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Abstract. A base-equation method is implemented to realize the hereditary algebra of the
Korteweg–de Vries (KdV) hierarchy and theN-soliton manifold is reconstructed. The novelty of
our approach is that, it can in a rather natural way, predict other nonlinear evolution equations which
admit local conservation laws. Significantly enough, base functions themselves are found to provide
a basis to regard the KdV-like equations as higher order degenerate bi-Lagrangian systems.
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1. Introduction

More than thirty years ago Lax [1] showed that the Korteweg–de Vries (KdV) initial-value
problem foru= u(x; t) given by

ut =�uxxx+6uux (1)

with

u(x;0) = v(x) (2)

is but one of the infinite family of equations that leave the eigenvalue of the Schr¨odinger
equation invariant int. The subscripts ofu in eq. (1) denote differentiation with respect
to the associated variables. The family of equations discovered by Lax often goes by the
name KdV hierarchy and is generated by making use of the recursion operator [2]

Λ = 1=4∂ 2
x �∂�1

x u∂x�1=2∂�1
x ux (3)

with ∂x = ∂=∂x in the differential relation

∂u
∂ t2n+1

=

�
∂
∂x

�
Λnu; n= 1;2::: : (4)
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Heret2n+1’s refer to group parameters for the hierarchy consisting of equations enumerated
by the integers(2n+1). Forn= 1 we get the KdV equation from eq. (4) and higher order
equations are obtained forn > 1. The members of the hierarchy, in general, share many
common features. In addition to being solvable by the inverse spectral method, all of them
have infinitely many conserved quantities and symmetries. They also possess the Painlev´e
property and can be expressed in bi and/or multi-Hamiltonian form.

In this work we propose to use a method of base equations to construct the KdV hier-
archy. Our approach to the problem, on the one hand, serves as a useful supplement to
other existing methods [2] and, on the other hand, tends to predict some results which do
not follow from earlier treatments. Our treatment may be regarded as a simple variant of
the well-known base-function method used for writing the solution of ordinary nonlinear
differential equations [3]. The origin of this method, perhaps, dates back to the classic
period nineteenth century mathematics [4]. Relatively recently, Reid [5,6] generalized the
basic idea to include many types of nonlinearities and even to deal with nonlinear evolu-
tion equations. Like most techniques for treating the nonlinear differential equation, the
method of base equations, might appear somewhatad-hoc. However, it possesses sufficient
generality to qualify as a separate technique. For example, it can be viewed as a nonlinear
superposition technique not profoundly different from the B¨acklund transformation [7]. In
the following section we introduce the base equations needed for our construction proce-
dure.

2. Base equations

In the inverse spectral method the solution of the KdV equation is given by

u(x; t) =�2∂xK(x;x; t); (5)

whereK(x;x; t) is obtained by solving the Gel’fand–Levitan–Marchenko equation [8] with
a kernel characterized by only the bound-state spectrum ofv(x). The t-evolution of the
kernel enters through the normalization constant. For the case of a single-soliton solution
at a wave numberκ the functionK(x;x; t) satisfies the Ricatti equation

Kx+K2
+2κK = 0: (6)

Upon differentiation with respect tox, eq. (6) gives

K2x+2KKx+2κKx = 0: (7)

Again differentiating eq. (7)(n�2) times by using the Leibniz theorem we get

En � ∂ (n)
x K +2

n�3

∑
r=0

�
n�2

r

�
∂ (n�r�2)

x K∂ (r+1)
x K +(2K +2κ)∂ (n�1)

x K = 0

(8)

with ∂ (n)
x = ∂ n=∂xn. Similarly,

Ei � ∂ i
xK +2

i�3

∑
r=0

�
i�2

r

�
∂ (i�r�2)

x K∂ (r+1)
x K +(2K+2κ)∂ (i�1)

x K = 0: (9)
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We now eliminate(2K +2κ) from eq. (8) by using eq. (9) and write

Ei
n = ∂ n

x K +2
n�3

∑
r=0

�
n�2

r

�
∂ (n�r�2)

x K∂ (r+1)
x K

�

�
∂ i

xK +2
i�3

∑
r=0

�
i�2

r

�
∂ (i�r�2)

x K∂ (r+1)
x K

�
∂ (n�1)

x K

∂ (i�1)
x K

= 0: (10)

We referEi
n’s as base equations in our construction procedure. In particular, we shall see

that superposition ofEi
n’s generates the equations of the KdV hierarchy. We note that the

subscriptn in eq. (10) determines the order of the differential expression forE i
n. Since

all equations in the hierarchy are of odd order inu, the first member in the superposed
equations should be of even(2m+2 ;m= 1;2;3; : : :) order inK.

3. KdV hierarchy

Keeping the above in view we have found that the KdV equation(m= 1) and the first
member(m= 2) of the hierarchy can be obtained from

E2
2m+2+

m

∑
i=1

λ i
m∂ i

xKE2
2m+1�i = 0 (11)

with

λ i
m = (2m+1) i (i +1) : (12)

To be more specific let us usem= 1 in eq. (11) and get

E2
4 +6∂xKE2

2 = 0: (13)

From eq. (10) we have

E2
4 = ∂ 4

x K +6∂ 2
x K∂xK�

∂ 2
x K∂ 3

x K
∂xK

= 0 (14)

and

E2
2 = ∂ 2

x K�∂ 2
x K = 0: (15)

Using eqs (14) and (15) we reduce eq. (13) in the form

∂ 4
x K +12∂ 2

x K∂xK =
∂ 2

x K
∂xK

(∂ 3
x K +6(∂xK)2) : (16)

In view of eq. (5), eq. (16) becomes

uxxx�6uux =
ux

u
(uxx�3u2

) : (17)
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The single-soliton solution

u(x; t) =�2κ2sech2(κx�4κ3t) (18)

of the KdV equation can now be used to identify the right side of eq. (17) as�ut giving the
so-called KdV equation. For the first member(m= 2) of the hierarchy an equation similar
to eq. (17) reads

u5x�10uu3x+30u2ux�20u2xux =
ux

u
(u4x�15u2

x) (19)

with uxx = u2x;

uxxx= u3x etc. Thenth equation of the hierarchy has a soliton solution [9]

un(x; t) =�2κ2sech2(κx�4κ2n+1t) : (20)

Specializing eq. (20) forn= 2, we can identify right side of eq. (19) withut so as to arrive
at the first member of the KdV hierarchy.

It is very unfortunate that eq. (11) does not give other higher members of the hierarchy.
Even to construct the second member we need to implement a somewhat more complicated
superposition of base equations. Clearly, the additive term should be such that they give
vanishing contribution form= 1 and 2. The second and third members of the hierarchy
can be generated from

E2
2m+2+

m

∑
i=1

λ i
m∂ i

xKE2
2m+1�i +

m�2

∑
j=1

λ j
m∂ j+1

x KE j+2
2m� j

+2m�1
m�1

∑
k=1

m�2

∑
l=1

λ m�k
m ∂ k

x K∂ l
xKE2

2m�l�k = 0: (21)

Interestingly, eq. (21) is characterized by the set of nonlinear constraints as given by eq.
(12). Further, as in the case of KdV equation and the first member of the hierarchy one can
verify that the results from eq. (21) are in exact agreement with those obtained from eq.
(4) for n= 3 and 4 respectively. We have found that all members of the KdV hierarchy can
be obtained by making use of a formula

E2
2m+2+

m

∑
i=1

λ i
m∂ i

xKE2
2m+1�i +

m�2

∑
j=1

λ j
m∂ j+1

x E j+2
2m� j

+

m�4

∑
j=1

λ j
m∂ j+2

x KE j+3
2m� j�1+ � � �+2m�1

m�1

∑
k=0

λ m�k
m ∂ k

x K

�

"
m�2

∑
l=1

∂ l
xK[E2

2m�k�l ]+

m�3

∑
n=1

∂ n
x K[E2

2m�k�l�n+ � � �] � � �

#
= 0: (22)

Looking at eq. (22) it appears that we could not derive any calculational simplicity for the
problem under study. In fact, our objective in this work was somewhat different. We tried
to demonstrate that higher order derivatives of the simplest nonlinear differential equation
for K(x;x; t), via a postulated superposition principle with nonlinear constraints, form the
building block for the entire KdV hierarchy. In the following we note two important aspects
of the present construction procedure.
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(i) Since allEi
n’s are zero, we can delete terms from the summations in eqs (11), (21) or

(22) to write new integrable evolution equations. For example, if the term multiplyingλ 1
2

is dropped from eq. (11) we will arrive at

ut = u5x�5uu3x�25uxu2x+15u2ux: (23)

Understandably, in writing eq. (23) we have made use of eq. (5). A conservation law
associated with eq. (23) can be written as

ut = ∂xX (24)

with flux of u(x; t) given by

X = u4x�5uu2x�10u2
x+5u3 : (25)

Similar equations could also be constructed from eqs (21) or (22). Calogero and Nucci
[10] pointed out that existence of a local conservation law is an important element to have
Lax pair or equivalently a bi-Hamiltonian structure. Recently a strong relationship has
been observed [11] between Ricatti equations and B¨acklund transformations for integrable
nonlinear partial differential equations. Here we suggest a method to construct theN-
soliton KdV manifold using derivatives of Ricatti equations as base equations.

(ii) In a broad sense one knows that equations of the KdV hierarchy are higher order de-
generate Lagrangian systems [12]. The canonical formulation of these equations requires
the use of Dirac’s theory of constraints [13]. In this context we demonstrate that the base
equation can be used to introduce a new Lagrangian density for the KdV equation in ad-
dition to what exists in literature. Similar construction might also be possible for other
members of the hierarchy.

The Lagrangian density for the KdV equation is given by [14]

L(2)(Kt ;Kx;Kxx) = 4[KtKx�K2
xx+4K3

x ]: (26)

Superscript 2 was used onL to indicate that the Lagrangian density is of second order. It is
degenerate because the momenta cannot be inverted for velocities [13]. Starting fromE 2

3 =

0, it is easy to show thatL(2)(Kt ;Kx;Kxx) is equal to a third order degenerate Lagrangian
given by

L(3)
�
Kt ;Kx;K3x

�
= 4

�
KtKx+2K3

x �KxK3x

�
: (27)

It is interesting to discover that eq. (27) when substituted in the Euler–Lagrange equation

m

∑
i=1

�
�

d
dt

�i � ∂L
∂ (diK=dt i)

�
+

�
δL
δK

�
= 0 (28)

for the higher order field reproduces the KdV equation. Hereδ=δK stands for the func-
tional derivative

δ
δK

=

n

∑
i=0

(�D)i ∂
∂K(i)

(29)

with D = d=dx andK (i) = ∂ iK=∂xi . We have verified that bothL(2) andL(3) in conjunction
with the Ostrogradski formalism [15] lead to zero order Hamiltonian densities that satisfy
Zakharov–Faddeev–Gardner Hamiltonian form of the KdV equation [16].
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4. Summary

Pioneered by Gardner, Green, Kruskal and Miura [17] and by Lax [1] the construction
procedure for the equations of the KdV hierarchy has been extensively discussed [2]. In
this work we have used the method of base equations for a similar study. We have already
pointed out in the text that our approach can be viewed as a nonlinear superposition tech-
nique bearing some similarity with the so-called B¨acklund transformation. Any member
of the KdV hierarchy can be obtained from our general equation (22) for a particular value
of m. Since allEi

n’s are zero, one can judiciously delete terms from the summation of
these equations to write the new equations, some of which might turn out to be integrable.
This appears to be the merit of the present approach. In addition to this, base equations
themselves are seen to be useful to study the Lagrangian structure which via Ostrogradski
formalism [15] helps one to write Hamiltonian densities that characterize the Zakharov–
Faddeev–Gardner equation [16].
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