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Abstract. We report the numerically evaluated critical exponents associated with the scaling of
generalized fractal dimensions during the transition from order to chaos. The analysis is carried out
in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete
dynamical systems. The behavior of Lyapunov exponents (LE) in the cross over region is also studied
for a complete characterization.
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1. Introduction

The transition from periodic to chaotic behavior in one-dimensional discrete dynamical
systems occurs as a function of the external control parameter and is most often charac-
terized by the occurrence of critical exponents. These exponents are associated with the
order parameters of the transition. If the transition is via the period doubling route, the
Lyapunov exponent (LE) which is a measure of the average divergence rate of two nearby
points serves as an effective order parameter. During the onset of chaos that occurs at the
accumulation point, the value of LE crosses zero from the negative side to the positive
side. Hence the irregular and unpredictable behavior associated with chaos is in particular
quantified through LE. As suclyA is a measure of the time correlation in the system. The
scaling behavior ok has been analyzed theoretically and numerically [1] and is found to
obey the relation

AR U = poo| 1)

wherel, is the value of the control parameteat the Feigenbaum point or accumulation
point of period doubling transitions amds the associated critical exponent. In the context
of unimodal maps like the logistic mapjs given by the Huberman—Rudnick (HR) relation

In2
v(z) = m 2
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where?d is the universal index armthe order of the maximum of the map function char-
acterizing the dynamics of the discrete system. However, near the intermittency prior to a
tangent bifurcation the order parameter is the period lehgth [2] which scales as

1
L(u)~ u—il* and {=>-1 (3)

So also near transient chaotic behavior like crisis, the scaling is analyzed for the escape
rateK with a similar relation

K~ |u—pe|". 4)

In this work, we consider the possibility of more scaling relations that are relevantin char-
acterizing the geometry of the Cantor set-like attractor [3] near the transition point. The
generalized fractal dimensioBs;, when evaluated in the region frqms, to the band merg-

ing crisis pointy,, are found to obey general relations of the type

Dq— Dq. & |t — peo| %, (5)

For eachg, Dg, is the value oDq at 4 = U, and 8y is the associated critical exponent.

Our calculations show that fay values in the range from 10 to 10, eaclD 4 has three
characteristic regions of differing exponents, vidq,, 63, and 6y,, that corresponds to

band merging windows of different orders. We present the values of these three exponents
and their variations witlg for the logistic map and a bimodal cubic map.

The scaling behavior of LE is also analyzed in detail. We find that for the logistic map,
the HR relation is true for the overlap scaling while the expomeénthe immediate neigh-
borhood ofu« is 1. This is in conformity with the values reported for combination maps
[4] and continuous systems [5]. Novel features regarding distributiohgofegions close
to crisis and transition to strange but non-chaotic attractors (SNCA) have been reported ear-
lier [6-8]. For band merging crisis and SNCA to chaos again, linear scaling relations are
valid for A [9,10]. However, bimodal maps considered here exhibit an intermediate region
where due to critical slowing down [114,in the HR relation (2) is replaced /2.

The paper is organized as follows: §8, we introduce the salient features of the uni-
modal and bimodal maps. 8, the exponents of the fractal dimensions and their charac-
teristic behavior are reported. The scaling of LE for the two typical cases under study are
briefly given in§4 and our concluding remarks are included in the last section.

2. Unimodal and bimodal maps

In this section, we concentrate mainly on continuous maps that are unimodal or bimodal in
nature. For unimodal maps, which is modeled most often by the logistic map

Xnpr = FXn, 1) = pXa(1—Xn). (6)
f(Xn, 1) has a single critical poirX; = % in the defining interval and the function is mono-

tonically increasing foX < X; and decreasing fof > X so that it belongs to thé+, —)
group of maps. The transition poipt, is reached via the period doubling scenario and
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is characterized mainly by the indéx The iterates of the map at., fall on an inhomo-
geneous attractor which has the structure of a non-uniform Cantor set and hence demands
detailed multifractal analysis in terms (g — q) or (f — a) for the complete resolution

of its geometry. The structure of the attractor undergoes continuous and small changes
as u increases fromi,. However, before reaching,, there are band merging points of
higher orders where the attractor undergoes sudden changes in its pattern. Figure 1 shows
these changes in the structure of the attractor framwhere a 2 attractor exists to the

band merging crisis point,, at which a single band is formed. The fractal sets are plotted
using 1¢ iterates for a random initial value in [0,1] after discarding the first 3000 iter-
ates, for typical values gf viz. (a) U« = 3.5699456, (b) 3.573444, (c) 3.596643 and (d)

M, = 3.675643. Figure 1b is a zoomed version of a small window in figure 1a. The band
merging point can be calculated analytically from the relation [12]

1

fz(x07ub) = (7)
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Figure 1. (a) The Cantor set structure of the attractor for logistic map usifigtétates,
for typical values ofu viz. (a) for L, = 3.5699456, (b) for £73444, (c) for $96643
and (d) fory, = 3.675643. b) is a zoomed version of a small window ia) (
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Bimodal maps typically are maps with two critical poirts, and X, with a point of
inflectionX;. The simplest among them are cubic maps of tjhe type

Xpp1= T (X, B 1) = X3 = BXa+ 1. ®)

Here the paramet¢ controls the non-linearity term andis an additive parameter, which
controls the dynamics of the system. Generally bimodal maps model systems involving
coupled oscillators, degree one circle maps and modulated systems [13,14]. In the present
form in (8) they haveX, = —/B/3 anch2 = +4/B/3 and the inflection point is at

X, = 0. The map function is monotonically increasing oK Xc , decreasing foKc, <

X < X, and increasing foK > Xc, so that it belongs to-+) type of bimodal map.

The derivative functiorf ' = df /dx is piecewise monotonic and continuous with a single
critical point which is a minimum aK = X;. The stability and the asymptotic states of

(8) mainly depends on the behavior fof especially near its inflection point. Sinéé is
concave in shapd,” atX = X is greater than zero. For a given value of the paranfster

asu is varied, the cycle elements from a period doubling bifurcation have a tendency to
merge together to form a closed loop or bubble-like structure finally ending in the 1-cycle
[15,16]. Here studies based on RG analysis by Oppo and Politi [11] have revealed a critical
slowing down near the Feigenbaum point, where chaos just disappears. In our numerical
analysis, this has been explicitly verified by fixing the multiplicative paranfetat the
limiting point B, = 1.742821997236....and varyinpguntil the chaotic region disappears

at I = L. The bifurcation values show a raié/2 and the gradual increase @ffrom Be,
reveals the growth of the convergence rate f®H? to d as the number of bifurcations

—00,

3. Scaling behavior in fractal dimensions

The geometry of the chaotic attractor is resolved through the generalized dimdhgions
equivalently the f — a) spectrum [17]. In this work we concentrate on the dimensdibgs

for g values ranging from-10 to+10. Thus a complete characterization of the small scale
variations of the non-uniformities in the fractal set is feasibleuAsincreased beyona,

the intervals start merging and hence the valud3phlso changes in a particular pattern,
which can be captured in the scalingd§ as a function ofu. This is the motivation for
studying scaling behavior and evaluating critical exponents, that can reveal typical patterns
of behavior at the secondary level, the primary level being the valuéd gf). If we
consider the reverse sequence fiaprto (., a single band splits into twice as many bands
following ideally the steps in the construction of a Cantor set and reaching an infinite
number of points of zero length at.. The band merging takes place in the forward
direction; the merging of order"2o 2"~ (n= 1,2,3,...) takes place when the unstable
fixed points created during the bifurcation d¥2 cycle to 2" hits the band of order?

The values oDy in the parameter range of interest vig., to y, are calculated nu-
merically using their defining relations [18]. The variationd§ with the parameter for
g=0,1,2 is given in figure 2 for the logistic and bimodal cubic maps. The critical expo-
nents are evaluated from the plot of |@g — Dq,| vS. log|u — Uw|, that are also shown
in the same figure. It is clear that there are three prominent scaling regions giving three
different slopes viz 6y, , 8, and 6, for eachq value. By checking the parameter values
at which the change from one scaling region to another takes place, with the higher order
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band merging points, we come to the following conclusion. For mergings frfotmaads
to 22 bands, almost the same exponégtis obtained, reflecting a more or less average
behavior in the pattern of changes in the corresponding Cantor set. However, prior to the
region where 2to 2! and 2 to 2°, there are major changes in structure giving differing
values for the exponent, and qu respectively. The values of these exponents for the
two cases under study fgr= 0, 1,2 are given in table 1.

In figure 3, we study the variation of these three exponentsayith the logistic map.
The variations are fitted with a six degree polynomial whose expressions are
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Figure 2. The variations of the dimensiol, for g = 0,1 and 2 with the parameter.

(a) for logistic map andd) for bimodal cubic map, from the Feigenbaum pgintto
the band merging crisis poipg,. (b) and () show the corresponding logarithmic plots
of (Dgq—Dg,) Vs. (JU — U|). The critical exponent§, are evaluated as the slopes of
the above plots. The three regions of differis for eachDq are clearly evident.

Table 1. The scaling indices in three different regions calculated from
the plots in figure 2.

Scaling indices for

Map function 6 Dy D, D,

Logistic 6q, 0.3866 04501 05510
64, 0.2865 03785 03552
B, 0.1765 02199 02454

Bimodal cubic 6, 0.5877 07291 08436
64, 0.1994 02020 02340
B, 0.1536 01491 01344
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Figure 3. The variations of the three exponeis, 6;, and 6, with q for = —10to
+10 for the logistic map. The curves can be fitted with a six degree polynomial whose
equations are given in the text.

6y, = —(3E — 07)0° — (7E — 06)q° — 6(E — 06)qt*

+0.001g° + 0.0140° + 0.072+ 0.36 (9)
6y, = —(9E — 07)¢°+ 6(E — 06)q° + (2E — 04)g*
—(9E — 04)q°® — 0.0129%+ 0.03q+ 0.3 (10)
—(3E—07)0® + (3E — 06)q° + (6E — 05)q*
—(6E — 04)0°® — 0.0049% 4 0.0260 + 0.19. (11)

The curves are almost horizontal for negativalues and changes considerablydfos 0.
8y, shows an almost monotonic increase wiilg and g, increases to reach a maximum

and then decreases. The analysis is repeated for the bimodal map by Beefdngg8 and
evaluating the corresponding, as —0.6717398814998050 and, as —0.6327445. The
results are furnished in figure 4 and the polynomial fits of degree six are

6y, = —(2E — 07)0°+ (E — 05)q° + (4E — 05)q*

—0.0024® — 0.002? + 0.134q + 0.575 (12)
6y, = —(7E — 08)0° + (E— 06)q° + (2E — 05)q*
—(2E — 04)g° — 0.002¢? + 0.02q 4 0.197 (13)
—(4E - 07)q° + (E — 06)q° + (8E — 05)q*
—(2E — 04)g® — 0.00502 4 0.0069 + 0.139 (14)
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Figure 4. The variations ofl, , 65, and 6y, with g values for the bimodal cubic map.

4. Scaling of Lyapunov exponents

The scaling behavior of LE for unimodal maps generally follow the HR relation (2).
This has been verified for a large class of maps with diffezaratiues [4]. However, it

is well-known that this relation was derived based on the mirror symmetric band merging
or splitting on the chaotic side beyopd,. Other approaches of this behavior are done
in the presence of noise, the limit of the noise amplituel® reproducing (2) [19]. Ob-
viously this has the effect of washing out of all periodic windows and hence corresponds
to overlap scaling. Numerical results available in the literature [20] are mostly overlap
scaling and thus seems to avoid the critical region in the immediate neighborhpad of
We mainly focus on this region and work out the indefor logistic and bimodal cu-

bic map. Figure 5 gives the results of our calculations for the logistic map in the region
nearl., and the overlap region is also included for comparison. The log—log plots give
slopev = 1.0008 in the former case and the HR value @44 in the latter case. We do

the analysis numerically for the bimodal map also in the immediate neighborhqogl of
The Feigenbaum point is calculated using numerical search procedure with an accuracy
up to 101%-10712 Then we fix the value atB = 1.743 and find out the corresponding

U as—0.489564892649939... at whidh~ 8.43 x 1010, p is then changed in steps of
the order say 102 to 10°° and the corresponding LE’s computed numerically. Figures
6a, 6¢ and 6e show the variation of LE with the paramgtefThe critical exponenv

is calculated as the average slope of the log—log plot betwesmd | (1 — U«)|. Figures

6b, 6d and 6f show the three regions of differingalues; figure 6b for linear scaling 6d

for an intermediate region where critical slowing down prevails and 6f for overlap scal-
ing. The above analysis is repeated for diffef@malues and the results are condensed in
table 2.
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Figure 5. The behavior of the LE), of the logistic map with the control paramejer
(a) in the immediate neighborhood pf, where the behavior is linear with= 1, (c)
for the region of overlap scaling, whevex: In2/Ind ~ 0.4474... b) and () are the
corresponding logarithmic plots @f vs. (|4 — L )|. The scaling indew is the slope
of the log—log plot.

Table 2. The critical pointsti., A at i and the corresponding scaling
indices for differen{3 values for the bimodal map.

B Moo A at Lo %

1.743 —0.4895648926499390 B3E - 10 1003418
175 —0.5603536900309620 J14E - 10 1000035
1765 —0.6245698878069280 .G0E — 12 1000131
1.78 —0.6717398814998050 .G8E — 12 1000769

5. Conclusion

In this study, we work with two typical maps or discrete dynamical systems viz. the logistic
map and a bimodal cubic map, in their transition regions from order to chaos characterized
by the parameter valuyg.. The generalized fractal dimensions characterizing the geom-
etry of the attractor in general have three prominent scaling regions and the variation of
the corresponding exponerig with g follow polynomial relations. The order parameter
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Figure 6. The variation ofA with u for bimodal cubic mapd) in the immediate
neighborhood oft, wherev = 1, (c) for the intermediate region of critical slowing
down and ¢€) for regions of overlap scaling.b), (d) and €) are the corresponding

log—log plots ofA vs. (|U — Lo )|.

characterizing the dynamics on the attractor viz. the Lyapunov exponent shows linear
scaling with an exponemt = 1 in the immediate neighborhood pf,. The novel feature

of the work reported here is the addition of critical exponégtsvhich reflects the pattern

of changes in the fractal structure of the Feigenbaum attractor as the parameter changes.
However in the context of bimodal maps, this structure should depend on the specific
route or kneading sequence that the system follows to reach the Feigenbaum point. In the
present work, we concentrate only on the period doubling route. For other combinations
of parameter values, several other kneading sequences are possible [21]. The search for
scaling in the analogous approach with— a) values is being done and will be reported
elsewhere.
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