
PRAMANA c
 Indian Academy of Sciences Vol. 58, No. 2
— journal of February 2002

physics pp. 409–417

Locating the minimum: Approach to equilibrium
in a disordered, symmetric zero range process

MUSTANSIR BARMA and KAVITA JAIN
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400 005, India

Abstract. We consider the dynamics of the disordered, one-dimensional, symmetric zero range
process in which a particle from an occupied sitek hops to its nearest neighbor with a quenched rate
w(k). These rates are chosen randomly from the probability distributionf (w) � (w� c)n, wherec
is the lower cutoff. Forn> 0, this model is known to exhibit a phase transition in the steady state
from a low density phase with a finite number of particles at each site to a high density aggregate
phase in which the site with the lowest hopping rate supports an infinite number of particles. In the
latter case, it is interesting to ask how the system locates the site with globally minimum rate. We use
an argument based on the local equilibrium, supported by Monte Carlo simulations, to describe the
approach to the steady state. We find that at large enough time, regions with a smooth density profile
are described by a diffusion equation with site-dependent rates, while the isolated points where the
mass distribution is singular act as the boundaries of these regions. Our argument implies that the
relaxation time scales with the system sizeL asLz with z= 2+1=(n+1) for n> 1 and suggests a
different behavior forn< 1.
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1. Introduction

The presence of quenched disorder is known to strongly affect the dynamical and steady
state properties of many systems. For instance, for noninteracting particles moving in
a random medium, disorder can lead to anomalous transport and change the manner in
which the steady state is approached [1–3]. Moreover, when inter-particle interactions are
present, disorder can induce new collective effects such as phase separation [4]. In this
paper, we study the effect of quenched, site-wise disorder on a simple stochastic model of
interacting particles known as the zero range process [5,6]. This process can be viewed as
describing a system of interacting particles hopping in and out of wells with various depths.
While the static properties of this model are known analytically, the temporal properties
are not as well characterized. Here we study the approach to the steady state of a zero
range process which undergoes a disorder-induced phase transition.

The study of stochastically evolving lattice models has played a central role to better un-
derstand interacting, statistical systems [7]. Such models are defined directly through sim-
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ple stochastic rules, in contrast to the traditional route of defining the interactions through
a Hamiltonian and then constructing dynamical rules consistent with it. The zero range
process describes one such class of lattice models; other important classes include the
asymmetric simple exclusion process which is a simple model of a current-carrying sys-
tem [5,8], and the contact process whose steady state shows a phase transition from an
active phase to a dead phase where no further evolution is possible [8].

The zero range process deals with a conserved number of particles hopping on a lattice
with, in general, site-dependent rates. For almost all choices of these rates, the particles
have on-site interactions; however, these rates do not depend on the particle occupation at
other sites. In this sense, the range of interaction is zero. The steady state of this process
is known to be of product measure form in all dimensions [5]. In recent past, the zero
range process has been used to model several systems with quenched disorder, such as
traffic flow in a system of cars with different preferred speeds [9] and activated flow down
a rugged slope [10], besides several other applications [6]. A recent application is in a
model of polymerization in a random medium with imperfect traps [11]. Interestingly, for
several choices of disorder, as the density is increased, the steady state of the system shows
a phase transition from a homogeneous phase in which the density is roughly uniform, to
an infinite aggregate phase in which the density profile has a singularity at the site with the
lowest hopping rate.

The latter state is particularly interesting since in this phase, starting from an initial
random distribution of particles, an infinite aggregate is formed at the site with the lowest
hopping rate. The question arises: what is the mechanism by which the system locates
the site withglobally minimumrate and transports a finite fraction of the total number
of particles to it through the random medium? In this paper, we address this question
for a symmetric zero range process in one dimension. Figure 1 shows how the density
profile evolves in time starting from an initial random distribution of particles (figure 1a)
to the steady state in which an aggregate builds up at the site with the lowest hopping rate
(figure 1d).

The rest of the paper is organized as follows: We define the model and discuss its steady
state properties inx2. In x3, we first give a simple, qualitative picture of the dynamics
of relaxation to the steady state. The scaling properties of the relaxation time define a
dynamic exponent which is determined using local equilibrium arguments, supported by
Monte Carlo simulations. Finally, we conclude with a discussion of open questions.

2. The model and its steady state

In this section, we define the model and briefly discuss its steady state properties. We
consider the unbiased or biased motion of a conserved number of particlesM on ad di-
mensional lattice of lengthL with periodic boundary conditions. At any sitek occupied
by a nonzero number of particles, a single particle attempts to hop out at a ratew(k),
independent of the number of particles present at sitek or its neighbors. Note that this
choice of rates implies an attractive on-site interaction since the hop-out rate of these par-
ticles is lower than that of noninteracting particles. The zero range process with this par-
ticular choice of rates has appeared in several contexts, as in a particle-wise disordered,
asymmetric exclusion process [9,12] and as a limiting case of a model of aggregation and
fragmentation with site-wise disorder [11].
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Figure 1. Density profilehm(k;t)i vs k in the aggregate phase for a given realization
of disorder at time (a) t = 2, (b) t = 210, (c) t = 215, (d) t = 220. The site with the
lowest hopping rate is located atk= 1 and the second lowest atk= L=2. At t = 220,
the system is close to the steady state andhm1(1;t)i = 426. Parameters used:L = 256,
ρ = 4;n= 2, c= 0:5:

As discussed inx1, the problem is essentially to understand how the system locates the
site with the minimum hopping rate. For this reason, it is useful to assign two labels to
the hopping rate. We denote the rates byw j(k) wherek is the site index andj is the
index when the rates are arranged in ascending order withj = 1 labelling the lowest rate.
Correspondingly,mj(k) denotes the mass (or number of particles) at the site with hopping
ratewj(k) at a particular instant. In the following, we will only display the labels which
are pertinent to the discussion and suppress the rest. Also, unless the time dependence is
explicitly specified, all the quantities will refer to the steady state.

The ratesfwg are chosen independently for allk= 1; :::;Ld from a common probability
distribution

f (w) =
�
(n+1)=(1�c)n+1�(w�c)n; w2 [c;1]; c> 0; n> 0: (1)

For both the symmetric and the totally asymmetric cases, the probabilityP(fm(k)g) of a
configurationfm(1);m(2); :::;m(Ld)g is known to be given by [6]

P(fm(k)g) =
1
N

Ld

∏
k=1

�
v

w(k)

�m(k)

; (2)

whereN is the normalization constant andv is the fugacity which can be determined

using the conservation law∑Ld

k=1m(k) = M. This solution holds in all dimensions and for
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all bias. In the presence of bias, eq. (2) describes a nonequilibrium steady state whereas
in the absence of bias, it describes an equilibrium state as the condition of detailed balance
holds. This equilibrium state is described by a Hamiltonian which is long ranged, thus
allowing the system to have a phase transition even in one dimension [6]. The probability
P(m;k) that there arem particles at sitek is given by

P(m;k) =

�
1�

v
w(k)

��
v

w(k)

�m

; (3)

which implies that the average number of particles at sitek is

hm(k)i=
v

w(k)�v
=

s(k)
1�s(k)

; (4)

wheres(k)� ∑m=1P(m;k) = v=w(k) is the average occupation probability of sitek. Since
the total number of particles is conserved

ρ =
1
Ld

v
w1�v

+

Z 1

c
dw

v
w�v

f (w); (5)

whereρ = M=Ld is the total particle density and disorder averaging has been done. This
equation is reminiscent of Bose–Einstein condensation in the ideal Bose gas where the
lowest momentum state is macroscopically occupied beyond a critical densityρ c [12]. At
ρ = ρc, the fugacityv gets pinned to the lower cutoff ofw, namelyc (to which w1 will
tend in the thermodynamic limit) so that the site with the lowest hopping rate supports an
aggregate with a finite fraction of total particles. The conditionρ � I(c) = 0 determines
the critical pointρc = c(n+1)=n(1�c)whereI(v) is the integral on the right hand side of
eq. (5).

For ρ < ρc, the typical mass at all sites is of order unity. As the density is increased,
there is a phase transition atρ = ρc. In the high density phase, the slowest site supports
mass ofO(Ld) whereas the site with ratewj , j 6= 1 supports mass ofO((Ld= j)1=n+1).
The latter can be seen via a simple argument. Consider a variablex distributed uniformly
between 0 and 1. Since on average,Ld observations ofx will be equally spaced, it follows
that thejth lowest observation inLd trials is typically at a distancej=Ld above zero. Since
hmji is inversely proportional to the separation between the lowest and thejth lowest
hopping rate andf (w) can be related to the uniform distribution by a change of variables
(w= c+(1�c) x1=n+1), one obtainshmji � (Ld= j)1=n+1, j 6= 1.

3. Approach to the steady state

In this section, we will discuss the approach to the steady state for the symmetric, zero
range process in one dimension with the hopping rates chosen fromf (w) defined in eq.
(1). We first describe a simple picture of approach to the steady state. Then we present an
argument based on local equilibrium which suggests that the relaxation time scales with
system sizeL asLz with z= 2+1=(n+1) for n> 1. However, this treatment breaks down
for n< 1.
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Figure 2. Time dependence of the average densityhmj(t)i for four slowest sites namely
j = 1 (squares), 2 (triangles), 3 (circles) and 4 (pentagons) for a given disorder config-
uration. The horizontal lines denote the steady state value forhmj(t)i calculated using
eqs (4) and (5). Parameters used:L = 256,ρ = 4, n= 2, c= 0:5.

We first illustrate qualitatively the temporal sequence of events through which an aggre-
gate with mass ofO(L) is formed at the site with the lowest hopping rate, starting from a
random initial condition in which each site has mass of order unity (figure 1a). The be-
havior of the average masshmj(t)i for j = 1; :::;4 as a function of time is shown in figure
2. Hereh:::i is to be understood as an ensemble average over evolution histories. We find
thathm1(t)i rises steadily and then saturates to its steady state value while each ofhm2(t)i,
hm3(t)i andhm4(t)i rise, attain a maximum and then decay to their respective steady state
values. This nonmonotonic behavior is not hard to understand. At some finite time, each
particle is able to move only a finite distance away from its initial position and tends to
get temporarily trapped at the site with the lowestw within the neighborhood explored by
it, rather than the global minimumw1. A typical configuration at such an intermediate
time thus has several large aggregates at such local minima while the rest of the system
has masses of order unity (figure 1b). This explains why at short enough times,hm j (t)i for
j = 1; :::;4 are of the same order and increasing (figure 2). As time progresses, the particles
are able to access larger regions in space and identify new local minima. Then the mass
increases at these newly accessed local minima at the expense of the previous ones (figure
1c). This explains the drop inhm4(t)i andhm3(t)i after they have reached their respective
peak values, thoughhm1(t)i andhm2(t)i continue to rise (figure 2). Finally,hm2(t)i also
starts dropping and the excess mass is transported to the location of the global minimum
(figure 1d). Once the global minimum is recognized by all the particles, the system reaches
a steady state andhmj(t)i ! hmj i for all j.

We now turn to an analytical description of the mechanism of the mass transport. The
exact time evolution equation obeyed byhm(k; t)i for a givenfwg can be written as
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∂ hm(k; t)i
∂ t

= w(k�1)s(k�1; t)+w(k+1)s(k+1; t)�2w(k)s(k; t): (6)

At large enough times, the system is expected to be inlocal equilibrium. This allows one
to assume thes(k; t)�hm(k; t)i relation to be approximately as in the steady state (eq. (4)).
Substituting fors(k; t) in the above equation, one obtains

∂ hm(k; t)i
∂ t

= G(k�1; t)+G(k+1; t)�2G(k; t); (7)

whereG(k; t) = w(k)hm(k; t)i=(1+ hm(k; t)i).
The treatment so far is valid for any density, but we are primarily interested in densities

for which the system is in the infinite aggregate phase in the steady state. For such densities,
at large times, one needs to divide the system into two sets – setA composed of those sites
which support rather large aggregates and setB at which the masses are small and close
to their steady state values (see figure 2). The elements of these sets are not fixed in time;
with the passage of time, the number of elements in setA reduce and that of setB increase
by the mechanism described at the beginning of this section. Eventually, when the system
is close to the steady state, setA is left with a few isolated sites that support aggregates
whose masses scale as a nonzero power ofL while the bulk of the sites belong to setB.

We are interested in the fluctuations in the density profile about the steady state,
∆m(k; t) = hm(k; t)i � hm(k)i. Since∆m is small fork 2 B and very large fork 2 A, an
expansion in∆m(k; t) would be justified only for the background sites. Below we first an-
alyze these background (B) sites and then treat the isolated sites in setA as the boundaries
of theB regions. For theB sites, we may retain the lowest order terms in an expansion of
eq. (7) in powers of∆m and obtain

∂∆m(k; t)
∂ t

= D(k�1; t)∆m(k�1; t)+D(k+1; t)∆m(k+1; t)

�2D(k; t)∆m(k; t); k2 B; (8)

with

D(k) = (w(k)�c)2=w(k): (9)

Here we have used the fact thatv tends toc in the infinite aggregate phase.
Equation (8) describes a random walker in a random medium with site-dependent hop-

ping rateD(k). Using eqs (1) and (9), we find that these rates are distributed accord-
ing to the probability distributiong(D) � D(n�1)=2 for D ! 0. Note that whereasf (w)
has a nonzero lower cutoff,g(D) has zero as the lower limit due to which it diverges as
D ! 0 for n < 1. The problem of a particle moving with random, spatially inhomoge-
neous hopping rates is well studied and has been reviewed in [1]. For a configuration
of randomly distributedfDg in a large system observed on large enough time scales, the
mean squared displacement of the random walker grows asDt where the diffusion con-
stantD = 1=hh1=D(k)ii andhh:::ii stands for disorder average, providedhh1=D(k)ii is
finite [2]. Thus for large spatial and time separations, the particle diffusion is described by
a single, effective diffusion constant. In our case, one can calculatehh1=Dii by noting that
hh1=Dii= ∂ I=∂vjv!c. ExpandingI(v) for v close toc, we obtain

I(v) = ρc+O(c�v); n> 1 (10)

= ρc+O((c�v)n); 0< n< 1 (11)

414 Pramana – J. Phys.,Vol. 58, No. 2, February 2002



Locating the minimum

which implies thathh1=Dii is finite for n> 1 and diverges forn< 1. The divergence in
the latter case indicates anomalous diffusion, i.e. the mean squared displacement grows
sublinearly. In the remainder, we will restrict ourselves ton> 1 [13].

On averaging over disorder configurations, for a system of sizeL, the masshhm1(t;L)ii
on the site with lowest hopping rate is expected to scale as

hhm1(t;L)ii � tβ H
� t

Lz

�
(12)

where

H(x)�
n

constant forx� 1
x�β for x� 1

: (13)

Sincehhm1(t;L)ii � L in the steady state, it follows thatβz= 1. We now determine the
relaxation time of the system by estimating the timeT � Lz required forhm1(t;L)i to
reach its steady state value for a typical realization of disorder. At large enough times, the
background sites in setB form the bulk of the system whereas only a few isolated sites with
low hopping rates belong to setA. Let us now consider time scales above which the two
sites with the lowest rates (i.e.w1 andw2) are the only elements left in setA. As shown
in figure 2,hm2(t)i drops after it has reached its peak whilehm1(t)i keeps rising at the
expense of the former so that there is a net transfer of mass from the site withj = 2 to the
site with j = 1. One can think of these two sites as the boundaries to the bulk background
region with the former site feeding particles at a rate ofw2 to the bulk and the latter at
a rate ofw1. On large time scales, a quasi-equilibrium is established, and in view of the
discussion above, the particles diffuse through the bulk with an effective diffusion constant
D . Thus there is a transfer of mass at a rateD∆w12=r12 where∆w12 = w2�w1 andr12 is
the spatial separation between the two sites. The relaxation timeT12, which is essentially
the time taken to transfer the peak massm2 at the site with ratew2, is given by

T = T12 =
r12 m2

D ∆w12
: (14)

Let us estimate the size dependence of the quantities that appear on the right hand side
of the above equation. Typically the separationr 12 is of orderL in which casem2 is also
of orderL. This is because for times earlier than whenm2 peaks, the sitej = 2 is the
slowest one encountered by the particles in a finite fraction of the system. Consequently,
the numerator in the above equation is proportional toL 2. This result holds even in the
exceptional case when the sites withj = 1 and 2 are separated by a distance of order unity,
as they behave effectively as a single slow site and one can use the same reasoning as above
on replacing the site withj = 2 by that with j = 3.

Further, using the argument given at the end ofx2, we find that the inverse rate separation
(∆w12)

�1 scales asL1=n+1. Collecting all the dependences, it follows that the relaxation
timeT scales with the system sizeL asT � Lz where

z= 2+1=(n+1); n> 1: (15)

We measured the growth ofhhm1(t;L)ii using Monte Carlo simulations and find that it
grows astβ . As shown in figure 3, our expression forβ = 1=z= (n+ 1)=(2n+ 3) is
consistent with the numerics.
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Figure 3. Log–log plot ofhhm1(t;L)ii vs t to show the growth exponentβ . The data
for hhm1(t;L)ii has been averaged over 50 histories and 21 disorder configurations. The
theoretical prediction forβ = 0:428 forn= 2 is plotted as a solid line for comparison.
Parameters used:L= 16384,ρ = 4, c= 0:5.

We conclude this paper with a discussion of two open questions: (i) We have seen that
hh1=Dii diverges forn < 1 indicating anomalous diffusion, which suggests that the ex-
pression forz in eq. (15) may be invalid forn < 1. It would be interesting to find how
the system relaxes in this case. (ii) For the case with asymmetric hopping rates, using the
arguments analogous to those given above, we would expect the dynamic exponent to be
z= 1+ 1=(n+ 1) for n> 1. Once again, we may anticipate a different result forn< 1.
In [9] and [14] the dynamics of the asymmetric version has been analyzed using numer-
ical simulations and extremal statistics arguments for a related deterministic model. The
expression for the dynamic exponent in [9,14] is the same as that quoted above but their
arguments do not make a distinction between the regimes below and aboven = 1. The
elucidation of the anomalous regime for both the symmetric and asymmetric zero range
process remains an interesting open problem.

We will not attempt a summary of this paper. Professor N Kumar once pointed out that
since it is a part of the whole, a proper summary should include a summary of the summary
and a summary of that summary, and so on. We would rather not try ! Kumar’s own work
has brought out many of the surprises that disordered systems have to offer, and we are
very pleased that our article will appear in this special issue.
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