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Abstract. The time-dependent Sadinger equation is solved numerically for the case of a Gaus-
sian wave packet incident on a time-varying potential barrier. The time evolving reflection and trans-
mission probabilities of the wave packet are computed for several different time-dependent boundary
conditions obtained by reducing or increasing the height of the potential barrier. We show that in the
case when the barrier height is reduced to zero, a time interval is found during which the reflec-
tion probability is larger (superarrivals) compared to the unperturbed case. We further show that the
transmission probability exhibits superarrivals when the barrier is raised from zero to a finite value
of its height. Superarrivals could be understood by ascribing the features of a real physical field to
the Schodinger wave function which acts as a carrier through which a disturbance, resulting from
the boundary condition being perturbed, propagates from the barrier to the detectors measuring re-
flected and transmitted probabilities. The speed of propagation of this effect depends upon the rate of
reducing or raising the barrier height, thus suggesting an application for secure information transfer
using superarrivals.
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1. Introduction

The physics of wave packet dynamics has revealed several interesting features in recent
years [1]. Generally, the reflection/transmission probabilities for the scattering of wave
packets by potential barriers are calculated after a complete time-evolution when asymp-
totic values have been attained. Here we study a phenomenon that occurs during the time
evolution. We demonstrate a novel quantum effect which occurs as a result of time-varying
boundary conditions. We consider Gaussian wave packets which are incident on time-
dependent potential barriers. We are interested in computing the reflection and transmis-
sion probabilities for the scattered wave packets. In general, various kinds of perturbations
of the potential barrier may be used to alter the time-dependent scattered probabilities.
These include increase or decrease or oscillations of the width of the barrier.

In the present paper we choose a simple kind of barrier perturbation. The height of
the barrier is reduced to zero linearly with time during an interval of time which is short
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compared to the time taken by the scattered wave packet to propagate from the barrier to
the detectors measuring reflected or transmitted probabilities. We show that this effect of
perturbing the boundary leads to superarrivals in the reflected probability. As we shall see
below, superarrivals are prominent only when barrier reduction takes place while there is
sufficient overlap of the wave packet with the barrier. The time interval during which su-
perarrivals occur and the magnitude of superarrivals depend on the rate at which the barrier
height is made zero. We showed in [2] that this essentially nonclassical phenomenon can
be explained in terms of the dynamical kick imparted on the wave packet by the time-
evolving barrier. Information about barrier perturbation reaches the detector with a finite
speed (signal velocitye) which is also proportional to the rate at which the barrier is
reduced. This feature is used to suggest a scheme for secure information transfer using
superarrivals. In order to reveal superarrivals in the transmitted probability, we start with a
zero barrier, which is then raised to a certain height linearly in time while there is sufficient
overlap with the incident wave packet.

The plan of the paper is as follows. §& we define the reflected probability of a Gaussian
wave packet and introduce the concept of superarrivals by considering the case when the
barrier height is lowered to zero [2]. §B we study the complementary phenomenon of
superarrivals occurring in the transmission probability by raising the barrier from zero to
some finite value of its height. We will see how the magnitude of superarrivals depends on
the various parameters of the problem. Using the phenomenon of superarrivals we explore
the possibility of achieving information transfer in a secure wainSection 5 is reserved
for some concluding remarks.

2. Superarrivals from a reflecting barrier

In this section we consider the dynamics of a wave packet scattered from a barrier while its
height is reduced to zero before the asymptotic value of reflection probability is reached.
If an initially localized wave packap(x,t = 0) moves to the right and is scattered from a
rectangular potential barrier of finite height and width, the time-evolving reflection proba-
bility obtained at the left of a point’ is given by

X
ROP= [ jwon o ®

Note that X' lies at the left of the initial profile of the wave packet such that

fflw | (x,t= O)|2dx is negligible. Let us now consider the case if during the time evo-
lution of this wave packet the barrier is perturbed by reducing its height to zero. Let this
height reduction take place within a small interval of time compared to the time taken by
the reflection probability to attain its asymptotic vaI}.Rb|2. We compute effects of this
perturbation or{R(t)|?. We find that there is a time interval during whitiR(t)|? is re-
markably larger in the perturbed case even though the barrier height is reduced. We call
this effect ‘superarrivals’ [2].

Let us consider an initial wave packet given by

(x=%)*

403 +ipgX| , (2)

1
Xt=0=————exp|—
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with width g, centered around= x, and its peak moving with a group velocity = (p)/m
towards a rectangular potential barrier. The paints chosen such tha (x,t = 0) has a
negligible overlap with the barrier.

For computing|R(t)|2 given by eq. (1) the time-dependent Swlinger equation is
solved numerically. Height of the barriév) before perturbation is so chosen that the
asymptotic value of the reflection probability is close to 1 for the static cHR{¢)| 2is
computed according to eq. (1) by taking various values sftisfying the condition’ <
Xo— 300/\/5. The computed evolution dR(t)| 2 corresponds to the building up of reflected
particles with time. It means that a detector located within the regior: x < x’ measures
|R(t)|2 by registering the reflected particles arriving in that region up to various instants.
First, we computeRs(t)|? for the wave packet scattered from a static barrier. Next we

compute the time evolution c}Rp(t) |2 in the perturbed case by choosing different rates of
barrier reduction. In all cases the barrier reduction starts at a jraed the barrier height
is reduced to zero linearly in timéy is chosen such that at that instant the overlap of the
wave packet with the barrier is significant. The time interval during which the barrier is
perturbed is denoted ey We choose values for which< t,, t, being the time required

for |R(t)|? to attain the asymptotic valq&0|2.

Figure 1 shows the evolution R(t)|? for various values of. One sees that during the
time intervalty <t <t,

IRo(H)]* > |Rs(t) 2, 3)

tc the instant when the two curves cross each othert attee time from which the curve
corresponding to the perturbed case starts deviating from that in the unperturbed case. A
detector placed in the regionk x’ would therefore register more counts during this time
intervalAt =t —t, even though the barrier height had been reduced to zero prior to that.

3. Superarrivals in transmission probability from a rising barrier

In this section we will start by considering an initial configuration when there is a right-
moving wave packet but no potential barrier. A detector is placed at a xofat away
to the right in this case and it records the incoming particles constituting the wave packet.
We denote byls(t) the time dependent transmission probability measured at the detector.
Now, if a barrier is raised in the path of the wave packet, one expects a part of the incoming
wave to be reflected back, and the transmitted probabiljt) to get reduced. However,
as in the complementary case of reflection by a reducing barrier, here also we find a time
interval during whichT(t) exceedds(t), thus exhibiting superarrivals in the transmitted
wave packet. The barrier is raised from zero to a velgdinearly in timee. We find that
superarrivals persist for a range of detector positions

In order to obtain a quantitative estimate of superarrivals, we define a quangiyen

by

Ip_ls

n= ; (4)

Is

where the quantitiely, andls are given by
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Figure 1. The time evolution of the reflected probabilifi(t)|? is shown for various
values of the perturbation duratian, The top curve corresponds to the static case. The

other curves correspond to the perturbed cases with different rates of barrier reduction.
As one increases, the magnitude of superarrivals decreases.

o= [ [T et ©

_ 2
ls= /At ITo(t) 2t 6)

The magnitudey of superarrivals is plotted versus the timeaken for barrier raising
in figure 2 for various detector positions. We find tmpidecreases with increasirg
or decreasing rate of barrier perturbation in a manner similar to the case of the reflected
probability when the barrier height is reduced.

That superarrivals are essentially wave mechanical in origin is demonstrated in the fol-
lowing way. One could consider a probabilistic distribution of particles given by the initial
wave packet in terms of the spreads in both position and momentum. Solving the classical
Liouville equation for the same time-varying potential and obtaifiyt)|* and|Rp(t)|?
for the classical case show that there are no superarrivals. This was shown for the case
of reflection from a reducing barrier in [2], and the same result holds true for the case of
transmission as well.
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Figure 2. Superarivals in the transmitted wave packet are shown to decrease with in-
crease irg, the time taken for barrier raising. The three different curves correspond to
three different values of the detector positidon

4. Information transfer using the wave function

In the previous sections we have seen that perturbation of the boundary conditions, repre-
sented by the barrier, affects the wave packet by altering its probability amplitude. Superar-
rivals become more pronounced for larger rate of perturbation. It appears as if the effect of
reducing or raising the barrier imparts a dynamical ‘kick’ to the wave packet, which is then
propagated to the detector. In order to investigate the nature of this dynamical effect we
consider the question as to how fast the influence of barrier perturbation travels across the
wave packet. Note that the information content of a wave packet does not always propagate
with the group velocityg of a wave packet which is usually identified with the velocity of

the peak of a wave packet. In situations such as the present one where the incident packet
gets distorted on striking the barrier, the concept of signal velocity needs to be defined care-
fully [3]. A local change in potential affects a wave packet globally, the global effect being
manifested through the time evolution of the packet. The action due to a local perturbation
(barrier height reduction or raising) propagates across the wave packet at a finite speed,
sayVe, affecting the time evolving reflection (or transmission) probability. Thus a distant
observer who records the growth of reflection probability becomes aware of perturbation
of the barrier (starting at an instanj from the instant, when the time-varying reflection

(or transmission) probability starts deviating from that measured in the unperturbed case.
Thusve is given by
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Figure 3. The duration of superarrivald is plotted versus. The three different curves
denote three different values of the detector position

D

Ve: -
ty—tp

(7)

It has been shown [2] that the duration of superarrikglthe magnitude of superarrivajs
and the signal velocity, all decrease monotonically with increasim@or decreasing rate
of barrier reduction or raising). The reducing (or rising) barrier imparts a kick (the magni-
tude of which is proportional to the rate of reduction) on the wave packet. This disturbance
is propagated across the wave packet to reach the detector. We see that information about
barrier perturbation taking place at locatiwgiand starting at timé, propagates through
the wave packet and reaches the detector locatedaaitimet, with a finite velocityve.

A lot of interest is currently being devoted to study and develop new schemes of quan-
tum information transfer (see, for instance, Alleral [4]), and much work is going on
to optimize the capacity of classical and quantum channels. Let us see how the present
scheme of superarrivals could, in principle, be used for information transfer through the
wave function. In order to do so, it is important to focus on the variatiofstaf t . —t;
(the duration of superarrivals) as a functionsafthe time taken for barrier perturbation).
This is plotted in figure 3 for three different values of the detector positioNote thatAt
decreases monotonically with increasinfpr a wide range of values af

Now suppose a particular curve in figure 3 (functional relation betwdeand ¢ for
a fixed value of detector positioti) is chosen as a key which is shared by two persons
Alice and Bob who want to exchange information. Alice is at the barrier and receives a

326 Pramana — J. Phys.Vol. 59, No. 2, August 2002



Quantum superarrivals

continuous inflow of particles whose wave function is given by the initial Gaussian. Alice
has the choice of reducing (or raising) the barrier height at completely random different
rates. She chooses one particular value &r a single run of the experiment, and she
wants Bob who is at the detector to be able to decipher this valae®db monitors the

time evolution ofiRp(t)|? (or | Ty(t)|?) through the detector counts and is able to decipher

tc, ty, and hencét by comparison with the cuni®s(t)|? (or |Ts(t)|?) for the static case.

He then uses his key to infer the exact value abrresponding to the particular value of

At he has measured. The whole procedure can be repeated with different rates of barrier
reduction (or raising) as many times as required by Alice and Bob. In this way an exchange
of information takes place between Alice and Bob. This exchange is secure because it
would not be possible for any eavesdropper to decipher Alice’s chosen vatugithiout

having access to the key. It is important to note that information transfer takes place in this
scheme without any shared entanglement between the two players Alice and Bob. Also,
the variables can vary continuously in the allowed parameter range.

5. Conclusions

In this paper we have discussed a new quantum mechanical effect which occurs in the time
dependent reflection and transmission probabilities of Gaussian wave packets scattered
from time varying potential barriers. We have shown that the enhancement of probabili-
ties takes place in both the cases as a result of barrier perturbation. The effect of barrier
perturbation, or change in the boundary conditions, propagates across the wave function
at a velocity proportional to the rate of barrier perturbation, and manifests itself as a pro-
portional magnitude of superarrivals at the detector. The wave function plays the role of
a field or carrier through which information is transmitted. Exploiting this feature of su-
perarrivals, we have suggested a scheme of secure transfer of continuous information. Of
course, more detailed calculations are needed in different directions, viz. robustness of the
keys used, capacity of the channel etc., in order to establish the viability of this scheme.
Nevertheless, what is novel about this kind of approach for information transfer is that it is
based on using a dynamical effect of perturbation of the boundary conditions, and it uses
purely the wave function for communication. Further investigations with more varied sets
of parameters and different types of perturbation in boundary conditions are necessary to
test the feasibility of single particle experiments [5] for realizing such a scheme.
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