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Abstract. The eigen frequencies of radial pulsations of neutron stars are calculated in a strong
magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that
obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear
mean field theory is taken and extended to include strong magnetic field. It is found that magnetized
neutron stars support higher maximum mass whereas the effect of magnetic field on radial stability
for observed neutron star masses is minimal.
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1. Introduction

It is well-known that intense magnetic fields (B� 1012�13 G) exist on the surface of many
neutron stars. Objects with even higher magnetic fields have been surmised and detected
recently. Recent observational studies and several independent arguments link the class of
softγ-ray repeaters and perhaps certain anomalous X-ray pulsars with neutron stars having
ultra strong magnetic fields, the so called magnetars. Kuoveliotouet al [1] found a soft
γ-ray repeater SGR 1806-20 with a period of 7.47 s and a spin-down rate of 2.6�10�3 s
yr�1 from which they estimated the pulsar age to be about 1500 years and field strength
of � 8�1014 G. Since the magnetic field in the core, according to some models, could be
103–105 times higher than its value on the surface, it is possible that ultra strong magnetic
fields of order 1018 G or greater can exist in the core of certain neutron stars. According
to Kuoveliotouet al [1], a statistical analysis of the population of softγ-ray repeaters indi-
cates that instead of being just isolated examples, as many as 10% of neutron stars could
be magnetars. It is therefore of interest to study the equation of state of nuclear matter and
various properties of neutron stars under such magnetic fields. Equations of state at low
densities in the presence of magnetic field have been extensively studied in the literature
[2,3]. In recent years the effect of strong magnetic field on the EOS of cold, charge neutral,
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super dense, interacting nuclear matter inβ -equilibrium has been studied in a relativistic
mean field theoretical framework [4–6]. In some of these studies [5,6] not only the effect of
Landau quantization but also the contribution of anomalous magnetic moment of nucleons
was incorporated in a relativistic description and it was found that for magnetic fields
� 1018 G, this effect cannot be ignored. The effect of magnetic field has been basically to
increase the proton fraction and thereby lowering the threshold for direct URCA process
to proceed and to modify the EOS in comparison to the field-free case. However, a super
strong magnetic field capable of substantially modifying the EOS would also modify the
structure of the star because of the electromagnetic stresses leading to anisotropy. Boucquet
et al [7] studied the structure of rotating magnetized stars in a general relativistic frame-
work but neglected the change induced by the magnetic field in the pressure and energy of
the nuclear matter whereas the authors of ref. [4] assumed spherical symmetry and investi-
gated the mass–radius relationship. In this paper we study the radial oscillations of neutron
stars in the presence of super strong magnetic fields. Studies of radial oscillations is of in-
terest since Cameron [8] suggested more than three decades ago that vibrations of neutron
stars could excite motions that can have interesting astrophysical applications. X-ray and
γ-ray burst phenomena are clearly explosive in nature. These explosive events probably
perturb the associated neutron star and the resulting dynamical behavior may eventually
be deduced from such observations. Observations of quasi-periodic pulses of pulsars have
also been associated with oscillations of underlying neutron stars [9]. As a first step towards
studying the effect of magnetic field on radial oscillations, we assume spherical symme-
try and incorporate its effect only on the nuclear matter EOS. A consistent calculation of
rotating, magnetized neutron star structure and radial oscillations incorporating both the
magnetic EOS and general relativistic framework will be the subject matter of future work.
The EOS is central to the calculation of most neutron star properties as it determines the
mass range, the red shift as well as mass–radius relationship for these stars. Since neutron
stars span a very wide range of densities, no one EOS is adequate to describe the properties
of neutron stars. In the low density regions from the neutron drip density(� 4�1011) and
up toρn ' 3:0�1014 g/cc the density at which the nuclei just begin to dissolve and merge
together, the nuclear matter EOS is adequately described by the BPS model [10] which is
based on the semi-empirical nuclear mass formula. We adopt this BPS EOS and its mag-
netized version as given by Lai and Shapiro [3] in this density range. In the high density
range above the neutron drip densityρn, the physical properties of matter are still uncer-
tain. Many models for the description of nuclear matter at such high densities have been
proposed over the years. One of the most studied models is the relativistic nuclear mean
field theory, in which the strong interactions among various particles involved are mediated
by a scalar fieldσ , an isoscalar–vector fieldω and an isovector–vector fieldρ . Along with
scalar self-interaction terms it can reproduce the values of experimentally known quanti-
ties relevant to nuclear matter, viz., the binding energy per neucleon, the nuclear density at
saturation, the asymmetry energy, the effective mass and the bulk modulus and provide a
good description of nuclear matter for densities up to a few times the saturation densityρ c.
In our study, following ref. [5] we use this nuclear mean field theory and its modification
in the presence of a magnetic field.

In x2 a brief discussion of the EOS is given at zero temperature. Inx3 we present the
formalism for radial pulsations of the neutron star models computed here as a result of
integration of the relativistic equations. Section 4 deals with Results and Discussion.
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2. The equation of state (EOS) for nuclear matter

We shall describe nuclear matter at high densities by the relativistic nuclear mean field
model, in the presence of constant magnetic field with baryons interacting through the
exchange ofσ–ω–ρ mesons. For densities less than the neutron drip density we adopt the
BPS model in the presence of magnetic field as developed by Lai and Shapiro.

2.1The nuclear mean field EOS at high densities

We consider the charge neutral nuclear matter consisting of neutrons, protons and electrons
in β -equilibrium in the presence of a magnetic field and at zero temperature(T = 0).
Following ref. [5], the thermodynamic potential of the system is given by
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whereKn, Kp are the anomalous magnetic moments of the neutron and proton given by
Kn =

e
2mn

gn
2 , Kp =

e
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�gp
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with Landeg factorsgn = �3:02 andgp = 5:58 respec-
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In the mean field approximation, the thermodynamic quantities are expressed in terms of
thermodynamic averages of meson field which are assumed to be constant and are related
to the baryonic and scalar number densities through the field equations viz.
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From the thermodynamic potential, all the thermodynamic quantities can be determined
by the usual relationP=�Ω andε = Ω+Σµ ini(i = n;p;e) by solving the field equations
[eqs (8), (9) and (10)] along with the charge neutrality condition

np = ne (13)

and the condition ofβ -equilibrium

µn = µp+µe (14)

self consistently for a given baryon density

nB = np+nn (15)

and for a given set of nuclear-meson and scalar self-interaction coupling constants. We
thus compute the high density equation of state.
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Table 1. BPS equilibrium nuclei below neutron drip.

BPS Mass-energy
Element (in units of 104 MeV)

Fe56
26 5.2103

Ni62
28 5.7686

Ni64
28 5.9549

Ni66
28 6.1413

Kr86
36 8.0025

Se84
34 7.8170

Ge82
32 7.6316

Zn80
30 7.4466

Ni78
28 7.2621

Ru126
44 11.7337

Mo124
42 11.5495

Zr122
40 11.3655

Sr120
38 11.1818

Sr122
38 11.3655

Kr118
36 10.9985

2.2The magnetic BPS model

The BPS model describes the EOS for cold,β -equilibrated catalyzed matter below neutron
drip, i.e., belowρ � 4:4�1011 g/cc. Following ref. [3], the total pressure of the hadron
matter condensing into a perfect crystal lattice with a nuclear species (A, Z) at the lattice
sites is given by

P= Pe(ne)+PL = Pe(ne)+
1
3

εL(Z;ne) (16)

whereεL is the bcc Coulomb lattice energy given by

εL =�1:444Z2=3e2e2n4=3
e (17)

andPe the pressure, andne the density of the electrons in the presence of the magnetic field
are given by equations in [3] and [11]. The energy density is given by

ε =
ne

Z
WN(A;Z)+ ε 0e(ne)+ εL(Z;ne) (18)

whereWN is the mass-energy of the nucleus (including the rest mass of nucleons andZ
electrons) andε 0e is the free electron energy excluding the rest mass of electrons. ForWN
we use the experimental values for laboratory nuclei as tabulated by Wapastra and Bos
[11]. The elements taken in this paper are given in table 1 along with their mass energy
WN(A;Z). At a given pressureP, the equilibrium values ofA andZ are determined by
minimizing the Gibbs free energy per nucleon
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The neutron drip point is determined by the condition

gmin = mnc2
: (20)

Thus knowingA andZ the energy can be determined from eq. (18).

3. Radial pulsations of a non-rotating neutron star

The equations governing infinitesimal radial pulsations of a non-rotating star in general
relativity were given by Chandrasekhar [9]. The structure of the star in hydrostatic equi-
librium is described by the Tolman–Openheimer–Volkoff equations
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Given an equation of statep(ρ), eqs (21)–(23) can be integrated numerically for a given
central density to obtain the radiusR and gravitational massM = M(R) of the star. The
metric used is given by

ds2 =�e2ν
c2dt2+e2λ

dr2+ r2(dθ 2+sin2 θ dφ2): (24)

If ∆r is the radial displacement
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ζ = r2e�νξ (26)

and the time dependence of the harmonic oscillations is written as eiσt , one gets the equa-
tion governing radial adiabatic oscillations [9,12,13]
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In the above equationsΓ the adiabatic index is given by

Γ =
p+ρc2

c2p
dp
dρ

: (32)

The boundary conditions to solve eq. (27) are

ζ (r = 0) = 0

δ p(r = R) = 0: (33)

The expression forδ p as given by Chandrasekhar [11] is

δ p(r) =�
dp
dr

eνζ
r2 �

Γpeν

r2

dζ
dr

: (34)

All these equations are totally model independent and are in fact the same whether we are
considering neutron stars, quark stars or any other dense stellar object. The nature of the
object being considered and the particular model affects the structure of the star and the
frequency of radial pulsations only through the EOS. Note that in Chandrasekhar [9] and
Dattaet al [12] the pulsation equations were written in terms ofξ instead ofζ . Equation
(27) along with the boundary conditions represent a Sturm–Liouville eigenvalue problem
for σ 2. From the theory of such equations we have the well-known results: (i) Eigenvalues
σ2 are all real and (ii) they form an infinite discrete sequence

σ2
0 < σ2

1 < σ2
2 : : : :

An important consequence of (ii) is that if the fundamental radial mode of a star is stable
(σ2

0 > 0), then all the radial modes are stable.

4. Results and discussions

To study the structure and radial oscillations of neutron stars in the presence of a strong
magnetic field we have employed the BPS model with its generalization in a magnetic
field given by Lai and Shapiro [3] below the neutron drip and the RMF theory above it [5].
We have used the values of various couplings [6,12] which provide the known values of
various nuclear matter parameters namely
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�
gσ
mσ

�
= 0:01525 MeV�1

;

�
gω
mω

�
= 0:011 MeV�1

�
gρ

mρ

�
= 0:011 MeV�1

b= 0:003748; c= 0:01328: (35)

As explained inx2.1 and 2.2, for the RMF theory the equations are solved in a self-
consistent manner for the effective masses and chemical potentials, and the EOS at high
density obtained. Below the neutron drip, the EOS is obtained by the minimization of

Figure 1. Plot of mass in solar mass unit vs. radius in km for magnetic fields 0;1�104,
2�104 MeV2 represented by the curves A, B and C respectively.

Figure 2. Plot of mass in solar mass unit vs. energy density for different magnetic
fields. Curves A, B and C as in figure 1.
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Gibb’s free energy as functions ofA andZ. For this purpose we have employed 14 nuclei
listed in the table. The problem is solved separately forB = 0 andB 6= 0. For eachB
this gives the EOS in the formP(nB) andρ(nB). The structure of the neutron star is then
obtained from the integration of the Oppenheimer–Volkoff equations using Runge–Kutta
integration procedure. This also gives the profile ofm, p andν as a function ofr for each
star. One more quantity that is required isΓ which is calculated directly from the EOS for
all densities by using a quadratic difference formula for the derivative dp=d(ρc 2).

Along with theM–R relationship, one also obtains the gravitational red shift

Z=

�
1�

2Gm
c2r

�
�1=2

�1 (36)

which can in principle be observed experimentally.
For radial oscillation frequency equations [eqs (27)–(32)] are also solved using Runge–

Kutta of order 4 integration procedure for the boundary conditions (33). We use a trial
value ofσ for a given set of values ofζ (r = 0) andζ 0(r = 0) and integrate the equation
outword from the centre up to the surface. The trial value ofσ is varied till the boundary
condition

δ p(r) = 0 atr = R

is satisfied. The discrete values ofσ 2 for which the boundary condition is satisfied are the
eigen frequencies of the radial pulsations. We check that we get zero frequency modes at
the maximum as well as at the minimum of the mass curves. By changing the number of
mesh points, it was estimated thatσ 2 is accurate to one part in 103. In figure 1 we plot
mass in solar mass unit vs. radius in km for magnetic fields 0, 1� 104, 2� 104 MeV2

(1 MeV2 = 1:69�1014 G) represented by the curves A, B and C respectively. It is worth-
while to note that the magnetized neutron stars support higher masses. For very high
magnetic fields the stars become relatively more compact. In figure 2 we present mass vs.
central energy density and in figure 3 we have plotted gravitational red shift vs. mass. In
figure 4 a plot of time period of fundamental mode vs. gravitational red shift is given for
the same magnetic fields as in figure 1. It is interesting to note that for the observed neutron

Figure 3. Plot of gravitational red shift (Z) vs. mass in solar mass unit for different
magnetic fields. Curves A, B and C as in figure 1.
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Figure 4. Plot of time periodτ for fundamental mode vs. gravitational red shift (Z) for
different magnetic fields. Curves A, B and C as in figure 1.

Figure 5. Plot of time periodτ for n = 1 mode vs. gravitational red shift (Z) for
different magnetic fields. Curves A, B and C as in figure 1.

star mass (1.4M�), the magnetic field has practically no influence on radial stability. Sim-
ilar trend is seen for the first excited mode as shown in figure 5.
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