound Vib111, 518 (1986)
[13] J Miles,PhysicaD31, 252 (1998)
[14] IM T Thompson and M S SolimaRroc. R. Soc. LondoA432, 101 (1991)
[15] T L Saty and J Bram\onlinear mathematiceMcGraw-Hill Inc., NY, 1964)
[16] A H Nayfeh,Introduction to perturbation techniqug¥Viley-Interscience, NY, 1981)

456 Pramana — J. Phys.Vol. 59, No. 3, September 2002



