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Abstract. We report the numerically evaluated critical exponents associated with the scaling of
generalized fractal dimensions during the transition from order to chaos. The analysis is carried out
in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete
dynamical systems. The behavior of Lyapunov exponents (LE) in the cross over region is also studied
for a complete characterization.
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1. Introduction

The transition from periodic to chaotic behavior in one-dimensional discrete dynamical
systems occurs as a function of the external control parameter and is most often charac-
terized by the occurrence of critical exponents. These exponents are associated with the
order parameters of the transition. If the transition is via the period doubling route, the
Lyapunov exponent (LE) which is a measure of the average divergence rate of two nearby
points serves as an effective order parameter. During the onset of chaos that occurs at the
accumulation point, the value of LE crosses zero from the negative side to the positive
side. Hence the irregular and unpredictable behavior associated with chaos is in particular
quantified through LE. As such 1=λ is a measure of the time correlation in the system. The
scaling behavior ofλ has been analyzed theoretically and numerically [1] and is found to
obey the relation

λ � jµ�µ∞j
ν (1)

whereµ∞ is the value of the control parameterµ at the Feigenbaum point or accumulation
point of period doubling transitions andν is the associated critical exponent. In the context
of unimodal maps like the logistic map,ν is given by the Huberman–Rudnick (HR) relation

ν(z) =
ln 2

ln δ (z)
(2)
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whereδ is the universal index andz the order of the maximum of the map function char-
acterizing the dynamics of the discrete system. However, near the intermittency prior to a
tangent bifurcation the order parameter is the period lengthL(µ) [2] which scales as

L(µ)� jµ�µt j
ζ and ζ =

1
z
�1: (3)

So also near transient chaotic behavior like crisis, the scaling is analyzed for the escape
rateK with a similar relation

K � jµ�µcj
η : (4)

In this work, we consider the possibility of more scaling relations that are relevant in char-
acterizing the geometry of the Cantor set-like attractor [3] near the transition point. The
generalized fractal dimensionsDq, when evaluated in the region fromµ∞ to the band merg-
ing crisis pointµb, are found to obey general relations of the type

Dq�Dq∞ � jµ�µ∞j
θq: (5)

For eachq, Dq∞ is the value ofDq at µ = µ∞ andθq is the associated critical exponent.
Our calculations show that forq values in the range from�10 to 10, eachD q has three
characteristic regions of differing exponents, viz.,θ q1

;θq2
and θq3

, that corresponds to
band merging windows of different orders. We present the values of these three exponents
and their variations withq for the logistic map and a bimodal cubic map.

The scaling behavior of LE is also analyzed in detail. We find that for the logistic map,
the HR relation is true for the overlap scaling while the exponentν in the immediate neigh-
borhood ofµ∞ is�1. This is in conformity with the values reported for combination maps
[4] and continuous systems [5]. Novel features regarding distributions ofλ in regions close
to crisis and transition to strange but non-chaotic attractors (SNCA) have been reported ear-
lier [6–8]. For band merging crisis and SNCA to chaos again, linear scaling relations are
valid for λ [9,10]. However, bimodal maps considered here exhibit an intermediate region
where due to critical slowing down [11],δ in the HR relation (2) is replaced byδ 1=2.

The paper is organized as follows: Inx2, we introduce the salient features of the uni-
modal and bimodal maps. Inx3, the exponents of the fractal dimensions and their charac-
teristic behavior are reported. The scaling of LE for the two typical cases under study are
briefly given inx4 and our concluding remarks are included in the last section.

2. Unimodal and bimodal maps

In this section, we concentrate mainly on continuous maps that are unimodal or bimodal in
nature. For unimodal maps, which is modeled most often by the logistic map

Xn+1 = f (Xn; µ) = µXn(1�Xn): (6)

f (Xn;µ) has a single critical pointXc=
1
2 in the defining interval and the function is mono-

tonically increasing forX < Xc and decreasing forX > Xc so that it belongs to the(+;�)
group of maps. The transition pointµ∞ is reached via the period doubling scenario and
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is characterized mainly by the indexδ . The iterates of the map atµ ∞ fall on an inhomo-
geneous attractor which has the structure of a non-uniform Cantor set and hence demands
detailed multifractal analysis in terms of(Dq�q) or ( f �α) for the complete resolution
of its geometry. The structure of the attractor undergoes continuous and small changes
asµ increases fromµ∞. However, before reachingµb, there are band merging points of
higher orders where the attractor undergoes sudden changes in its pattern. Figure 1 shows
these changes in the structure of the attractor fromµ∞, where a 2∞ attractor exists to the
band merging crisis pointµb, at which a single band is formed. The fractal sets are plotted
using 104 iterates for a random initial value in [0,1] after discarding the first 3000 iter-
ates, for typical values ofµ viz. (a) µ∞ = 3:5699456, (b) 3.573444, (c) 3.596643 and (d)
µb = 3:675643. Figure 1b is a zoomed version of a small window in figure 1a. The band
merging point can be calculated analytically from the relation [12]

f 2(Xc;µb) =
1
µb

: (7)

Figure 1. (a) The Cantor set structure of the attractor for logistic map using 104 iterates,
for typical values ofµ viz. (a) for µ∞ = 3:5699456, (b) for 3:573444, (c) for 3:596643
and (d) forµb = 3:675643. (b) is a zoomed version of a small window in (a).
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Bimodal maps typically are maps with two critical pointsXc1
and Xc2

with a point of
inflectionXi . The simplest among them are cubic maps of the type

Xn+1 = f (Xn;β ;µ) = X3
n � βXn+µ : (8)

Here the parameterβ controls the non-linearity term andµ is an additive parameter, which
controls the dynamics of the system. Generally bimodal maps model systems involving
coupled oscillators, degree one circle maps and modulated systems [13,14]. In the present
form in (8) they haveXc1

= �
p

β=3 andXc2
= +
p

β=3 and the inflection point is at
Xi = 0. The map function is monotonically increasing forX < Xc1

, decreasing forXc1
<

X < Xc2
and increasing forX > Xc2

so that it belongs to (+-+) type of bimodal map.
The derivative functionf 0 = d f=dx is piecewise monotonic and continuous with a single
critical point which is a minimum atX = Xi . The stability and the asymptotic states of
(8) mainly depends on the behavior off 0 especially near its inflection point. Sincef 0 is
concave in shape,f 000 at X = Xi is greater than zero. For a given value of the parameterβ ,
asµ is varied, the cycle elements from a period doubling bifurcation have a tendency to
merge together to form a closed loop or bubble-like structure finally ending in the 1-cycle
[15,16]. Here studies based on RG analysis by Oppo and Politi [11] have revealed a critical
slowing down near the Feigenbaum point, where chaos just disappears. In our numerical
analysis, this has been explicitly verified by fixing the multiplicative parameterβ at the
limiting point β∞ = 1:742821997236....and varyingµ until the chaotic region disappears
at µ = µ∞. The bifurcation values show a rateδ 1=2 and the gradual increase ofβ from β∞
reveals the growth of the convergence rate fromδ 1=2 to δ as the number of bifurcations
!∞.

3. Scaling behavior in fractal dimensions

The geometry of the chaotic attractor is resolved through the generalized dimensionsD q or
equivalently the( f �α) spectrum [17]. In this work we concentrate on the dimensionsD q,
for q values ranging from�10 to+10. Thus a complete characterization of the small scale
variations of the non-uniformities in the fractal set is feasible. Asµ is increased beyondµ ∞,
the intervals start merging and hence the values ofDq also changes in a particular pattern,
which can be captured in the scaling ofDq as a function ofµ . This is the motivation for
studying scaling behavior and evaluating critical exponents, that can reveal typical patterns
of behavior at the secondary level, the primary level being the values of(D q;q). If we
consider the reverse sequence fromµb to µ∞, a single band splits into twice as many bands
following ideally the steps in the construction of a Cantor set and reaching an infinite
number of points of zero length atµ∞. The band merging takes place in the forward
direction; the merging of order 2n to 2n�1 (n= 1;2;3; :::) takes place when the unstable
fixed points created during the bifurcation of 2n�1 cycle to 2n hits the band of order 2n.

The values ofDq in the parameter range of interest viz.µ∞ to µb are calculated nu-
merically using their defining relations [18]. The variation ofD q with the parameter for
q= 0;1;2 is given in figure 2 for the logistic and bimodal cubic maps. The critical expo-
nents are evaluated from the plot of logjDq�Dq∞ j vs. logjµ � µ∞j, that are also shown
in the same figure. It is clear that there are three prominent scaling regions giving three
different slopes viz.θq1

;θq2
andθq3

for eachq value. By checking the parameter values
at which the change from one scaling region to another takes place, with the higher order
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band merging points, we come to the following conclusion. For mergings from 2∞ bands
to 23 bands, almost the same exponentθq1

is obtained, reflecting a more or less average
behavior in the pattern of changes in the corresponding Cantor set. However, prior to the
region where 23 to 21 and 21 to 20, there are major changes in structure giving differing
values for the exponentsθq2

andθq3
respectively. The values of these exponents for the

two cases under study forq= 0;1;2 are given in table 1.
In figure 3, we study the variation of these three exponents withq for the logistic map.

The variations are fitted with a six degree polynomial whose expressions are

Figure 2. The variations of the dimensionsDq for q= 0;1 and 2 with the parameterµ.
(a) for logistic map and (c) for bimodal cubic map, from the Feigenbaum pointµ∞ to
the band merging crisis pointµb. (b) and (d) show the corresponding logarithmic plots
of (Dq�Dq∞) vs. (jµ � µ∞j). The critical exponentsθq are evaluated as the slopes of
the above plots. The three regions of differingθq’s for eachDq are clearly evident.

Table 1. The scaling indices in three different regions calculated from
the plots in figure 2.

Scaling indices for

Map function θ D0 D1 D2

Logistic θq1
0:3866 0:4501 0:5510

θq2
0:2865 0:3785 0:3552

θq3
0:1765 0:2199 0:2454

Bimodal cubic θq1
0:5877 0:7291 0:8436

θq2
0:1994 0:2020 0:2340

θq3
0:1536 0:1491 0:1344
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Figure 3. The variations of the three exponentsθq1
;θq2

andθq3
with q for q= �10 to

+10 for the logistic map. The curves can be fitted with a six degree polynomial whose
equations are given in the text.

θq1
=�(3E�07)q6

� (7E�06)q5
�6(E�06)q4

+0:001q3+0:014q2+0:072q+0:36 (9)

θq2
=�(9E�07)q6+6(E�06)q5+(2E�04)q4

�(9E�04)q3
�0:012q2+0:03q+0:3 (10)

θq3
=�(3E�07)q6+(3E�06)q5+(6E�05)q4

�(6E�04)q3
�0:004q2+0:026q+0:19: (11)

The curves are almost horizontal for negativeq values and changes considerably forq > 0.
θq1

shows an almost monotonic increase whileθq2
andθq3

increases to reach a maximum
and then decreases. The analysis is repeated for the bimodal map by keepngβ = 1:78 and
evaluating the correspondingµ∞ as�0:6717398814998050 andµb as�0:6327445. The
results are furnished in figure 4 and the polynomial fits of degree six are

θq1
=�(2E�07)q6+(E�05)q5+(4E�05)q4

�0:002q3
�0:002q2+0:134q+0:575 (12)

θq2
=�(7E�08)q6+(E�06)q5+(2E�05)q4

�(2E�04)q3
�0:002q2+0:02q+0:197 (13)

θq3
=�(4E�07)q6+(E�06)q5+(8E�05)q4

�(2E�04)q3
�0:005q2+0:006q+0:139: (14)
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Figure 4. The variations ofθq1
, θq2

andθq3
with q values for the bimodal cubic map.

4. Scaling of Lyapunov exponents

The scaling behavior of LE for unimodal maps generally follow the HR relation (2).
This has been verified for a large class of maps with differentz values [4]. However, it
is well-known that this relation was derived based on the mirror symmetric band merging
or splitting on the chaotic side beyondµ∞. Other approaches of this behavior are done
in the presence of noise, the limit of the noise amplitude! 0 reproducing (2) [19]. Ob-
viously this has the effect of washing out of all periodic windows and hence corresponds
to overlap scaling. Numerical results available in the literature [20] are mostly overlap
scaling and thus seems to avoid the critical region in the immediate neighborhood ofµ ∞.
We mainly focus on this region and work out the indexν for logistic and bimodal cu-
bic map. Figure 5 gives the results of our calculations for the logistic map in the region
nearµ∞ and the overlap region is also included for comparison. The log–log plots give
slopeν = 1:0008 in the former case and the HR value of 0:4474 in the latter case. We do
the analysis numerically for the bimodal map also in the immediate neighborhood ofµ ∞.
The Feigenbaum point is calculated using numerical search procedure with an accuracy
up to 10�10–10�12. Then we fix theβ value atβ = 1:743 and find out the corresponding
µ∞ as�0.489564892649939... at whichλ � 8:43�10�10. µ is then changed in steps of
the order say 10�12 to 10�6 and the corresponding LE’s computed numerically. Figures
6a, 6c and 6e show the variation of LE with the parameterµ . The critical exponentν
is calculated as the average slope of the log–log plot betweenλ andj(µ � µ ∞)j. Figures
6b, 6d and 6f show the three regions of differingν values; figure 6b for linear scaling 6d
for an intermediate region where critical slowing down prevails and 6f for overlap scal-
ing. The above analysis is repeated for differentβ values and the results are condensed in
table 2.
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Figure 5. The behavior of the LE,λ , of the logistic map with the control parameterµ.
(a) in the immediate neighborhood ofµ∞ where the behavior is linear withν � 1, (c)
for the region of overlap scaling, whereν � ln2=lnδ � 0:4474... (b) and (d) are the
corresponding logarithmic plots ofλ vs. (jµ � µ∞)j. The scaling indexν is the slope
of the log–log plot.

Table 2. The critical pointsµ∞, λ at µ∞ and the corresponding scaling
indices for differentβ values for the bimodal map.

β µ∞ λ at µ∞ ν

1:743 �0:4895648926499390 8:43E�10 1:003418

1:75 �0:5603536900309620 1:74E�10 1:000035

1:765 �0:6245698878069280 3:60E�12 1:000131

1:78 �0:6717398814998050 3:68E�12 1:000769

5. Conclusion

In this study, we work with two typical maps or discrete dynamical systems viz. the logistic
map and a bimodal cubic map, in their transition regions from order to chaos characterized
by the parameter valueµ∞. The generalized fractal dimensions characterizing the geom-
etry of the attractor in general have three prominent scaling regions and the variation of
the corresponding exponentsθq with q follow polynomial relations. The order parameter
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Figure 6. The variation ofλ with µ for bimodal cubic map (a) in the immediate
neighborhood ofµ∞ whereν � 1, (c) for the intermediate region of critical slowing
down and (e) for regions of overlap scaling. (b), (d) and (f) are the corresponding
log–log plots ofλ vs. (jµ �µ∞)j.

characterizing the dynamics on the attractor viz. the Lyapunov exponent shows linear
scaling with an exponentν � 1 in the immediate neighborhood ofµ ∞. The novel feature
of the work reported here is the addition of critical exponentsθ q, which reflects the pattern
of changes in the fractal structure of the Feigenbaum attractor as the parameter changes.
However in the context of bimodal maps, this structure should depend on the specific
route or kneading sequence that the system follows to reach the Feigenbaum point. In the
present work, we concentrate only on the period doubling route. For other combinations
of parameter values, several other kneading sequences are possible [21]. The search for
scaling in the analogous approach with( f �α) values is being done and will be reported
elsewhere.

Pramana – J. Phys.,Vol. 59, No. 1, July 2002 17



G Ambika and N V Sujatha

Acknowledgements

NVS acknowledges the University Grants Commission, New Delhi for assistance through
Junior Research Fellowship and GA acknowledges the computer facility and warm hospi-
tality at IUCAA, Pune.

References

[1] B A Huberman and J Rudnick,Phys. Rev. Lett.45, 154 (1980)
[2] C Beck and F Schlogl,Thermodynamics of chaotic systems(Cambridge University Press, 1993)
[3] Ali H Nayfeh and B Balachandran,Applied nonlinear dynamics(Wiley-Interscience Pub, 1995)
[4] P R Krishnan Nair, V M Nandakumaran and G Ambika,Pramana – J. Phys.43, 421 (1994)
[5] G Ambika,Phys. Lett.A221, 323 (1996)
[6] V Mehra and R Ramaswamy,Phys. Rev.E53, 3420 (1996)
[7] A Prasad, V Mehra and R Ramaswamy,Phys. Rev. Lett.79, 4127 (1997)
[8] A Prasad, V Mehra and R Ramaswamy,Phys. Rev.E57, 1576 (1998)
[9] Y C Lai, Phys. Rev.E53, 57 (1996)

[10] P Philominathan and P Neelamegham,Chaos, solitons and fractals12, 1005 (2001)
[11] G L Oppo and A Politi,Phys. Rev.A30, 435 (1984)
[12] N Ananthkrishnan and Tuhin Sahai,Resonance6, No. 3, 19 (2001)
[13] T Hogg and B A Huberman,Phys. Rev.A29, 275 (1984)
[14] J Kozlowski, U Parlitz and W Lauterborn,Phys. Rev.E51, 1861 (1995)
[15] G Ambika and N V Sujatha,Pramana – J. Phys.54, 751 (2000)
[16] G Ambika, N V Sujatha and K P Harikrishnan,Proceedings of VIIIth Ramanujam symposium

on recent developments in nonlinear systems held on Feb.14–16, 2001(in press)
[17] G Ambika and K Babu Joseph,Pramana – J. Phys.39, 193 (1992)
[18] R C Hilborn,Chaos and nonlinear dynamics(Oxford University Press, 1994)
[19] B Shraiman, C E Wayne and P C Martin,Phys. Rev. Lett.46, 935 (1981)
[20] J Crutchfield, M Nauenberg and J Rudnick,Phys. Rev. Lett.46, 933 (1981)
[21] K F Cao and S L Peng,Phys. Rev.E60, 2745 (1999)

18 Pramana – J. Phys.,Vol. 59, No. 1, July 2002


