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Abstract. We review certain emergent notions on the nature of space-time from noncommutative
geometry and their radical implications. These ideas of space-time are suggested from developments
in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas com-
ing from fuzzy physics. We find models of quantum space-time like fuzzyS4 on which states cannot
be localized, but which fluctuate into other manifolds like CP3. New uncertainty principles concern-
ing such lack of localizability on quantum space-times are formulated. Such investigations show the
possibility of formulating and answering questions like the probability of finding a point of a quan-
tum manifold in a state localized on another one. Additional striking possibilities indicated by these
developments is the (generic) failure of CPT theorem and the conventional spin-statistics connection.
They even suggest that Planck’s ‘constant’ may not be a constant, but an operator which does not
commute with all observables. All these novel possibilities arise within the rules of conventional
quantum physics, and with no serious input from gravity physics.
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1. Space-time in quantum physics

The point of departure from classical to quantum physics is the algebraF (T �Q) of func-
tions on the classical phase spaceT �Q. According to Dirac, quantization can be achieved
by replacing a functionf in this algebra by an operator̂f and equatingi~ times the Poisson
bracket between functions to the commutator between the corresponding operators.

In classical physics, the functionsf commute, soF (T �Q) is a commutative algebra.
But the corresponding quantum algebrâF is not commutative. Dynamics is on̂F . So
quantum physics is anoncommutative dynamics.

A particular aspect of this dynamics isfuzzy phase spacewhere we cannot localize
points, and which has an attendent effective ultraviolet cut-off: The number of states in a
phase space volumeV is infinite in classical physics andV=~2d in quantum physics when
the phase space is of dimension 2d. The emergence of this cut-off from quantization is of
particular importance for the program of fuzzy physics [1].

This brings us to the focus of our talk. In quantum physics, the commutative algebra
of functions on phase space is deformed to a noncommutative algebra, leading to a ‘non-
commutative phase space’. Such deformations, characteristic of quantum theory, are now
appearing in different approaches to fundamental physics. The talk will focus on a few
such selected approaches and their implications.
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Before proceeding further, let us mention a few of these lines of thought leading to
noncommutative geometry: (1) Noncommutative geometry has made its appearance as a
method for regularizing quantum field theory (qft) and in studies of deformation quantiza-
tion. This talk will more or less base itself on these aspects. (2) It has turned up in string
physics as quantized D-branes. (3) Certain approaches to canonical gravity [2] have also
used noncommutative geometry with great effectiveness.

2. Fuzzy physics and quantum field theory

In what follows, we will focus on fuzzy physics both as a means to regularize quantum
field theories and in their relation to quantum space-times. But as mentioned already, we
will not talk about how they emerge from string physics.

3. Fuzzy space-time as regulator

The original ideas for using fuzzy spaces to regulate qft’s are due to Madore [1]. They
concern quantizing the underlying space-time itself, making it afuzzy space-time.

We know since Planck and Bose that quantization introduces a short distance cut-off,
changing the number of states in a phase space volumeV from ∞ to V=~ 2d.

Now qft’s on a manifold require regularization. The usual nonperturbative regularization
involves lattice qft’s. The use of fuzzy space-times can be another approach. The latter has
important advantages like maintaining symmetries and avoiding fermion doubling. The
particular approach reported here involves many colleagues. Our representative papers are
[3,4] and the work of Vaidya, Dolanet al and Lopezet al in [5]. Related or overlapping
work is due to [6] and [7].

We do Euclidean qft’s. QuantizingS4 would be of great physical interest. But for now,
we will focus on the simpler case ofS2.

4. FuzzyCC 2, SS3 and SS2

4.1 Relation betweenC 2, S3 and S2

ConsiderC 2 with coordinatesz= (z1;z2). We have

S3 =

�
z :j z j 2 := ∑ j zi j2= 1

�
� C

2 (1)

and

S2 = h~x= z†~τz;z2 S3i; (2)

~τ = Pauli matrices; (3)

~x:~x= 1: (4)
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S2 is the quotient ofS3 by the U(1) actionz! zeiθ (Hopf fibration). The group SU(2) =
fgg acts onC 2, S3 andS2:

z! gz;xi ! Ri j (g)xj ;R(g) = rotation matrix forg: (5)

4.2 The fuzzyC 2

Now wequantizeC 2 by the replacements

zα ! aα ; z̄α ! a†
α ; (6)

whereaα anda†
α are harmonic oscillator annihilation and creation operators with the usual

commutation relations. SU(2) still acts with generators

Lα = a†σα a; (7)

which commute with the number operator:

N = a†a; [N;Lα ] = 0: (8)

4.3 The fuzzy three-sphere

Consider

Sα = aα
1p

N+1
;

Sα
† =

1p
N+1

aα
†;

Sα
†Sα =

N
N+1

! 1asN! ∞;
h
Sα ;S

†
β

i
! 0asN ! ∞: (9)

So Sα are normalized commuting vectors asN ! ∞ and the fuzzy three-sphereS3
F is the

algebra generated bySα andSβ
†.

It is important to note that 1=(N+1) here plays the role of a quantized Planck’s constant.
This raises the following important questions: Is it possible that Planck’s ‘constant’ is in

reality an operator? How can one experimentally test this possibility?
The representation of theS3

F-algebra on the Fock space is irreducible.

4.4 The fuzzy two-sphere

Since[N;Lα ] = 0, we have that

[N;S†σαS] = 0: (10)
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So we can restrict the algebra of the fuzzy sphereS2
F generated byS†σαS to the finite-

dimensional vector space spanned by the eigenvectors ofN with eigenvaluen. They are
spanned by

jn1;n2i :=
1p

n1!n2!
(a1

†)n1(a2
†)n2j0i;

n1+n2 = n; (11)

and carry angular momentumJ0 = n=2. As this representation is irreducible, it follows that
the fuzzy sphere algebra for angular momentumJ0 is the algebra of(2J0+1)� (2J0+1)
matrices Mat(2J0+1). We denote its elements byM. It is just the vector space spanned by
the tensor operators in the angular momentumn=2 representation.

Rotation acts onM by M ! gMg�1. So the fuzzy sphere has angular momenta
0;1; :::;2J0, cut-off at 2J0. The algebra of functions on the two-sphere instead has all
integral angular momenta up to∞.

5. Scalar fields onSS2
F

Scalar fields are power series in ‘coordinates’S†σαS. So

scalar field= (2J0+1)-dimensional matrix: (12)

A scalar action, such as

A =
1

2J0+1
Tr([Li ;φ ]

†[Li ;φ ]+φk); (13)

can be quantized by functional integral methods. Renormalization studies of such actions
have been carried out in [5].

Gauge theories can be formulated on fuzzy spaces. For brevity, we will not enter into
their discussion.

Summarizing, we have the classical descent chain

C ! S3 ! S2: (14)

It becomes after quantization

C F ! S3
F ! S2

F: (15)

The algebra dimension is∞ for all, exceptS2
F for which it is (2J0+1)2.

6. On coherent states and star products

In quantum field theory, we calculate correlation functions like

hφ(~n1)φ(~n2) : : :φ(~nj)i; ~nj 2 S2: (16)
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To compare with such expressions, we have to know how to map our operators (finite-
dimensional matrices) to functions. This is where coherent states and star products prove
important. For us, they will also be particularly important when issues of topology fluctu-
ations are discussed. We now explain how star products can be defined on fuzzy spaces.

We start from the infinte-dimensional Fock space associated with two oscillators, and
introduce the standard coherent states

j z;∞i= ezα aα
†
�z̄α aα j0i; (17)

where∞ has been inserted in the state vector to indicate that it is associated with the Fock
space. (It is omitted from the vacuum state which will be common to both the Fock space
and its subspaces which will appear below.)

A theorem asserts that the diagonal matrix elements

hz;∞ j Â j z;∞i= A(z) (18)

determines the operator̂A (under suitable conditions on̂A): the mapÂ! A of operators
to functions is one-to-one. Both the Moyal and Perelomov star products follow from this
result as we now indicate.

The star productA�B of two functionsA andB is defined by

A�B(z) := hz;∞ j ÂB̂ j z;∞i: (19)

(It is not the Moyal star product, but equivalent to it.)
If Â is 0 outside the subspace whereN = n, then

Â= PÂP;

P= projector onto this subspace: (20)

The explicit expression forP is

P= ∑
n1+n2=n

jn1;n2ihn1;n2 j; (21)

where we have used the definition (11).
The diagonal coherent state expectation value ofPÂP is (up to a constant in the definition

of the state)

A(z) = hzjÂjzi;

jzi :=
1p
n!

∑
n1+n2=n

(zα aα
†)nj0i: (22)

The group SU(2) with generatorsLi acts on these states according to

jzi ! jgzi;
g 2 SU(2); (23)

preserving∑ jzi j2, so we can set it equal to 1. This normalizes these states.
The fuzzy sphere operatorsLi and(1=(N+1))Li can be restricted toN = n. We can set

them equal to 0 on the subspaceN 6= n, and treat them as the aboveÂ’s.
In this way, we have a star product onS2

F. There are explicit expressions for this star
product [4].
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7. Fluctuating topologies: A novel space-time uncertainty principle

We now pass to the 4-sphereS4 and consider the fuzzyS4, which is denoted bySF
4. (See

in this connection [7].) We realizeS4 as a sphere inR5:

S4 =

�
x := (x1;x2; ::;x5) : ∑ jxi j2 = 1

�
: (24)

For quantization, it is necessary to introduceC
4 with coordinatesz= (z1;z2; :::;z4). The

unit sphere inC 4 is S7:

S7 =

�
z : ∑ jzi j2 = 1

�
: (25)

We also introduce the five gamma matricesγλ :

γλ = standardγ matrices: (26)

Then we can set

xλ = z†γλ z; z2 S7: (27)

Now instead of 2, we have 4 sets of creation-annihilation operatorsaα ;aα
† (α =

1;2;3;4). S4 will be thought of as a sphere inR5 and its quantized fuzzy version will
hence be formulated.

Coherent states appropriate forS4 are generalizations of those forS2:

jzi :=
1p
n!

∑
n1+n2+n3+n4=n

(zαaα
†)nj0i; (28)

where the sum onα is over 4 values.
The quantized version ofxλ is S†σαSwith S’s defined as before. A simple calculation

shows that

hzjS†σαSji=
�

n
n+1

�
z†γλ z: (29)

Or it givesS4 as imbedded inR5.
But we now show that the fuzzyS4

F emerges only approximately, having fluctuations of
the order of 1=n into the six-dimensional fuzzy manifoldCP3

F , the fuzzy version ofCP3.
To demonstrate this, consider the correlation functionhzjS†σαSS†σβ jzi. A short calcu-

lation shows that it is

z†γαzz†γβ z+O

�
1
n

�
z†γαβ z; (30)

whereγαβ is [Γα ;Γβ ]. Now z†γαβ z is not a function onS4. It is a function only onCP3.

(It is invariant under the phase change ofz : z! eiθ z.) By definition,
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hzjS†σαSS†σβ jzi=
�

n
n+1

�
z†γαz�

�
n

n+1

�
z†γβ z: (31)

A measure of the lack of localization of the star product onS4 is possible to construct,
but we will not discuss that here.

The behaviour of z†γαz under star product is generic for most manifolds, notable excep-
tions beingCPN .

Thus we have an algebra of observables, such as that generated byz†γαz under *, which
is only approximatelylocalized on a manifoldM. It has fluctuationsO(n=(n+ 1)) into
another manifoldM 0 �M which disappear in the classical limit 1=n! 0.

8. More on quantum topologies

The fuzzy spaceS2
F has representations in all dimensions.

In contrast, the fuzzy spaceS4
F, or ratherCP3

F , has representations in symmetric products
of its four-dimensional representation, namely, in dimensions 4;10;20; :::.

So 20�20 matrices can approximateeither S2 or CP3.
So what we see in these matrices depends on the operators we examine [8]. If we work

with S2-coherent states and operators appropriate for them, then they will approximateS2.
But if instead we work with states and operators appropriate forCP3

F , then these matrices
will approximate that manifold.

In high dimensions, such approximate manifolds proliferate.
We can answer questions like: the probability of finding aCP3

F -localized state such as

ρ = jzihzj;

z2 CP3 (32)

(jzi being the coherent state forCP3
F ) in aCP1

F -localized state

ρ̃ = jz̃ihz̃j;

z̃2 CP1; that isS2; (33)

(jz̃i being the coherent state forCP1
F ). The answer is

jTrρ†ρ̃ j2: (34)

We can see from this discussion that questions with fantasy about quantum space-times
become accessible in fuzzy physics.

9. Causality and CPT violation

Fuzzy models can be formulated for space-times with Minkowsky metric, not just for Eu-
clidean space-times likeS2. They are natural models to quantize time, preserving many
symmetries.
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A popular model for quantizing Minkowsky space-time which has been carefully studied
by Doplicher, Fredenhagen and Roberts [9] and others [10,11] is governed by the commu-
tation relation

[xµ ;xν ] = iθ µ;ν ;

θ µ;ν =�θ ν;µ = a real constant: (35)

With space-time fuzzy, the meaning of ‘space-like separation’ loses exact meaning and
leads to causality and hence generically to CPT violation [11].

A way to understand this is as follows: In 1+1-dimensions, we can set

θ µ;ν = θεµ;ν ; (36)

whereε µ;ν is the Levi–Civita symbol withε 0;1 = 1. Then the fuzzy version of a free field
of massM has the representation [10]

Φ =

Z
ψ(k)eik0x0eik1x1; (37)

where

k2
0�k2

1 = M2;

ψ(k) = δ (k2�M2)a(k); k0 > 0;

= δ (k2�M2)a(�k0;k1)
†; k0 < 0; (38)

a(k) anda(k)† being the usual annihilation and creation operators.
We can regard(x0+ ix1)=

p
2θ and its adjoint as annihilation and creation operators. If

jzi denotes the corresponding coherent state, then the square of the fuzzy field localized
approximately at(Rez, Imz) is

hzj(Φ)2jzi := (Φ̄)2(z): (39)

One checks that whenz andz0 correspond to space-like points andα andβ are generic
states,

hα j[Φ̄)2(z);(Φ̄)2(z0)]jβ i � e�jz�z0
j
2
: (40)

Such causality violations aregenericin such models. A fundamental question, inspired
by these models then is:How can we test them?[12]. We can in principle do so using
forward dispersion relations, but they are expected to be small and it is not clear if these
dispersion relations can be evaluated with sufficient accuracy to establish significant limi-
tations on possible causality violation.

10. Winding up

The following broad observations are suggested by the preceding discussions:

- Models of space-time based on noncommutative geometry are suggested by quantum
physics itself, string physics and attempts to regularize quantum field theories.

- They lead to strikingly novel space-time models.
- But lacking contact with experiments, these models for now remain metaphysical

models, just as quantum gravity and string models.
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