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Abstract. Understanding of the basic nature of arc root fluctuation is still one of the unsolved
problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applica-
tions being implemented at present. Recently, chaotic nature of arc root behavior has been reported
through the analysis of voltages, acoustic and optical signals which are generated from a hollow
copper electrode arc plasma torch. In this paper we present details of computations involved in the
estimation process of various dynamic properties and show how they reflect chaotic behavior of arc
root in the system.
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1. Introduction

Recently, dynamic characteristics of movement of arc root inside a hollow copper electrode
plasma torch have been investigated using voltage, optical and acoustic signals generated
from the device and evidence for the existence of chaotic regime and possibility of its
online control have been reported based on time series, power spectrum, Lyapunov ex-
ponent, dimension, attractor structure of experimental signals and system dynamics [1,2].
The logical evolution of the estimation procedure for identification and characterization of
chaos in such experimental systems are scarce and are of much value to future workers
in this area. The present paper addresses complexity and benchmarking of the estimation
procedure and test results.

Time series of an experiment signal cannot distinguish whether a signal belongs to pe-
riodic, chaotic or random system. Part of time series of a chaotic system may look like a
periodic signal and a random looking signal may well be a chaotic signal. Phase portrait
of a system is an important tool for looking into dynamical details of a system as well
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as to distinguish periodic and aperiodic systems. However, it fails to distinguish aperi-
odic and chaotic systems. For aperiodic systems, some times strange looking structures
having fractal dimension (termed as strange attractors) appear in state space. Although,
dissipative chaotic systems also exhibit strange attractors, it is not a definitive test for ev-
idence of chaos. A number of strange attractors are reported that do not satisfy positivity
of Lyapunov exponent, a necessary criteria for a system to be chaotic [3].

Lyapunov exponent of a system is a measure for the determination of rate of expansion
of nearby trajectories in phase space. A deterministic system posses as many Lyapunov
exponents as dimension of the corresponding phase space and the system is declared as
chaotic if at least one of these exponents is positive. There are a number of disputes [4]
on this computation and recently it has been reported that random noise also exhibits finite
positive value of Lyapunov exponent [5]. Noise being an infinite dimensional process, an
infinite dimensional reconstruction phase space is required to achieve the exact theoretical
value (zero) of Lyapunov exponent. The requirement not being physical, never comes out
in practice. Moreover, every algorithm for computation of Lyapunov exponent depends on
a number of parameters of the experimental data. Dependence of Lyapunov exponent on all
of these parameters must be studied in detail, for any conclusive statement on the positivity
of the exponent. To remove ambiguity, a comparison of results with similar analysis for a
set of random data is also essential.

The most widely used algorithm for computation of dimension is due to Grassberger
and Procaccia [6]. The approach relies on the assumption that only deterministic dynamics
yield convergence of the slope of the correlation integral at a finite and small value, indi-
cating a low dimensional attractor. Unfortunately, this assumption is not always true. An
insufficient number of data points, linear correlation in the data, or other causes can lead
to false convergence which creates illusion of proof of chaos where there is none [5].

2. Analysis of signals

A copper electrode hollow cathode plasma torch is used for the generation of plasma.
Details of system dynamics, typical fluctuating behavior of the signals and structural details
of the torch are available elsewhere [1,2]. Three signals representing the dynamic voltage,
acoustics and optical outputs are generated from the plasma. Attractors corresponding to
different signals from the system have been constructed using standard delay technique [2].
To compare results with periodic, noisy and periodic signals mixed with some percentage
of noisy signals, we have considered a periodic signal (figure 1a) and a white noise signal
(figure 1b) generated using runtime subroutine RANDOM, available in Microsoft Fortran
Version 1.0 (1993). Figure 1c shows expanded view of part of this white noise signal.
Figures 2a–b show phase portraits due to the periodic signal, the periodic signal mixed
with the white noise signal and the white noise signal respectively. In the first case (figure
2a), only a single orbit is obtained. In the second case (figure 2b), the orbit looks like a
toroid due to the presence of noise, while in the third case (figure 2c), the whole space
is covered by data points without showing any structure. It can be noted that the phase
portraits of experimental signal [2] are completely different in nature from any of these
attractors. Phase portraits look neither like random, nor like periodic or quasi-periodic, but
exhibit some definite structures in phase space, similar to chaotic systems.
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Figure 1. (a) Periodic signal, (b) white noise signal and (c) expanded view of white
noise signal.

Figure 2. Phase portraits (a) periodic signal, (b) periodic signal mixed with white noise
and (c) white noise.

Although, various signals in the system are the macroscopic consequence of the same
chaotic discharge, corresponding attractors look different [2]. This is because the phase
portrait displays information contained in time series and time series for various sig-
nals are different due to their different intrinsic dependence in terms of micro–macro
transitions. However, all signals carry identical fractal dimension around 2.3 which is
in agreement with the behavior of standard chaotic systems like Henon map:Xn+1 =

1�aX2
n +bXn�1(a = 1:4;b= 0:3) which exhibits different looking attractors (figures 3a

and b) for different embedding delays but shows identical dimension of 1.26. Observed
stationarity of computed fractal dimension over a wide range of embedding dimensions
[2] proves that the number of experimental data points used in the computation are suf-
ficient. Benchmarking of the code used for dimension computation is available in [7].
Whether these strange attractors are chaotic or not are examined through the estimation
of Lyapunov exponent.

Largest Lyapunov exponent from experimental time series is determined using fixed
evolution time algorithm proposed by Wolfet al [8]. This algorithm is widely used, robust,
completely general, capable of computing all the exponents and well suited for a variety of
dynamical systems. Details of instruction for computation of this exponent and listing of
the code are available in [8]. To avoid ambiguity, names of parameters are chosen identical
with that used in [8].
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Figure 3. Henon attractor constructed with different delays.

Experimentally, a single observable (voltage, optical or acoustic signal) is sampled at
regular interval (DT) to construct the time series of length (NPT) for that particular ob-
servable. Construction of phase space with delay coordinates [8] allows one to obtain an
attractor from such a time series, whose Lyapunov exponent is identical to that of the orig-
inal attractor. To estimateλ1, long term evolution of a single pair of nearby orbits are
observed in phase space. LetX1 : : :Xn are the elements of a time seriesX(t), sampled for
a particular signal, scaled in the interval [0,1] for convenience. Anm-dimensional (DIM)
phase portrait is constructed out of it with delay coordinate such that a point in the at-
tractor is denoted byfX(t);X(t + τ) : : :X(t +[m�1]τ)g, whereτ is the delay time (TAU)
to be chosen appropriately. A minimum length scale (SCALMN) is defined as the min-
imum length to be handled in the computation. Any length below this scale will not be
entertained. As the computation is based on infinitesimal length scales, a maximum length
scale (SCALMX) is also defined (0<SCALMX�1), which gives the maximum distance
between two points for which they will still be considered to be in a common infinites-
imal neighborhood. To start the computation(t = t0), an initial point (fiducial point) is
chosen arbitrarily in phase space and distance of its nearest neighborL i(t0) is determined.
The system is then allowed to evolve for a certain time (EVOLV), within which the initial
separation elementLi(t0) is evolved toLf(t1). Then(t = t1), a new nearest neighbor is
searched out for the fiducial point such that the separation between the two points isL i(t1)
is a minimum one as well as the angular separation between the evolved and replacement
elements[Lf(t1) andLi(t1)] remain within some maximum allowable angular separation
ANGLMX. If an adequate replacement point is not available, the points that were being
used are retained. The procedure is repeated until the fiducial trajectory has traversed the
entire data file of time series and after it the value ofλ1 is estimated as

λ1 =
1

tM � t0

M

∑
k=1

log2
Lf(tk)

Li(tk�1)
: (1)

In the program(tk� tk�1) is EVOLV, which remains constant throughout the computation
andM is the total number of replacement steps.
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As it appears, the estimation process depends on a number of parameters like DT, DIM,
TAU, EVOLV, SCALMX, SCALMN, and ANGLMX. It is significant that the values of
all of these parameters are to be chosen properly for correct computation of the exponent
value. Dependence ofλ1 has to be studied against variation of all of these parameters
except NPT, DT and ANGLMX. The value of NPT is fixed for all signals and is set to a
sufficiently large value 20000. DT is the sampling rate of experimental data and is fixed ac-
cording to Nyquist criteria. In the present case, ANGLMX is set to 0.3 radian and sampling
interval remains within a few microsecond.

Choice of DIM is not a very strict one. Ideally it should be more than twice the di-
mension of the underlying attractor. However, DIM lower than this also works well [8] in
practice. For higher values of DIM computed value ofλ 1 remains unaltered and for too
low values of it proper unfolding of the attractor does not take place. However, noise being
an infinite dimensional process, may corrupt the true data in phase space for very large
value of DIM, resulting incorrect computation ofλ 1. Therefore, DIM should be kept as
minimum as possible but higher than the minimum required one for correct computation.
If the dimension of the attractor is not known beforehand, a study ofλ 1 against DIM is
needed.

Lyapunov exponents are defined by the long-term evolution of the axes of an infinitesi-
mal sphere of states. The use of finite amount of experimental data does not allow one to
probe the desired infinitesimal length scales of an attractor. The scales are also inaccessi-
ble due to the presence of noise on finite length scales. In the algorithm SCALMN is the
length scale on which noise is expected to appear and SCALMX is the length scale over
which the local structure of the attractor is no longer being probed. Therefore, for proper
choice, a check of stationarity ofλ1 on both of these parameters are needed.

Computation also depends on choice of EVOLV, the allowed evolution time. It should
be as maximum as possible to avoid accumulation of orientation error. However, for too
large EVOLV, the two trajectories that are being considered for evaluation ofλ 1, may pass
through a folding region of the attractor and lead to an underestimation ofλ 1. Practically
it has to be selected considering maximization of evolution time and the tradeoff between
replacement vector size and orientation error [8]. The program used for evaluation ofλ 1
keeps EVOLV constant throughout the computation. Therefore, for choice of any particular
value of EVOLV, a study of dependence ofλ1 on EVOLV is necessary.

Choice of delay time TAU for reconstruction of attractor is also a crucial point in this
case. For too less a value of TAU, attractor may not get properly unfolded in phase space,
while for too large a value of TAU the consecutive points in phase space may get totally
uncorrelated. Therefore, for proper choice of TAU, stationarity ofλ 1 against TAU has to
be secured.

Figure 4 shows a check of stationarity ofλ1 against TAU for an acoustic signal. TAU
has been varied from 2 to 10 and in each case, evolution ofλ 1 is studied (figures 4a–i). In
all cases, as computation proceeds,λ1 tries to reach a stationary value. A least square fit
of the data in the stationary region (straight line in the figures) gives the value ofλ 1 for
that particular TAU. Figure 5a shows dependence ofλ 1 on a range of TAU. Asλ1 remains
almost stationary for TAU within five to eight, TAU=5 (in units of DT) is selected for the
present computation. Similar studies are made for all other parameters also. Although, ul-
timate dependence ofλ1 on these parameters are presented (figure 5), evolution ofλ 1 in all
these cases are not presented due to lack of space. Figure 5b presents dependence ofλ 1 on
SCALMX. Horizontal line in the figure presents the level where the value ofλ 1 remains

Pramana – J. Phys.,Vol. 59, No. 1, July 2002 147



S Ghorui et al

Figure 4. Check of stationarity ofλ1 against TAU. (a) λ1 = 9:502, (b) λ1 = 8:798, (c)
λ1= 8:752, (d) λ1= 7:5, (e) λ1= 8:074, (f) λ1= 7:644, (g) λ1= 7:652, (h) λ1= 6:049
and (i) λ1 = 7:054.

most stable over a wide range of SCALMX. It is seen that SCALMX=20% of horizontal
extent of the attractor can be taken for a good estimate ofλ 1. Lesser the SCALMN, more
accurate is the exponent calculation. However, to avoid noisy length scales, there must be a
limit to the choice of this minimum. Figure 5c shows the dependence ofλ 1 on SCALMN. It
is observed that the value ofλ1 remains almost constant on the lower side of the minimum
cut off length shown. For correct computation ofλ 1, SCALMN is selected as 0.0004% of
the horizontal extent of the attractor. One obtains an embedding if DIM is chosen more
than twice the dimension of the underlying attractor. However, in practice one obtains a
correct evaluation for values of DIM much lower than this [8]. Dependence ofλ 1 on DIM is
displayed in figure 5d. ‘Plus’ and ‘square’ signs correspond to the acoustic and the random
signal respectively. It is seen thatλ1 is almost constant for DIM more than 3 for the acoustic
signal but varies drastically for the random signal. Since value of DIM past the minimally
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Figure 5. Check of dependence ofλ1 on (a) TAU, (b) SCALMX, (c) SCALMN, (d)
DIM and (e) EVOLV.

required unnecessarily increases the level of contamination due to noise, DIM is chosen
safely as 4 for correct computation ofλ1. This behavior ofλ1 with DIM is exactly similar
to that of correlation dimension on DIM [2]. Both of these indicate that the value of DIM
equal to 4 is optimum for this analysis. EVOLV is the maximum time permitted for free
evolution between replacements in the ‘Wolf’s algorithm’. Larger value of EVOLV reduces
the frequency of replacement and reduces the accumulation of orientation error, but allows
the volume element to grow overly large and incorporate folding, causing underestimation
of λ1. Therefore, for correct estimation ofλ1, EVOLV should be chosen in a region where
local variation of EVOLV does not change the value ofλ 1. Figure 5e presents the variation
of λ1 with EVOLV. It is seen thatλ1 is almost stationary for EVOLV within 10 to 20 (in
units of DT). Therefore, EVOLV=10 is selected for correct computation ofλ 1.

We have chosen the optimum algorithmic parameters as per the above discussion and
computed the value ofλ1 for the experimental signal (figure 6). The solid horizontal line
is the least square fit of the data where value ofλ1 is almost stationary. It provides a value
λ1 = 7:55 bits/ms.

As white noise also exhibits spurious positive Lyapunov exponent, it can be questioned
whether the positive exponent, so obtained, is spurious or not. This test has also been
carried out using the same technique and results are already available in [2]. For random
noise and periodic signals the exponent tries to reach zero but remains slightly positive,
while in the case of experimental signal, the value ofλ1 shows a stationary value, well
above the level of zero. The first two cases confirm that the algorithm is correct and the test
as a whole reconfirms that the computed exponent is not spurious and definitely positive.
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Figure 6. Computation ofλ1 for experimental signal (computation parameters:
NPT=20000, TAU=5, DT= 0.002, SCALMX= 20% of horizontal extent,
SCALMN= 0.004% of horizontal extent, DIM=4, EVOLV= 10).

3. Summary and conclusion

Proper prediction and correct characterization of hollow cathode arc discharge system re-
quire a rigorous estimation procedure to be followed using the standard tools of chaos
diagnosis. A number of complex issues and tests are required to be taken into account
before any conclusive statement. This necessitates a detailed accounting of the estimation
procedure with justification for each step. In this paper we have presented details of such
estimation procedure and explained how it confirms presence of chaos exhibited by various
signals in the arc discharge system.
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