
PRAMANA c
 Indian Academy of Sciences Vol. 58, No. 2
— journal of February 2002

physics pp. 217–224

Parity effects in eigenvalue correlators, parametric
and crossover correlators in random matrix models:
Application to mesoscopic systems

N DEO
Poornaprajna Institute of Scientific Research, Sadashivanagar, Bangalore 560 080, India
Email: ndeo@vsnl.net; ndeo@rri.res.in

Abstract. This paper summarizes some work that I have been doing on eigenvalue correlators of
random matrix models which show some interesting behavior. First we consider matrix models with
gaps in their spectrum or density of eigenvalues. The density–density correlators of these models
depend on whetherN, whereN is the size of the matrix, takes even or odd values. The fact that
this dependence persists in the largeN thermodynamic limit is an unusual property and may have
consequences in the study of one electron effects in mesoscopic systems. Secondly, we study the
parametric and cross correlators of the Harish Chandra–Itzykson–Zuber matrix model. The analytic
expressions determine how the correlators change as a parameter (e.g. the strength of a perturbation
in the Hamiltonian of the chaotic system or external magnetic field on a sample of material) is varied.
The results are relevant for the conductance fluctuations in disordered mesoscopic systems.
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1. Introduction

Recently there is a lot of activity in the field of quantum chaos and mesoscopic systems.
This has resulted in the study of eigenvalue correlators in large random matrix models [1–
10]. This paper summarizes some work that I have been doing on calculating eigenvalue
correlators in random matrix models which show novel properties which may be useful in
the study of transport properties in mesoscopic conductors. The first models are random
matrix models with gaps in the eigenvalue spectrum and the second are two-matrix mod-
els first considered by Harish Chandra–Itzykson–Zuber [11]. In the first model the ‘fine
grained’ correlators are found using the method of orthogonal polynomials [12]. These
correlators are unusual, i.e., in the largeN thermodynamic limit they tend to different lim-
its depending on whetherN goes to infinity through even or odd [13]. This property may
be found in mesoscopic systems which are sensitive to single electron effects. The sec-
ond models are the two-matrix models of Harish Chandra–Itzykson–Zuber [8,9]. Here
correlators are calculated using the Dyson–Schwinger method and give the long-ranged
parametric and cross-correlators. Transport experiments involving changes in magnetic
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fields in which long range eigenvalue statistics are effected will be a testing ground for
these results.

I shall first discuss the double-well matrix model with potentialV(M) =� µ
2 M2+ g

4M4,
whereM is a randomN�N matrix. I will present some results for the two-point density–
density correlation functions which show interesting parity effects and further characterizes
these models in a new universality class. The original model isZ2 symmetric while there
is Z2 symmetry breaking in the correlation functions. Secondly, the Chandra–Itzykson–
Zuber matrix model is discussed and the results for the smoothed long-range parametric
and crossover eigenvalue correlators, found using the Dyson–Schwinger equations, are
given.

2. Notations and conventions for the double-well matrix model

We start by establishing the notations and conventions. LetM be a Hermitian matrix.
The partition function to be considered isZ =

R
dMe�NtrV(M) whereM = N�N Hermi-

tian matrix. The Haar measure dM = ∏N
i=1dMii ∏i< j dM(1)

i j
dM(2)

i j
with Mi j = M(1)

i j
+ iM (2)

i j

andN2 independent variables.V(M) is a polynomial inM : V(M) = g1M +(g2=2)M2+

(g3=3)M3+(g4=4)M4+ � � �. The partition function is invariant under the change of vari-
ableM0 = UMU† whereU is a unitary matrix. We can use this invariance and go to the
diagonal basis, i.e.,D0 =UMU† such thatD0 is the matrix diagonal toM with eigenvalues
λ1;λ2; : : : ;λN. Then the partition function becomesZ =C

R ∞
�∞ ∏N

i=1dλi∆(λ )2e�N∑N
i=1V(λi)

where∆(λ ) = ∏i< j jλi � λ j j is the Vandermonde determinant. The integration over the
group U with the appropriate measure is trivial and is just the constantC. By ex-
ponentiating the determinant as a ‘trace log’ we arrive at the Dyson gas or Coulomb
gas picture. The partition function is simplyZ = C

R ∞
�∞ ∏N

i=1dλie
�S(λ ) with S(λ ) =

N∑N
i=1V(λi)�2∑i; j ;i 6= j ln jλi �λ j j.

This is just a system ofN particles with coordinatesλ i on the real line, confined by
a potential and repelling each other with a logarithmic repulsion. The spectrum or the
density of eigenvaluesρ(x) = 1

N ∑N
i=1 δ (x�λi) is in the largeN limit or doing the saddle

point analysis just the Wigner semi-circle for a (Gaussian probability distribution for the
eigenvalues) quadratic potential. The physical picture is that the eigenvalues try to be at the
bottom of the well. But it costs energy to sit on top of each other because of logarithmic
repulsion, so they spread.ρ has support on a finite line segment. This continues to be
true whether the potential is quadratic or a more general polynomial and only depends on
there being a single well though the shape of the Wigner semi-circle is correspondingly
modified. For the quadratic potential the density isρ(x) = 1

π
p

(x�a)(b�x) where[a;b]
are the end of the cuts (see figure 1).

On changing the potential more drastically by having two humps or wells, the simplest
example being a potentialV(M) = � µ

2 M2 + g
4M4, the density can get disconnected sup-

port. The precise expressions for the density of eigenvalues are as follows:

ρ(x) =
g
π

x
p

(x2�a2)(b2�x2); a< x< b

= 0; �b< x<�a; (2.1)

wherea2 = 1
g[jµ j � 2

p
g] andb2 = 1

g[jµ j+ 2
p

g] andjµ j > 2
p

g, which is the condition
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Figure 1. (a) The confining potential. (b) The density of eigenvalues.

Figure 2. (a) The double-well potential. (b) Density of eigenvalues. (c) The phase
diagram.

that the wells are sufficiently deep. The eigenvalues sit in symmetric bands centered around
each well. Thusρ has support on two line segments. Asjµ j approaches 2

p
g, a! 0 and

the two bands merge at the origin. The density is then

ρ(x) =
gx2

π

r
x2� 2µ

g
; �

s
2jµ j

g
< x<

s
2jµ j

g

= 0; otherwise: (2.2)

The phase diagram and density of eigenvalues for theM 4 potential is shown in figure 2.
The simplest way to determineρ(z) explicitly is to use the generating functionF(z) =

h 1
N Tr 1

z�M i and its saddle point or Schwinger–Dyson equation also known in the math-

ematics literature as the Riemann–Hilbert problemF(z) = 1
2[V

0(z) +
p

∆] with ∆(z) =
V 0(z)2� 4b(z) andb(z) = gz2+ µ + gh 1

NTrM2i (see ref. [12]). The densityρ(x) is then

determined by the formulaρ(z) =� 1
2π Im

p
∆(z).

In what follows I will outline the recurrence coefficient method of the orthogonal poly-
nomials for the two-cut matrix model (see ref. [12] for more details). I give the results for

Pramana – J. Phys.,Vol. 58, No. 2, February 2002 219



N Deo

the two-point correlators (also known as the ‘smoothed’ or ‘long range’ correlators) for all
three ensembles. Then the two-matrix model of Chandra–Itzykson–Zuber is defined and
the expressions for the parametric and crossover correlators are given.

3. Orthogonal polynomial approach

The partition functionZ can be rewritten in terms of the orthogonal polynomialsPn where
the polynomials are defined as

R ∞
�∞ dλe�NV(λ )Pn(λ )Pm(λ ) = hnδnm; thenPn = λ n+ l.o.

andP0(λ ) = 1, P1(λ ) = λ + c, P2(λ ) = λ 2+aλ +b� � �. Then the partition functionZ in
terms of the orthogonal polynomials is

Z =
Z N

∏
i=1

dλie
�N∑V(λ )

�����������

P0(λ1) � � � P0(λN)
P1(λ1) � � � P1(λN)

:
:
:

PN�1(λ1) � � � PN�1(λN)

�����������
: (3.1)

The partition functionZ is also known if we know thehn’s as the partition function
can be expressed in terms of thehn’s Z = N!h0h1h2 � � �hN�1. For example:N = 2 caseR

dλ1dλ2e�NV(λ1)�NV(λ2)(P0(λ1)P1(λ2)�P0(λ2)P1(λ1))
2 = h0h1+h0h1 = 2!h0h1. So the

question is how does one find theh’s?
ThePn satisfy recurrence relations

xPn = Pn+1+SnPn+RnPn�1: (3.2)

Note that
R

xPnPn�2e�NV(x)dx= 0 asxPn�2 = Pn�1+ l.o.. ThusPn�2 and l.o. terms do not
appear on the right hand side of the recurrence relation (3.2). Then ash n = hn�1Rn the
producth0h1 � � �hN�1 = h0(h0R1)(h0R1R2) � � � (h0R1 � � �RN) = hN

0 RN�1
1 RN�2

2 � � �RN�1. The
free energyΓ = ln Z = ln N! +N ln h0 +∑N�1

n=1 (N� n) ln Rn; hence we need recurrence
coefficientsRn’s to get the free energy.

4. Asymptotic ansatz for the orthogonal polynomials of the symmetric
double-well matrix model

We have been able to derive in ref. [13] for the symmetric double-well matrix model the
asymptotic ansatz for the orthogonal polynomialsψ n(λ ) = Pn(λ )p

hn
exp(�N

2V(λ )) which is

ψn(λ ) =
1p
f (λ )

�
cos(Nζ � (N�n)φ + χ +(�1)nη)(λ )+O

�
1
N

��
; (4.1)

wheref , ζ , φ , χ andη are functions ofλ , andψn is damped outside the cuts. We show that

f (λ ) = π
2λ

(b2�a2)
2 sin2φ(λ ) from the orthogonality condition satisfied by the orthogonal

polynomials. ζ 0(λ ) = �πρ(λ ) from the relationK(λ ;λ ) = ρ(λ ) whereK(µ ;ν) is the
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kernel defined by1
N ∑N�1

i=1 ψi(µ)ψi(ν) and determines all eigenvalue correlators. While
φ(λ ) andη(λ ) are determined from the recurrence relations satisfied by the orthogonal

polynomials cos2φ(λ ) = λ 2�[(a2+b2)=2]
[(b2�a2)=2)]

, cos2η(λ ) = bcosφ(λ )
λ ; and sin2η(λ ) = asinφ(λ )

λ .
The functionsf , φ , η andχ are universal functions independent of the potential, the

only dependence onV enters through the end-points of the cutsa andb. ζ is non-universal
since the eigenvalue density depends in general on the detailed form ofV (see refs [13,14]
for more details). From this, one can establish that the gapped matrix model is in a new
universality class.

Using the asymptotic ansatz the full density–density correlation function may be found
and is given in ref. [13]. A simpler result is the ‘smoothed’ or ‘long range’ two-point
correlation functions found in ref. [14] using a method of steepest descent which has a
constantC which is undetermined unless one is explicitly in the symmetric case where
C = (�1)N (ref. [14]) (Kanzieper and Freilikher [16] obtained this result using a method
due to Shohat), other values forC have been found earlier using the loop equation method
(ref. [15]). Recently in ref. [17] it was shown that for double wells with equal depths but
unequal widths, in the limit of the symmetric double wells, gives the valueC = (�1)N

confirming the results of ref. [14],

4π2N2ρc
2(λ ;µ) =

ελ εµ

β
p
jσ(λ )j

p
jσ(µ)j

 
σ(λ )+σ(µ)
(λ �µ)2 +

σ 0(λ )�σ 0(µ)
(λ �µ)

+λ 2+µ2� s
2
(λ +µ)+2C

!
: (4.2)

Hereσ(z) = (z2�a2)(z2�b2), s= a1+a2+a3+a4, ελ =+1 fora3 < λ < a4;ελ =�1
for a1 < λ < a2 andβ = 1;2;4 depending on whether the matrixM is real orthogonal,
Hermitian or self-dual quartonian. This result is different for even and oddN and hence
has broken theZ2 symmetry. It would be very interesting to see this effect in experiments
of mesoscopic systems which are sensitive to single electron effects.

5. The Harish Chandra–Itzykson–Zuber matrix model
and density–density correlators

The two-matrix model of Harish Chandra–Itzykson–Zuber is defined by the partition func-
tion

Z =
Z

dAdBe�S; (5.1)

whereS= NSp[V(A)+V(B)� cAB] andV(A) = 1
2µA2. For λ = 1

2, A andB areN�N
real symmetric matrices (orthogonal ensemble), forλ = 1, A andB areN�N Hermitian
matrices (unitary ensemble), and forλ = 2, N�N real self-dual quaternions (symplectic
ensemble). Sp(A) stands for TrA for λ = 1

2;1 and for 1
2 TrA for λ = 2. In this model

the connected density–density correlator isρAB(x;y) � hρ̂A(x)ρ̂B(y)ic, where the density
is defined asρ̂A(x) � 1

NTrδ (x�A), hXi � 1
Z

R
dAdBe�SX, and the subscriptc implies

the connected part. In ref. [8] the Dyson–Schwinger equations are used to derive these
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eigenvalue correlators. Here only the results and physical interpretations are elaborated
up on.

In the largeN limit, the expectation value for the density is given by the well-known
Wigner semi-circle law

hρ̂A(x)i= hρ̂B(x)i=
2

πa2

p
a2�x2; jxj � a; (5.2)

andhρ̂i = 0 for jxj � a, wherea, the ‘end point of the cut’ is given bya= ( 4λ µ
µ2�c2 ). The

result for the connected density–density correlator to the leading order in1
N , valid over the

entire cut, is

ρAB(x;y) =� 1
4π2N2

1
λa2

1
cosθ cosα

�
�

1+coshucos(θ +α)

[coshu+cos(θ +α)]2
+

1�coshucos(θ �α)

[coshu�cos(θ �α)]2

�
; (5.3)

whereu� ln( µ
c ), jxj; jyj � a, and we have defined sinθ = x

a and sinα = y
a. Forλ = 1 the

above result was derived in ref. [6] using different methods from the Dyson–Schwinger
method. The Dyson-Schwinger method is capable of generalization toλ = 1

2;2 with the
above result. Then these results are relevant for the calculation of conductance fluctuation
of mesoscopic systems in which the magnetic field is changing.

When one is interested in transitions from one symmetry class to another, a Hamiltonian
A is considered consisting of two partsB andV each drawn from different ensembles
A= B+V. The partition functionZ and actionSare modified to have

V(A) =
1
2

µ1A2; V(B) =
1
2

µ2B2 (5.4)

and

c= µ1; µ2 =
µ1(1�µ1N)

(2�µ1N)
: (5.5)

The constantµ1 measures the strength of the perturbation. Atµ1 = ∞ we get GOE, while
µ1 = 2

N gives GUE. However, we will work in the more general case whereµ 1, µ2 andc
are independentO(1) parameters. This is just the standard two-matrix model except thatA
andB are drawn from different ensembles. The choice of parameters eq. (5.5), mentioned
above corresponds to the crossover from GOE to GUE is then a special case of the formula
derived.

We are interested in calculating the connected density–density correlator

ρc
AA(x;y)� hρ̂A(x)ρ̂A(y)ic: (5.6)

The full smoothed global result for the connected eigenvalue correlator is (see ref. [9])

ρc
AA(x;y) = ρ I

AA(x;y)+ρ II
AA�(x;y) (5.7)

where we find
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ρ I
AA(x;y) =� 1

2π
1

N2(x�y)2

(a2�xy)

[(a2�x2)(a2�y2)]1=2
(5.8)

and

ρ II
AA�(x;y) =

c2µ2
1

N2(2µ1µ2�c2)�
cos(φ �θ )�1
2cosφ cosθ

�
2µ2

1(x�y)2� 8
a2 (cos2φ +cos2θ �2cos(θ +φ))� 8µ1

a (x�y)(sinθ �sinφ)

(µ2
1(x�y)2+ 8

a2 (1�cos(θ �φ))� 4µ1
a (x�y)(sinθ �sinφ)2)

+
cos(φ +θ )+1
2cosφ cosθ

�
2µ2

1(x�y)2� 8
a2 (cos2φ +cos2θ +2cos(θ +φ))� 8µ1

a (x�y)(sinθ �sinφ)

(µ2
1(x�y)2+ 8

a2 (1+cos(θ +φ))� 4µ1
a (x�y)(sinθ �sinφ)2)

�

(5.9)

where we have used sinθ = x
a, sinφ = y

a anda2 = 4
α . After some algebra we notice that

for µ1 = ∞,

ρc
AA(x;y) =

�1
π2N2(x�y)2 (5.10)

which is the GOE result and forµ1 =
2
N ,

ρc
AA(x;y) =

�1
2π2N2(x�y)2 ; (5.11)

the GUE result. The expression (5.9) is relevant for crossover from the GOE to GUE en-
semble. An application of these correlation functions is to disordered mesoscopic systems
using the transmission matrix formalism and another is in the study of unoriented random
surfaces.

6. Conclusions

In conclusion we have presented two classes of random matrix models; one in which there
are gaps in the eigenvalue distribution and the other in which there are two coupled matri-
ces drawn from the three ensembles (matrices taken from the same and different ensemble
have been considered). In each of the models, we have derived eigenvalue correlators par-
ticularly density–density correlators. In the first case of gapped matrix models we have
eigenvalue correlators which are dependent on the size of the matrixN. This behavior per-
sists in the largeN thermodynamic limit and for the symmetric double-well matrix model

Pramana – J. Phys.,Vol. 58, No. 2, February 2002 223



N Deo

parity effects are present. For the coupled matrix models, long range smoothed correla-
tors are found. These are the parametric and crossover correlators which may be found
in mesoscopic experiments. Density–density correlators are applicable in calculations of
conductance fluctuations of mesoscopic conductors. Our results in these models are valid
for all eigenvalues near the center as well as the edge of the semi-circle. The behavior near
the edge of the cut is particularly relevant in studies of transport properties of mesoscopic
conductors (ref. [5]). Thus clever mesoscopic experiments should be devised which will
show the effects found in both types of these matrix models.
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