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1. Introduction

A continuous wave with a cubic nonlinearity in an anomalous dispersion regime is known
to develop instability with respect to small modulations in amplitude or in phase, called
modulational instability (MI) [1]. The MI phenomenon was discovered in fluids [2], in
nonlinear optics [3] and in plasmas [4]. MI of a light wave in an optical fiber was sug-
gested by Hasegawa and Brinkman [5] as a means to generate a far infrared light source
and since then has attracted extensive attention for both its fundamental and applied in-
terests [1]. As regards applications, Ml provides a natural means of generating ultrashort
pulses at ultrahigh repetition rates and is thus potentially useful for the development of
high speed optical communication systems in future [1,6,7] and hence has been exploited a
great deal in many theoretical and experimental studies for the realization of laser sources
adapted to ultrahigh bit-rate optical transmissions. MI phenomenon is accompanied by
side-band evolution at a frequency separation from the carrier which is proportional to the
optical pump power [1,6,7]. When two or more optical waves copropagate through a bire-
fringent optical fiber, they interact with each other through the fiber nonlinearity in such

a way that the effective refractive index of a wave depends not only on the intensity of
that wave but also on the intensity of other copropagating waves, a phenomenon known as
cross-phase modulation (XPM) [1,6—8]. Ml in a birefringent optical fiber can be experi-
mentally observed via two techniques, namely, the single-frequency copropagation where
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two pump waves of identical frequency copropagate with orthogonal polarizations parallel
to the two birefringence axes of the fiber [9] and the two-frequency copropagation, where
the two polarized wave copropagate with different frequencies [9]. Drummond, Kennedy
and Harvey have demonstrated experimentally that Ml can occur for the normal dispersion
regime by using the single frequency copropagation technique [10] and have pointed out
that the appearance of Ml in the normal dispersion regime for a highly birefringent fiber
is due to the group velocity mismatch (GVM) between the two copropagating waves and
termed the instability as cross-phase MI (XMI) [10]. When breakup of continuous wave
and guasi-continuous wave radiates into a train of picosecond and femto second pulses
in the fiber, higher order dispersion effects such as self-steepening, self-induced Raman
scattering (SRS) and higher order dispersion effects such as third- and fourth-order dis-
persion should also be taken into account [6-8]. In an earlier work we have considered
the influence of fourth-order dispersion effect alone when considering the occurrence of
polarization modulation instability of ultrashort pulses of 500 fs and above on a circularly
birefringent optical fiber [11] without considering group velocity mismatch. We arrived
at the conclusion that the slow and the fast axes of a polarization preserving fiber are not
equivalent when one considers the influence due to fourth-order dispersion effect also. In
the present paper, we study the influence of cross-phase modulation (XPM), higher order
nonlinear effects such as self-steepening, self-induced Raman scattering (SRS) and higher
order dispersion effects such as third- and fourth-order dispersion on XMl for a highly
elliptical birefringent optical fiber and obtain conditions for the occurrence of XMl in the
normal dispersion regime.

The paper is arranged as follows: 8, we briefly discuss the basic equation. Ml
conditions for the basic equation are determine$Binin §4 we present the derivation of
the coupled linearized equations for the four side-band amplitudes in the two orthogonal
linear polarization components of the pump wave, arrive at the MI conditions and compare
the results with those i§B. In §5, we conclude.

2. Basic equation

We consider coupled higher order nonlinear 8dimger equation (CHNSE) model [6-8]
with the addition of self-steepening, SRS, third- and fourth-order dispersion effects given

by

: o B 2 2 B B
! <U2+ EUT> _EZUTT+V(|U| +B|V| )U _'§3UTTT_2_ZUTTTT+

i% [(£i|U|2+e§|V|2)u]T —y(U [55|U|2+54'1|V|2]T+€éV[UV*]T) o,

: o B 2 2 B B
l <Vz—§VT> _72VTT+V(B|U| + VI )V_|€3VTTT_2_ZVTTTT+

l / 2 / 2 _ ! 2 ’ 2 / * _
P (0P +eNVP)V] —y(V[ealuP+& V7] +&uu Vi) =0,
1)
wherez is the longitudinal distancd, =t — (z/vy) is the retarded time an8,, 3; and,

are the second-, third- and fourth-order dispersion coefficients respectively. The terms in
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the first square parenthesis denote the effect due to self-steepening [6-¢3, E21d &,
are constants and are the coefficients of the self-steepening terms. The terms in the last
parenthesis are instrumental for the occurrence of SRS [6—-&13k, and&; represent

the coefficients of SRS and are related to each other via the eqagtios, + f:;fz((%)) &
where@ is the ellipticity angle [13].
In the dimensionless form, the above equation becomes
! ! ! ! 2 ! 2 ! . ! !
i (UZ +Aur) _Slurr+ Uu ‘ +B‘V ‘ } u _|%urrr _Se,urrrr"‘
i [(el u|*+e, |v’|2) u’] - (u’ [53 u|* +e¢, |v’|2} eV [U'V*] T) =
! ! ! ! 2 ! 2 ! . ! !
i (VZ _AVT) _S_I.Vrr+ [B‘u ‘ + ‘V ‘ } v _lgvrrr _%Vrrrr"‘
. v 2 112 2 1y
(W[ +e V) V] = (v [l +ea V7] + el [ v],) =0,
2)
_ z S _S _ S|B S3(B4] |Bz|
wheres = glfel T= 50 A= o =2 % =G fer 3 = agier Y =
V= L%Jv g = wziTo,ez %’T &= 83 &= T ,55_ T—,WhereT is an arbitrary time

scale which igrm, the initial pulse W|dth. In this work we consider three different scenario
for generation of ultrashort pulses of various pulse widths, governed by the respective Mi
conditions: (i) generation of ultrashort pulses of the order of 500 fs and above [14] where
all the higher order nonlinear terms can be neglected [15,16]ghes &, = &5 =€, =

& = 0 with only the third- and fourth-order dispersion terms remaining in eq. (2). In an
earlier work we have considered this case after neglecting the group velocity mismatch
parameten [11]; (ii) generation of ultrashort pulses in the femto second region below 500

fs where the influence of SRS and self-steepening should also be considered along with
the higher order dispersion terms [6-8]; (iii)) generation of ultrashort pulses in the sub-pico
femto second region where both the self-steepening and fourth-order dispersion terms can
be safely neglected [6-8].

3. Modulational instability conditions

Equation (2) admits steady state solutions of the form
u = /Pexp(i{ (P,+BRy)),
V= VPexp(i{ (P,+BP)), (3)

where P, are proportional to input powers along the principal axes. We examine the
stability of the steady state solution by looking into the system in the presence of small
amplitude perturbationsandv given by

u = (/P +Uu)exp(i (P, +BRy)),
v = (/P +V)exp(i¢ (P,+BR)). (4)
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On substituting eq. (4) into eq. (2) and on linearizing ahoanhdv, we obtain the
following linearized equations imandv:

i(uZ+Aur) Siurr + (P (U+U") 4+ By/PP, (V+ V') —iSUrrr — SyUrrer
+i (&P U+ 2u] + & [Pou+ /PP (v+ V)] )

— (&3P [u+ U] + /PP [V+ V] + & [Pu+ /PRV] ) =0,
i (VZ — Avr) = SVir + (By/PP, (U+ U") + Py (V4 V) —iSVerr — SyVerrr
+i (&P [V + 2], + & [P+ /PP (u+u)] )

— (&P [V+V']; + 4 /PIR [u+ U] + &5 [/PIRU + PV ) =0,

®)
where we have considered the case for a linearly polarized pump oriented at arbitrary

angles with respect to either the slow or the fast axis [1,6]. On Fourier transforming the
linearized equations given by eq. (5), according to the relations

A ({,w) =

u(¢, 1) exp(iowt)dr,

r/

00
A.0) = —— [ “viz.expliondr. ©®)

van

we obtain four linearized equations in terms/Aof + Al, A — Al A, + Al andA, — A
which are of the form

O(A +A])

'# =My (A1+AD + My, (Al_AD + My (A2+A;) +My, (Az_A;) ,

O(A —A)

'% = Myy (A +AL) + My, (A — A]) +Myz (A, +AD) + My, (Ay— A))

9(A+A)
dZAZ = Mgy (A +AL) + Mgy (A) — A]) + Mgz (A, +Al) + Mgy (A, — A))

9(A,—A)

'275/-\2 =My, (A1+AD +My, (Al_AD +Mys (A2+A;) +M44(A2_AD:
whereM,; = Aw + S,w® + Pw (3¢ + &,), My, = S;w? — S;0* +ig,Pw, M5 = 2¢,Pw,
M, = —igPw, My, = Sjw? — S;w* + 2P + iPw (25 + &), M,, = Aw + S,w° +
Pw (& + &), My = 2BP+ iPw(g,+ &), My = 26,Pw, My, = —igPw, My =

—Aw+ S,w% + Pw (3¢, + &), Mgy = M, My, = 2BP+iPw (26, + &), Mgz = My,
My, = —Bw + S,00° + Pw (g + &,). We have also considered the relatiéfi(¢, w) =

[A,(¢,—w)]" andAl (¢,w) = [A,(¢,—w)]" where the asterix denotes complex conju-
gate. These equations can be brought into the following matrix form:

(OA (G, w)

w) _
e =-M(w)A (¢, w) 7
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where

A +Al

A, —Al
A,+AL T

AZ—A;

A(Gw) = (8)

and

Mll MQ MB M014
_ 21 Moy Vg
M (@)= Mgy Mg, Mgg Mg, |- ®)
Myp O Mgz My,

The eigenvalue equation is given by
IM (w) —kI| =0, (10)

wherel is the identity matrix. From eq. (10) we obtain a dispersion relatidoviiich is

a fourth-order polynomial equation. Ml occurs when there is an exponential growth in the
amplitude of the perturbed wave which implies the existence of a nonvanishing imaginary
part in the complex eigenvalug1,6—-8,10]. The importance of the Ml phenomenon is
measured by a gain given B= |Imk| where Ink denotes the imaginary partkaf\We next
investigate the MI conditions for various regimes of pulse propagation. We now discuss
the results obtained for the three different cases mentiongl in

(i) MI condition governing the generation of ultrashort pulses in the femto second region
of the order of 500 fs and above

This scenario has been experimentally studied by Cavalastaaltior the scalar nonlinear
Schidinger equation [14]. We now consider the case when the linearly polarized pump
is oriented at 45with respect to both the axes such that equal power is distributed along
each axis, i.e P, = P, = P with the total input power being”2 From eq. (10), we obtain

the dispersion relation betwekmndw which is of the form

k* — 4S,wK> — 20?L | K? + 4S,w°Lk + 'Ly = 0 (11)
where

L, =A%+ o

L, =A%+ w?

S - 35w’ + Fw') - § (250" - P),

S - S’ + Sw'-SP) - § (250" - P),

Lo =A%+ 0 (- + (5 - %w2)2)2+ (1-B?) (S, — S,w?)° P
1202 (8, - $,0°) (- + (8, - 5,07)°) P
—2/? (0 (S + Sw? + Sw* — SP) — S, (2S,0* — P))

S = —% portrays the case of Ml in the anomalous dispersion regime which has been dis-
cussed in detail in refs [1,11,12]. We now consider the normal dispersion regime denoted

—
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by S, = % In this case, the complex eigenvakiebtained from the dispersion relation
given by eq. (11) has the form

k=Sw’+w/L,£2,/L (12)

where

Ly =07+ (8- $;0°) (S;0° - Sy +2P),
Ls = (S, — $30%) (B? (S, — $30°) P? + 4% (§,0” - Sy0° + 2P) ).

Equation (12) is found to possess a nonzero imaginary part only for the case given by

k=Sw?+w/L,—2,/L;. (13)

Hence from the above equation, we obtain the condition for instability to occuritg ke

4L;. From eq. (13) itis clear that the instability condition is not affected irrespective of the
presence or absence 9, the dimensionless third-order dispersion coefficient. Figure 1
shows the graphical relation between the frequency detunjrigput powerP and gain

G for B = § which depicts linear birefringencé, = 3.92512,S, = 0.5, S, = 2.6087x

107 andS, = 1.69082x 10~°. This corresponds to the case wh@| = 69.0 ps/Km,

|Bs| = 0.54x 1073 ps*/Km and |B,| = 7.0 x 10~* ps¥/Km. From the graph, it is evident

that as the pump power is increased, the peaks of the gain curve move closer to the zero
detuning frequency with the peak position changing relatively slowly when compared to

Figure 1. The surface plot for power gai@, frequency detuningo and input power
P for A=3.925,S =05, S, = 2.6087x 1076 andS; = 1.69082x 1075 and ¢, =
&, = &5 = £, = & = 0. This corresponds to the case whg| = 69.0 p$/Km, |B;] =
0.54x 103 ps’/Km and|B,| = 7.0x 10~4 ps/Km.
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Figure 2. The surface plot for power gai®, frequency detuning and group velocity
mismatchA for P = 5.0. The rest parameters have the same values as in figure 1.

the increase in the gain band width. This is the case of cross-phase M| (XMI) which
occurs at a finite detuning from the carrier frequency [10]. A marked difference of the
present results from the results obtained in ref. [10] is that generation of ultrashort pulses
of the order of 500 fs and above requires a comparatively much wider range of input power
and the region of M| spreads over a comparatively wider range of the frequency detuning
w, where the fourth-order dispersion plays a dominant role. In figure 2, which shows the
graphical relation between gai group velocity mismatch and frequency detunin@

for P = 5.0 and with the other parameters having the same values as in figure 1, we note
that the instability occurs only for finite values of group velocity mismatch. As is well-
known, the XPM coupling factdd depends on the ellipticity ang® and can vary from

% to 2 for values o in the range 0 to] [1]. 6 = 0 corresponds to linear birefringence

for which B = % and @ = 7 corresponds to circular birefringence for whiBh= 2 [1].

For 6 =~ 35°, B = 1.0 which corresponds to the ideal birefringence case where the self and
cross-phase coupling terms are identical [1]. Figure 3 shows the variation dbgeiih
respect to the frequency detuniagand the ellipticity angléd for P = 5.0. In this case,

the peaks of the gain curve increase with increasindrurthermore, it can be observed
that as the pump power is steadily increased, the gap between the two sidebands decreases
and finally approaches the zero detuning frequency. To study the effect of variations in the
pump polarization wherein the pump power is not distributed equally along both the axes,
we write the pump powers in terms of the polarization anglee., P, = 2Pco< (¢) and

P, = 2Psir? (@) such that the total pump power is always equal o n substituting
these into the eigenvalue eq. (10) we numerically determine the MI condition. Figure 4
depicts the surface plot of the gain spectrum as a function of the frequency detuairg

the polarization angle. As in ref. [10], here too maximum gain occursgat 45° and no

XMl is observed when the linearly polarized pump is polarized on either principal axis.
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Figure 3. The surface plot for power gaf®, frequency detuning and ellipticity angle
0 for the same values as in figure 2.

Figure 4. The surface plot for power gai@, frequency detuningo and polarization
angleg for the same values as in figure 2.

(ii) MI condition governing the generation of ultrashort pulses in the femto second region
below 500 fs

It is not possible to neglect the influence of SRS and self-steepening on the Ml in this
regime. For the same values of the dispersion parameters as considered in figure 1 and
with A = 1.963,S, = 0.5,S, =5.217x 1075, S, = 6.763x 1076, &, = ¢, = 4.0x 1075,

£ =0.03, g, = &5 = 0.01, we determine the XMI condition by numerically evaluating
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Figure 5. The surface plot for power gaf®, frequency detuning and input poweP
forA=1963,S =05,S,=5.217x105,S,=6.763x 105, &, =¢,=4.0x 1075,
& =0.03,¢, =& =0.01.

the eigenvalue eq. (10) when the linearly polarized pump is polarized equally with respect
to either axis. The corresponding gain spectrum as a function of frequency detuairty

input powerP is portrayed in figure 5. From figure 5, it is evident that for comparatively
low values ofw, the gain spectrum is dominated more by XPM and GVD effects with the
result that in that specific region we obtain a gain spectrum similar to the case depicted
in figure 1. Here too, the occurrence of MI requires a comparatively wider range of input
power but lesser than that in case (i). By suitably adjusting the various parameters, we
arrive at the inference that while self-steepening reduces the maximum value of the gain
spectrum, SRS enhances the region of MI. One effect dominates over the other depending
on the values of the various parameters considered in the article. In most cases the SRS
dominates over the self-steepening effect. Thus SRS has a hand in reducing the range of
input power required for the instability to occur which nullifies to an extent the demand for

a comparatively wider range of input power by fourth-order dispersion and self-steepening.
As a result, for comparatively higher valuescfand with increasing power, SRS effect
becomes predominant with the result that the gain spectrum increases lineardy. ith

a nutshell, the effect of SRS widens the region of Ml whereas the effect of self-steepening
tries to reduce the maximum gain which is evident when one compares figures 1 and 5.
A marked difference between cases (i) and (ii) is that in the latter case, the influence on
MI due to the fourth-order dispersion term is much less when compared with the former
case. Figures 6—8 which portray the frequency dependent gain as functiyy® afd

@ respectively for an input powd? = 5.0, bring forth similar effects of SRS on MI as
portrayed in figure 5 with the result that the gain parameter has nonzero values everywhere
except for the zero detuning frequency where the gain parameter vanishes.
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Figure 6. The surface plot for power gaid, frequency detuning and group velocity
mismatchA for P = 0.1. The rest parameters have the same values as in figure 5.

Figure 7. The surface plot for power gafB, frequency detuning and ellipticity angle
6 for the same values as in figure 6.

(iii) MI condition governing the generation of ultrashort pulses in the sub-pico-femto sec-
ond region

The MI condition which governs the generation of ultrashort pulses in the sub-pico-femto
second regime is only influenced by the effect due to SRS and as a result, the effects due
to self-steepening and fourth-order dispersion can be safely neglected. Based on this, the
gain parameter is plotted in figure 9 as a function of frequency detuning and input power.
A marked difference in this case from that in (i) and (ii) is that the instability condition

is achieved for a comparatively shorter range of input power. Moreover, SRS enhances
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Figure 8. The surface plot for power gai@, frequency detuningo and polarization
angleg for the same values as in figure 6.

Figure 9. The surface plot for power gai@, frequency detuningo and input power
P for A=0.785,S = 0.5, S, = 1.304 x 1073, S;=0.0,¢& =¢, =00, & =0.075,
&, = & =0.025.

the region of MI. These are clearly depicted in figures 10-12 which portray the frequency
dependent gain as functions&f6 and ¢ respectively for an input powét = 0.1. This
case is closer to the result obtained in [10].

Figure 13 compares the gain spectrum obtained in case (iii) with that of [10]. Thus we
are able to retrieve the result in [10] when the input parameters considered in this article
are assigned with the values in [10].
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Figure 10. The surface plot for power gafd, frequency detuning and group velocity
mismatchA for P = 0.1. The rest parameters have the same values as in figure 9.

Figure 11. The surface plot for power gai@, frequency detuningo and ellipticity
angle® for the same values as in figure 10.

4. MI phenomenon in terms of Stokes and anti-Stokes side-band amplitudes

The regions of instability may also be understood as arising from a process in which the
group-velocity dispersion of the down shifted side-band polarized on the slow axis and the
up-shifted sideband on the fast axis, is balanced by the group velocity mismatch. This can
be verified by assuming for perturbation, a modulation anstatz with wave nuknaimer
frequencyw of the form

u(G, T) = Us(¢) expliwT) + Ua(¢) exp(—iwT),
V(¢, T) = vs(¢) expliwT) + Va(¢) exp(—iwT), (14)
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Figure 12. The surface plot for power gai@, frequency detuning and polarization
angleg for the same values as in figure 10.
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Figure 13. Compares the gain spectrum obtained in case (jii) (dotted line) with that of
ref. [10] (solid line) forP = 0.1.

whereus andu, can be regarded respectively, as the measures of the amplitudes of the
Stokes and anti-Stokes sidebands for the slow axis whegeaslv, represent those of the
fast axis.

On substituting the above expressions into eq. (2) and on linearizing with respect to
Ui, Vs andvy, we finally arrive at a set of coupled linear differential equations in terms of
the perturbing fieldsis, uj, vs andv; which can be written in the form of a matrix equation

given by

_idx_(q):Lx (c) (15)

d¢
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Us
where the column matriX (¢) = tj/a and
S

Va

::11 tlZ tlS tl4
s a
Ly Lap Lag Lyy
where the elements af take the form
Ly =P — Aw+ S,0? — S;0° — S,00% — w (26,P, + &,P,) — 1w (&P, + &Py)
Li,=P (1-gw-igw), Lz=,/PPB-sw—-igw),
L= /PP, (B-gu—-iguw-igw), L, =P (-1-gw+igw),
Ly, = —P, —Aw— S0 + S;w* — S,0° — w (26,P, + &,P,) +iw (26;P, + &P,) ,
Lys= /PP, (-B-gu+igw+igw), Ly=./PP,(-B-gw+igw),
Ly = VPP (B-&w), Lyp=/PP,(B-igw-igw),
Las = P, +Aw+ S,0* — S0* — S,w® — w (26,P, + &,P,) —iw (5P, + &P))
Ly =P (1-gw—igw), Ly=./PP(-B-sw+iguw+igw),
Lip= VPP (-B-5w), Lyi=P,(-1-gw+igw),
Las= —P,+Aw— S,0° + S;w* — S,0° — w (26,P, + &,P,) +iw (e3P, + &P,)

whereP; = 2Pco¢ (@) andP, = 2Psir? (@), @ being the polarization angle.

Now for achieving the MI condition required for the generation of ultrashort pulses of
the order of 500 fs and above, we follow a similar procedure as in casei@tofarrive at
the dispersion relation from eq. (15) which is of the form

k=-Swi+w/L, -2,/ (17)

wherel, andL; have the same form as obtainedsB Here too, the condition for in-
stability to occur isL?1 < 4L; as is clear from eq. (17) and hence we obtain the same
gain parameter as in case (i) §# even though the eigenvalues are different in both cases.
Hence we can arrive at all the results considered in case{d. dfikewise, we consider the
remaining two cases present§f and numerically arrive at the same results as obtained
in §3. We thus arrive at the conclusion that the modulational anstatz considered in eq.
(14) can also effectively portray the MI phenomenon in the single-frequency propagation
regime. Equation (15), being a linear homogenous differential equation, has a solution of
the form

X (¢) =exp(iLg)C (18)

where the constant column matfixdepends on the initial conditions of the four linearized
side-band amplitudes. Figures 14 and 15 show the graphical relation for the Stokes and
anti-Stokes side-band amplitudes respectively for the slow axis with respecttr the
Stokes casep = 2.0 whereas for the anti-Stokes case= 8.0. Similar graphs can be
obtained for the fast axis also.
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ry

Figure 14. The intensity of the Stokes side-band amplitude for the slow axiefer
2.0.

Figure 15. The intensity of the anti-Stokes side-band amplitude for the slow axis for
w=8.0.

5. Conclusions

We obtained conditions for the occurrence of cross-phase Ml in the normal dispersion
regime which occurs as a result of a group velocity mismatch between the linearly polar-
ized eigenstates when the linearly polarized pump is oriented ‘atvith respect to the

slow or fast axis. We note that the instability conditions that govern the generation of
ultrashort pulses for the three cases mentionefRiare not affected irrespective of the
presence or absence®), the dimensionless third-order dispersion coefficient. For varia-
tions in the pump polarization, maximum gain occurs fo? #blarization for all the cases
considered in the article. The effect of SRS on Ml is such that for comparative small val-
ues of the perturbation frequency, group velocity dispersion and cross-phase modulation
terms dominate whereas for comparatively large values the perturbation frequency, the gain
spectrum increases linearly with the result that the region of Ml is widened due to SRS.
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Moreover the self-steepening effect reduces the maximum gain and bandwidth. As one
slowly approaches towards the zero group velocity dispersion regime, the condition for
the cross-phase MI requires sufficiently large values of the total input power over a wide
range of frequency detunirg. At the zero group velocity dispersion regime, one obtains
only the original MIl. We have considered the perturbation amplitudes given by eq. (14)
and have been able to retrieve all the results considerg8l and thus the two methods
discussed i§3 and§4 give the same values for the gain parameter.
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