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Abstract. Dynamical systems with nonlinear damping show interesting behavior in the periodic
and chaotic phases. The Froude pendulum with cubical and linear damping is a paradigm for such
a system. In this work the driven Froude pendulum is studied by the harmonic balancing method;
the resulting nonlinear response curves are studied further for resonance and stability of symmetric
oscillations with relatively low damping. The stability analysis is carried out by transforming the
system of equations to the linear Mathieu equation.
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1. Introduction

Nonlinear pendulum systems with regular and chaotic dynamics serve as classic models
for the analysis of nonlinear phenomena. The Froude pendulum (FP) is one such mechan-
ical system [1–3] involving a pendulum mounted on a rotating shaft which introduces an
additional nonlinearity due to dry friction between the shaft and the pivot of the pendulum.
This leads to generation of self excited limit cycles [4] in the system that can be driven to
chaos by adding a forcing term [5–7].

One of the analytic methods to study the transition between periodic and chaotic be-
havior is the Melnikov technique. The effect of parametric modulation and secondary har-
monic forcing in this transition have been analyzed in detail and reported earlier by the
authors [5,7]. A survey of the periodic and chaotic regimes of the pendulum has recently
been analyzed in detail by Dai and Singh [8].

In the present work, the crossover from periodicity to chaos is discussed with a detailed
stability analysis using Mathieu equation together with harmonic balance (HB) method.
The stability studies have been reported in similar systems earlier in the literature [9,10]
where approximate solutions are obtained by harmonic balance method [11,12], and sta-
bility of these solutions are studied usually using Floquet-like techniques.

The paper is organized in the following way. Inx2 a description of the Froude pendu-
lum and its complex behavior in selected domains of the system parameters are given with
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the help of bifurcation diagrams, phase space plots, Poincar`e sections and Lyapunov ex-
ponent. Inx3 approximate solutions of the pendulum are obtained using HB method with
specific attention given to the analysis of the resonance curves. Section 4 is devoted to dis-
cussion of the stability of the periodic modes of the driven Froude pendulum, employing
Mathieu equation. The final section contains our comments and conclusions about the sta-
bility regions of the FP in parameter space which indeed is a useful information, especially
for mechanical engineering problems.

2. The Froude pendulum

The Froude pendulum is essentially a pendulum suspended from a dry horizontal shaft of
circular cross-section by a ring or loop [1–3]. When the shaft rotates with suitable constant
angular velocityω0, the pendulum oscillates with gradually increasing amplitude, which
reaches an ultimate value. The differential equation of motion with a sinusoidal driving
torque is of the type

θ̈ +2κ(θ̇)+Asinθ = f cosωt; (1)

where 2κ(θ̇) is the viscous damping.
The motion guided by (1) may eventually be led to limit cycle behavior when the ampli-

tude decay due to viscous damping is balanced by the amplitude growth due to the energy
supplied by the rotating shaft to the pivot (suspension) [1,3] or the motion shall become
chaotic. Under this condition, (1) takes the form of the FP equation

θ̈ +q1θ̇ [q2θ̇ 2�1]+Asinθ = G(ω0)+ f cosωt; (2)

whereG(ω0) is a constant torque;q1 andq2 are the coefficients of linear and cubic damp-
ing.

Figures 1a–d depicts the complex behavior of the pendulum in selected parameter re-
gions. Here the restoring couple is taken as sinθ by puttingA= 1 and the constant torque
G(ω0) is assumed to be zero. Figure 1a is the bifurcation diagram where the angular ve-
locity of the pendulum (̇θ ) is plotted against the drive amplitude( f ) stroboscopically. The
numerical analysis is done using fourth-order Runge–Kutta–Gills algorithm and the first
200 (500 in some cases) drive cycles are neglected for settling of transients. In figures
1b and 1c the phase space plots for twof values showing the chaotic and periodic states
respectively are shown. Variation of the maximal Lyapunov exponent(λ ) as a function of
f is shown in figure 1d.

3. Analysis using harmonic balance method

Approximate solutions for the amplitude of harmonic oscillations undergone by the FP can
be obtained by the method of harmonic balance [11,12]. We assume a steady state solution
for the FP equation (2) as

θ0(t) = α +β sin(ωt +φ); (3)

with the periodicity condition
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(a) (b)

(c) (d)

Figure 1. (a) Bifurcation diagram of the FP forq1 = 0:2; q2 = 0:435;ω = 0:7: The
velocity θ̇ is plotted as a function of the drive amplitudef . Chaotic behavior sets in at
f � 0:56: (b,c). The phase space plots of the pendulum for the sameq1;q2;ω values
as in (a). The chaotic behavior forf = 0:6 is shown in (b) and periodic behavior for
f = 0:4 is shown in (c). In (b) and (c) θ̇ is plotted against sinθ : The variation of the
maximal Lyapunov exponentλ is plotted as a function off in (d). The transition from
periodic to chaotic region atf � 0:56 can be seen.

θ0(t) = θ0(t + τ) = θ0(t +mτ);

whereτ = 2π=ω is the period of the drive term andm an integer. Substituting (3) in (2),
retaining terms up ton = 2 only in the Bessel expansion for sin(sin) and equating the
coefficients of sin(ωt), cos(ωt) and constant terms on either side of the equation, we get

Asinα J0 = G(ω0) = G; (4)

(2Acosα J1�βω2
)
2
+

�
q1βω � 3q1q2β 3ω3

4

�2

= f 2; (5)

β (q1ω�3q1q2β 2ω3=4)
(2Acosα J1�βω2)

= tanφ ; (6)

whereJn stands forJn(β ), the Bessel functions of the first kind. With the constant torque
absent (G= 0) three distinct possibilities can arise here by (4): (i)α = 0; corresponding
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to symmetric oscillations; (ii) 0< jα j< π ; corresponding to asymmetric oscillations with
β = βs whereJ0(βs) = 0 and (iii)α = π ; corresponding to inverted symmetric oscillations.
The error involved in the approximation (3) is obtained by comparing the frequencyω f of
free oscillations of (2) forq1 = q2 = f = α = G = 0 with the exact frequencyωe. In
addition to these, takingA= 1 in (4)–(6)

ω2
f =

2
β

J1(β ) = Ω = 1� β 2

8
+

β 4

192
+ � � � : (7)

The exact frequency is given by

ω2
e =

�
2
π

K

�
sin

β
2

��
�2

= 1� β 2

8
+

�
β 4

192
7
8

�
+ � � � ; (8)

whereK is an elliptic integral of the first kind [3,13]. It can be shown that the error in (7) is
small and is of second order in the amplitude of the third harmonic in (3). Including higher
harmonics in (3), more accurate results can be obtained.

Settingα = 0; eq. (5) can be solved numerically, for symmetric oscillations in the har-
monic amplitudeβ . Thus withA= 1 andα = 0 in (5), we obtain

(2J1(β )�βω2
)
2
+

�
q1βω � 3q1q2β 3ω3

4

�2

= f 2: (9)

This can be rewritten with the help of (7) as

β 2
(Ω�ρ)2

+

�
q1βω � 3q1q2β 3ω3

4

�2

= f 2 (10)

whereρ = ω2: At resonance the two frequencies coincide (i.e.,Ω = ρ) corresponding to
φ = π=2. Hence

fres= q1βω � 3q1q2β 3ω3

4
: (11)

The drive amplitude at resonancef reshas a maximumf� corresponding to df res=dβ = 0.
Only below f

� resonance is possible. Thus the upper limit of drive amplitude for resonance
is

f
� =

4q1

9
p

q2
; β�J1(β�) =

2
9q2

: (12)

The corresponding frequency is given by

ω� =
2

3β�

p
q2
: (13)

The variation of the amplitudejβ j with the drive frequencyω is shown in figures 2a,b.
If f < f�, the resonance curve has lower and upper branches (β < β � andβ > β� in figure
2b). The lower branch is similar to the typical response curves for a soft-spring oscillator.
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(a) (b)

Figure 2. The response diagrams: The amplitudeβ of the FP oscillations is shown as
a function of the drive frequencyω; for q1 = 0:2; q2 = 0:435. Colored portions of the
curve correspond to unstable oscillations and the black sections represent stable oscilla-
tions. (a) The response curves forf = 0:08;0:1; : : : (0:02);0:22 are labelled 1;2; : : : ;8.
Curves 4 to 8 comprise of nonjoint left and right branches; their right branches are la-
belled 40;50; : : :80. (b) Curves forf = 0:094;0:114;0:134 ( f

�
);0:154: Resonance jump

can be seen in 2 and 3. Here 1;2;3 comprise of the lower branches bearing the labels
and closed loop (bubble)-like upper branches labelled 10;20;30. Resonance is possible
for these curves. Curve 4 is forf > f

�
(= 0:134) and this is disjoint.

If q1 andq2 are sufficiently small and iff= f� is close to unity, this branch is triple valued
between the turning points corresponding to dω=dβ = 0. These turning points correspond
to hysteresis jumps. The right turning point (C1) is a saddle node fold where a jump takes
place to resonance under increasingω . Similarly whenω decreases, hysteresis jump from
resonance takes place at the left turning point (C2) corresponding to another fold [14].
In the region of this hysteresis between the folds, two harmonic steady states exist: the
large amplitude resonant attractor and the low amplitude nonresonant attractor. The lower
segment connecting C1 and C2 is an unstable saddle cycle, the stable manifold of which
is the separatrix between the basins of the resonant and nonresonant attractors. The upper
branch develops a bubble structure asf increases. Depending on the magnitudes ofq 1 and
q2, one or more bubbles have been observed (figure 2b). The lower segment of this bubble
consists of only unstable points. In the upper segment, regions belowβ = β s are stable
while those aboveβs are unstable;βs corresponds to a symmetry breaking bifurcation.
Nevertheless, in simulations by numerical integration these stable regions are difficult to
materialise because the lower nonresonant segment in the response curve has a much larger
basin of attraction.

When f > f�, the resonance curve consists of two separate branches. The lower branch
is stable below the (only one) turning point and unstable above that. In the upper branch
states aboveβs are unstable and below are stable due to a symmetry breaking bifurcation,
as in the case forf < f�.

The values ofβ�, f�; andω� for differentq2 values are plotted in figure 3. The minimum
value ofq2 above which only resonance can take place is given by

q2min=
2

9(β�J1(β�))max
= 0:1781: (14)
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Figure 3. Variation of the quantitiesβ�; f� andω
�

plotted in (a), (b), and (c) respec-
tively againstq2 for q1 = 0:2: Existence ofq2min(� 0:178) can be seen in all the three
diagrams.

Condition for the resonance curve (5) to have a maximumβ = β 0 is

27
16

q2
1q2

2ρ2β 4�3q2
1q2ρβ 2

+2(ρ�Ω)+q2
1 = 0:

The values ofρ = ρ0 for which response amplitudeβ is maximum(β0) is given by
solutions of the equation

ρ0 =
8(3q2

1q2β 2�2)
27q2

1q
2
2β 4 �

8
n�

3q2
1q2β 2�2

�2� (27=4)q2
1q2

2β 4
�
q2

1�2Ω
�o1=2

27q2
1q2

2β 4 :

(15)

In general, thisρ0 is two valued(ρ01
;ρ02

) suggesting the existence of two maxima
for the resonance curves. These two maxima may coincide giving a single maximum if
ρ01

= ρ02
, the condition for which is

(3q2
1q2β 2�2)2

=
27
4

q2
1q2

2β 4�q2
1�2Ω

�
: (16)

The general conditions for theρ values to coincide for anyβ can be obtained by treating
(10) as an equation inρ . There are two necessary conditions for this, of which one is the
same as (16) and the other is

f 2
= Ω2β 2� 32(2�3q2

1q2β 2
)
3

37q4
1q4

2β 6 : (17)

450 Pramana – J. Phys.,Vol. 59, No. 3, September 2002



Occurrence of stable periodic modes in a Froude pendulum

The maximum value of the drive amplitudef ; below which onlyρ ’s coincide andβ is
maximum is given by

fx = 2J1(β ); q2
1 =

4J1

β
: (18)

The condition (18) is obtained using the fact thatρ should not be negative. Thenf x has
the maximum value 1:164 atβx = 1:841 corresponding toq1x

= 1:124: It is observed that
in generalfx is less thanf�.

4. Stability analysis of the solutions

The solutions (5) of the FP obtained by harmonic analysis can be tested for stability by
applying a small perturbationδθ to the assumed steady state solutions (3). WithA= 1 and
G= 0, the variational equation for the FP (2) is given by

δθ 00

+3q1q2θ 02
0 δθ 0�q1δθ 0

+cosθ0 sin(δθ0) = 0: (19)

Here prime stands for differentiation with respect to timet. Assuming the disturbanceδθ
to be of the form

δθ = ev(t)u(t); (20)

whereu(t) is a periodic function int; the variational equation takes the form

u00+u0
�
2v0+3q1q2θ 0 2

0 �q1

�
+u

�
v00+v02+3q1q2θ 02

0 v0�q1v
0

+cosθ0

�
= 0:

(21)

The stability of the solutions depends primarily on the functionv(t). The essential con-
dition for asymptotic stability is thatv(t) should be negative. On substituting forθ from
(3), (21) gives

ü+ u̇
�

2v̇� (q1=ω)+3q1q2β 2ω=2+(3q1q2β 2ω cos2τ 0)=2
	

+ufv̇2
+ v̈�q1v̇

�
(1=ω)�3q2β 2ω=2

�
+(3q1q2β 2ω v̇cos2τ 0)=2+J0=ω2

+2J2(cos2τ 0)=ω2g= 0; (22)

where dot denotes differentiation with respect toτ 0
= ωt +φ .

The equation can be brought to the form of standard (linear) Mathieu equation [15], if
the coefficient of ˙u vanishes. This happens when

v=

�
q1

2ω
� 3q1q2β 2ω

4

�
τ � 3q1q2β 2ω sin2τ 0

8
: (23)

The assumed solution (3) can be stable only ifv is negative. From this condition we
define a critical amplitudeβc =

p
2=3q2ω2 below which only the oscillations are bounded.

If q1 is negative, the condition just reverses. In short, for stable oscillationsβ < β c (> βc)

for q1 > (<)0. Incorporating this restriction, (22) gets modified as
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ü+ufa+2qcos(2τ)g= 0 (24)

with

a=
J0

ω2 ;

q=
1
2
f(2J2=ω2

)
2
+(3q1q2β 2ω=2)2g1=2;

τ = ωt +
�

φ +
π
2
� ε

2

�
;

and

ε = arctan
�
3q1q2β 2ω3=4J2

�
:

The stability analysis can further be carried out by perturbation method [3,16]. Whenq
is small, expandingu anda of (24) in power series inq

u(τ) = u0(τ)+qu1(τ)+q2u2 (τ)+ � � �+qnun(τ) ;
a(q) = a0+qa1+q2a2+ � � �+qnan: (25)

Here the perturbation series ina is required for eliminating the secular terms arising
while solving forun(τ); n = 1;2; : : :. Substituting (25) in (24), taking terms of the same
order inq and equating to zero, we get

u000 +a0u0 = 0: (26)

u001 +a0u1+a1u0�2cos(2τ)u0 = 0: (27)

and

u002+a0u2+a1u1+a2u0�2cos(2τ)u1 = 0: (28)

In (26)–(28) primes denote differentiation with respect toτ . Equation (28) can be solved
for u0. This gives

u0 = A0cos
p

a0τ +B0sin
p

a0τ (29)

whereA0 andB0 are constants to be determined from initial conditions. Generally solutions
of periodicityπ or 2π are sought and this depends in this case on the values ofa through
a0;a1; etc.. Hence we differentiate the following three cases of lowest values ofa0.

4.1 Case A

a0 = 1:
With this restriction (29) gives

u0 = A0cosτ +B0sinτ : (30)
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The solution is periodic with period 2π . Substituting this value in (27), the differential
equation foru1 is obtained

u001+u1 =�(a1�1)A0cosτ � (a1+1)B0sinτ +A0cos3τ +B0sin3τ : (31)

The first two terms on the right side cause secular growth of the solutions. Either of
these can be removed by fixinga1 properly. Accordingly

(i) Whena1 = 1 the first term goes, and we get

u1 = A1cosτ +B1sinτ � 1
8

�
A0cos3τ +B0sin3τ

	
+B0τ cosτ ;

A1andB1 being constants depending onA0 andB0.
The first three terms when combined together give a period 2π oscillation; the last term

is unbounded and hence causes instability. Now by (25) the boundary for transition from
stable to unstable mode is located at

a= 1+q�M(1): (32)

(ii) Whena1 =�1 the second term in (31) vanishes to give a general solution

u1 = A1cosτ +B1sinτ � 1
8

�
A0cos3τ +B0sin3τ

	
+A0τ cosτ : (33)

The situation is similar to that fora1 = 1, except that the corresponding stability bound-
ary is

a= 1�q� N(1) (34)

where the functions labelledM(i) andN(i) in (32) and (34) respectively are truncated forms
of the Mathieu functions withi = p

a0 [3], for q small enough and relevant for solutions of
periodπ and 2π .

A point exactly on the transition boundary gives rise to a solution with a periodic stable
part and a growing unstable part. The boundary is therefore unstable in general.

4.2 Case B

Whena0 = 4 in (29), the general solution is

u0 = A0cos2τ +B0sin2τ : (35)

It is obvious that this equation gives a periodπ solution. With this (27) becomes

u001+4u1 =�a1

�
A0cos2τ +B0sin2τ

�
+A0+A0cos4τ +B0sin4τ :

The first term here causes secular growth. On takinga1 = 0; this can be removed. This
results in

u1 = A1cos2τ +B1sin2τ +
A0

4
� 1

12

�
A0cos4τ +B0sin4τ

�
: (36)
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Rewriting (28) using (36), we get

u002 +4u2 =�
�

a2�
5
12

�
A0cos2τ �

�
a2+

1
12

�
B0sin2τ

+A1 (1+cos4τ)+B1sin(4τ)� 1
12

�
A0cos6τ +B0sin6τ

�
: (37)

Here the two harmonic terms in 2τ cause secular growth. Either of these (not both,
simultaneously) can be removed by suitable choice ofa2. Thus, whena2 =

5
12; first term

vanishes; ifa2 =� 1
12; the second term goes. Correspondingly the transition boundaries in

thea�q plane, are given by

(i) a= 4+
5
12

q2 �M(2) fora2 =
5
12

(ii) a= 4� 1
12

q2 � N(2) for a2 =�1
2
: (38)

4.3 Case C

Takinga0 = 0; the differential equation (26) for the zeroth order solutionu0 givesu000 = 0,
the solution for which has the form

u0 = A0+B0τ :

NeglectingB0τ , the term which grows unbounded ast(τ)! ∞ we obtain

u0 = A0: (39)

Using this in (27) the equation foru1 becomes

u001 =�a1A0+2A0cos2τ :

Secular growth in this solution due to the presence of constant term can be checked by
puttinga1 = 0: The resulting bounded solution is

u1 =�A0

2
cos2τ : (40)

This is a periodπ solution. Now considering (28), to avoid secular growth,a2 should be
�1

2. Consequently the transition boundary becomes

a=�q2

2
�M(0): (41)

Regions witha2 (M(0);N(1)), a2 (M(1);N(2) anda2 (M(2);N(3)) are stable. The
unstable regions correspond toa 2 (M(1);N(1)), a 2 (M(2);N(2)) anda < M(0). So-
lutions with a = M(0); : : : ;N(2) are in general unstable. The regions of stable solutions
based on all the three cases above, are marked in figure 4 in af –ω parameter plane. Here
the regions with stable solutions (depending on the number of coexisting solutions) and
unstable solutions are marked differently.
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Figure 4. Regions of stable and unstable solutions, differentiated by Mathieu equation
analysis in thef –ω plane. Regions in blue correspond to one stable solution while
purple regions correspond to two stable solutions. Regions with three stable solutions
coexisting are shown in green color and the red regions correspond to unstable solu-
tions.

5. Conclusion

In this paper we have studied the dynamics of the Froude pendulum by harmonic bal-
ancing method. The regions of resonance are identified with respect to the amplitude and
frequency of the periodic forcing. With the help of standard tools like bifurcation diagrams,
p.s plots and their Poincar`e sections and Lyapunov exponents regions in parameter space
where stable and unstable oscillations occur have been identified, numerically. Analytic
study of the pendulum with regard to stability has been done in theω– f plane by trans-
forming the nonlinear equation of the FP to a (linear) Mathieu equation.

It is found that the regions predicted by the Mathieu equation analysis almost coincide
with the ones identified by the numerical study. Thus forω = 0:7 the LCE plot shows that
regions inf < 0:56 as stable. This is also suggested by the bifurcation diagram (figure 1a).
The prediction by the Mathieu equation analysis shown in figure 4 agrees with this. But
the analytical study is restricted to only the symmetric oscillations. Further, the results of
the analysis will be error free only belowf

� andβ�. A more accurate study by including
higher harmonics in (3) and higher order Bessel functions in (5) can extend the results to
almost the complete parameter space.
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