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Spatiotemporal solitons in quadratic nonlinear media
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1. Introduction

Optical solitons are localized electromagnetic waves that propagate stably in nonlinear me-
dia with group-velocity dispersion (GVD) and/or diffraction. Temporal solitons in single-
mode optical fibers are the prototypical optical solitons; these were predicted theoretically
in 1973 [1] and first observed experimentally in 1980 [2]. Extensive research since then
has led to the current development of telecommunication systems based on solitons [3].

Compared to the work on temporal solitons, progress in the area of multidimensional
(spatial or spatiotemporal) optical solitons has been much slower. Like temporal solitons,
in cubic (χ (3)) nonlinear media these waves are also governed by nonlinear Schr¨odinger
equations (NLSE). It has long been understood that self-focussing as a result of the (cubic)
Kerr nonlinearity could compensate for the spreading of a beam due to diffraction, but the
resulting balance is unstable in> 1 dimension [4]; the beam tends to diffract, collapse, or
disintegrate into multiple filaments. However, processes not included in the NLSE may
stabilize self-trapped beams. Spatial solitons were first produced in liquid CS2, where an
interference grating was employed to stabilize the solitons [5], and light filaments were
observed [6] in resonant propagation through an atomic vapor, where the nonlinearity is
saturable. One-dimensional (1D) spatial solitons of the NLSE were generated in a glass
waveguide in 1990 [7].

Studies of spatial solitons began to make rapid progress in the1990s, when two new
types of soliton-supporting nonlinear-optical interactions were identified. Segevet al [8]
predicted that the photorefractive effect in electro-optic materials could be used to create a
saturable nonlinear index of refraction that would support soliton formation. Photorefrac-
tive solitons were observed soon afterwards [9], and since then a variety of such solitons
has been reported in 1D and 2D [10]. At nearly the same time, there was a resurgence
of interest in an effective cubic nonlinearity that is produced by the interaction of two or
three waves in quadratic(χ (2)) nonlinear media [11]. The renewed interest was based
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on the recognition that large, effective third-order nonlinearities of controllable sign can
be produced. An additional property is that the effective nonlinearity saturates, so self-
focussing collapse can be avoided in quadratic media [12]. Thus, quadratic media possess
the properties required for multidimensional soliton formation [13], and numerous theoret-
ical treatments of solitons in quadratic media appeared in the early 1990s [14]. Torruellas
et al first observed stationary spatial solitons [15], and Di Trapani and co-workers pro-
duced temporal solitons in quadratic media [16]. Very recently, Di Trapaniet al reported
the observation of vortex solitons in quadratic media [17].

Photorefractive and quadratic solitons are profoundly different from solitons in one-
dimensional Kerr media. As an illustration of the differences, in quadratic media the soliton
actually consists of two fields at different frequencies, coupled and mutually trapped by
the nonlinear interaction. Because they are solutions of non-integrable systems, solitons in
quadratic and photorefractive media can participate in a variety of phenomena not available
to temporal solitons in optical fibers. For example, soliton fission, annihilation, and stable
orbiting in three dimensions are all possible.

One of the major goals in the field of soliton physics is the production of light fields that
are localized in all three dimensions of space as well as time, which we will refer to as 3D
spatiotemporal solitons (STS). These result from the simultaneous balance of diffraction
and GVD by self-focussing and nonlinear phase-modulation, respectively (figure 1). The
possibility of such pulses in multiple dimensions was considered by Silberberg [18], who
is generally credited with coining the term ‘light bullets’ to describe them. It is well-known
that 3D STS are unstable against collapse in cubic nonlinear media [19], but solutions may
be stabilized if the nonlinearity is saturable, or if additional nonlinear processes such as
multiphoton ionization exist to arrest the collapse favored by self-focussing. Their scien-
tific importance has motivated a number of theoretical studies of STS in quadratic media
[20–24].

The first experimental studies of optical STS were reported last year [25–27]. This paper
will briefly review and summarize the key aspects of those experiments.

2. Pulse propagation in quadratic media

Within the slowly-varying envelope approximation, the equations that govern the interac-
tion of fundamental harmonic (FH) and second harmonic (SH) electric fields (E1 andE2,
respectively) that propagate in thez direction (and assumed constant in thex direction) in
a medium with quadratic and cubic nonlinearity are
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Figure 1. Illustration of ordinary propagation of a short pulse in a nonlinear, dispersive
medium, along with the formation of STS.

E1 andE2 are in units of the initial peak FH fieldE0 (related to the initial peak FH in-
tensity by I0 =

p
ε=µ jE0j2=2), n2 is the Kerr nonlinear index, and∆k = k2ω � 2kω is

the wave-vector mismatch between fundamental and harmonic fields. The diffraction,
dispersion, and nonlinear lengths characterizing the pulse propagation areL DF = kω2

0=2,
LDS= 0:322τ2

0=jβ (2), andLNL = nλ=πχ (2)E0, respectively, whereλ is the FH wavelength.
Time t is measured in units of the initial pulse durationτ0, and positionsz andy are mea-
sured in units ofLNL and they-dimension beam waistω0, respectively.β (2) is the GVD,
which will have contributions from both material dispersion and angular dispersion. The
characteristic length over which the FH and SH pulses walk away from each other in time
as a consequence of the group-velocity mismatch (GVM) isLGVM = cτ0=(n1g�n2g), with
n1g andn2g the group indices at the FH and SH frequencies, respectively.

The effective cubic nonlinearity in quadratic media results from the cascading of
χ (2)(2ω ;ω ;ω) (conversion) andχ (2)(ω ;2ω ;�ω) (back-conversion) processes in phase-
mismatched second harmonic generation (SHG). The process of conversion and back-
conversion generates a nonlinear phase shift∆ΦNL at the FH frequency. For large phase
mismatch or low intensity, the nonlinear phase shift can be approximated as∆Φ NL �
�Γ2L2=∆kL, whereΓ = deffω jE0j=c

p
nωn2ω [11]. Depending on the sign of of the phase-

mismatch∆kL, the phase shift can be either self-focusing(∆kL < 0;∆ΦNL > 0) or self-
defocusing(∆kL> 0;∆ΦNL < 0).

Pulse propagation is modeled by numerically solving the coupled wave equations, us-
ing a symmetric split-step beam-propagation method: a Runge-Kutta algorithm solves the
nonlinear propagation step in the time domain, and the dispersive and diffractive propaga-
tion steps are solved in the frequency domain. Some results of the numerical solutions will
be compared with experimental data below.

3. Solitons in one transverse spatial dimension and time

Once the saturable nonlinearity is identified, the greatest experimental challenge to the
generation of STS is the requirement of anomalous GVD at both fundamental and second-
harmonic wavelengths [23]. The magnitude of the anomalous GVD should be large enough
to produce a characteristic dispersion length(LDS) commensurate with the dimensions of
available quadratic nonlinear crystals. For practical purposes, this meansL DS� 5 mm,
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which implies GVD�10 times larger than that of typical transparent materials. The fo-
cusing, pulse energy, and phase mismatch can be conveniently adjusted to produceL DF
andLNL in this range. We create an environment with such strong anomalous GVD by
use of a trick that is common in the femtosecond-optics community: angular dispersion
of the input pulse using a diffraction grating produces large and anomalous GVD [28].
Diffraction from a grating can also be used to match the group velocities of the FH and
SH pulses; then each wavelength in the pulse spectrum propagates at its phase-matching
angle. However, GVD and GVM cannot be chosen independently. A limitation of this
approach is that the use of the diffraction grating to disperse wavelengths in one direction
precludes the production of STS confined in both transverse dimensions. The experimental
apparatus implements the situation shown in figure 2. A Ti-sapphire regenerative amplifier
produces pulses of duration 120 fs and energy up to 1 mJ at a wavelength of� 800 nm.
The pulses diffract off a grating and pass though a telescope and a cylindrical lens prior
to incidence on the SHG crystal (lithium iodate or barium borate, cut for type-I interac-
tion). The grating disperses the spectrum in the horizontal transverse(x) direction, and the
cylindrical lens focuses the beam in they direction. The beam waist in the unfocused(x)
direction is 3-4 mm, so diffraction is negligible in that direction. Following the crystal, the
optics are repeated in reverse order to compensate the dispersion imposed by the grating
and to collimate the beam. To image the beam at the exit face of the crystal, the second
cylindrical lens is removed, and the beam is imaged with a spherical lens following the
second grating. Details of the experimental arrangement can be found in [26].

In general, the fundamental and harmonic fields propagating in a quadratic medium will
have different group velocities, and the resulting GVM will impact the properties of STS.
Intuitively, if the two fields have distinct velocities, they will move apart from each other
in linear propagation. This hinders the formation of STS, in which the fields mutually trap
each other. Given this concern, we first performed experiments with nearly equal group
velocities at fundamental and harmonic frequencies. In LiIO3, zero GVM can be obtained
simultaneously withLDS� 3 mm, so LiIO3 was chosen for experiments with zero GVM. To
investigate the effects of GVM on STS formation, a series of experiments was performed
under conditions of large GVM between FH and SH fields. These experiments employed
barium metaborate (BBO) as the quadratic nonlinear medium.

First we briefly summarize the results of experiments aimed at producing STS under
conditions of nearly-zero GVM between FH and SH fields. With the LiIO3 crystal oriented
to produce self-focusing cascade phase shifts, the pulse duration and beam profile at the
output face of the crystal vary with the incident intensityI 0. For I0 < 1 GW/cm2, the

Figure 2. Schematic of the experimental arrangement to study 2D STS.
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pulse (beam) broadens in time (space) owing to dispersion and diffraction. At higher inten-
sities space-time focusing is observed, which is already significant consdering that it is not
stable in cubic nonlinear media. WithI0� 10 GW/cm2 the output pulse essentially matches
the input, which is the first evidence of soliton formation. The pulses overcome diffraction
in one transverse spatial dimension, as well as GVD, to reach constant beam size and pulse
duration; we call these 2D STS. At higher intensities (up toI 0 � 80 GW/cm2), solitons
still form but their propagation is periodic. The pulse (beam) compresses and expands by
a factor as large as 3, so the intensity varies by nearly a factor of 10.

In the absence of GVM, time and the transverse spatial coordinates are formally equiv-
alent in the coupled wave equations. However, quadratic solitons consist of two fields
at distinct frequencies, so GVM is a general feature of the problem and it is essential to
determine its consequences. In the presence of GVM, the problem becomes anisotropic
in the transverse dimensions, so the spatiotemporal nature of the problem is emphasized.
As a consequence, for example, we do not expect the same behavior from 2D STS and
2-dimensional spatial solitons because time is not equivalent to a transverse spatial dimen-
sion. The GVD and birefringence of BBO allow one to perform experiments at 800 nm
with the relatively large valueLDS=LGVM � 3; i.e. the two pulses would move apart by
3 times the pulse duration in one dispersion length. In contrast to LiIO3, BBO has small
nonlinear index of refraction and negligible 2-photon absorption around 400 nm. Consid-
ering these issues, Liuet al focused their attention primarily on the generation of STS with
large GVM.

Numerical solutions of the coupled wave equations show that STS should form despite
the presence of GVM, as long as the magnitude of the phase-mismatch is chosen to be
sufficiently large. An example is shown in figure 3. With the phase mismatch set near
the optimum value for STS formation as determined by the numerical simulations, stable

Figure 3. Numerical simulation of STS in the presence of large GVM. Temporal and
spatial evolution of fundamental and second-harmonic fields are shown.
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pulse duration and beam profile are indeed observed experimentally over 5 characteristic
lengths. Typical experimental data are shown in figure 4. The experimental conditions
(input intensity and phase mismatch) required to produce STS agree reasonably well with
the numerical solutions.

From the measurements made after propagation�3 and�5 characteristic lengths and
the numerical simulations, we conclude that STS are formed in BBO for parameters in the
vicinity of ∆kL��44π andI0 � 8 GW/cm2. Because the input pulse is reasonably close
to the STS solution, stable mutual trapping occurs in a short propagation distance (�1
characteristic length) and the pulse sheds minimal energy as it evolves. After propagation
through the BBO crystal, we find that the SH energy is�2-4% of the input pulse energy,
as expected given the large phase mismatch. The total energy is conserved to within a few
percent. The absence of 2-photon absorption at 400 nm and the small Kerr nonlinearity in
BBO make these experiments a nearly ideal realization of the theoretical model (eq. (1)).
The fact that STS can still be formed despite the large difference in group velocities is a
measure of the strength of the nonlinear coupling.

At intensities just above the threshold intensity for STS formation, STS still occur but
they evolve periodically. In some sense, these STS are analogous to the solitons of the
nonlinear Schr¨odinger equation withN > 1. However, it is important to keep in mind that
STS occur over continuous range of energies in quadratic media, in contrast to the discrete
soliton energies in cubic nonlinear media.

An extensive series of measurements of pulse propagation with varying input intensity
(I0) and phase mismatch(∆kL) allowed Liu et al [26] to establish the range of param-
eters over which STS form. At low intensities or large phase mismatch, dispersive and
diffractive broadening is observed. STS form in a narrow range of coordinates in the
I0�∆kL plane. This region is bounded below by the need for adequate nonlinear phase
shift: larger phase mismatch can be tolerated at higher intensities. STS are not observed for
∆kL<�100π , at any intensity; although adequate phase shift can be generated, saturation
is inadequate to stabilize the STS under these conditions. STS also cannot be formed if
the phase mismatch is too close to zero. Near phase-matching, the FH and SH pulses may
move apart in time before mutual trapping can take place. Increasing∆Φ NL from the values
that produce STS, either by decreasingj∆kLj or by increasingI 0, causes the 2D STS in the
form of a stripe to break up into a series of filaments. This will be discussed below. Finally,
at the highest intensities, the unavoidable cubic nonlinearity of BBO causes self-focusing
collapse, which is evidenced as severe beam distortions and the generation of ‘white-light’
continuum.

4. Transverse instability of STS: Toward light bullets

As mentioned above, one of the limitations to the formation of STS is transverse instability
(TI). Starting from conditions that produce STS, if the input intensity is increased or the
phase mismatch is decreased, the 2D STS breaks up into a set of filaments, as illustrated in
the spatial profile measured at 12 GW/cm2 (figure 4). The dependence of the filaments on
input intensity and phase mismatch are consistent with calculations, which demonstrates
that TI is the origin of the breakup [27]. The numerical calculations also show that the
filaments produced through TI will be 3D STS if the environment has the correct group-
velocity dispersion to support STS.
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Figure 4. Experimental evidences of STS under conditions of large GVM. The top
two panels show raw data for pulse duration and beam profile. The pulse duration is
measured after different distances under conditions of fixed intensity, while the beam
profiles are shown for a single propagation distance and varying intensity. The bottom
two panels show pulse duration and beam waist obtained from raw data exemplified by
the top two panels and plotted versus distance. The dashed lines in the bottom panels
indicate the evolution in linear propagation.

In the experiments of Liuet al, the beam fragments into filaments that are initially ellip-
tical in shape, with an aspect ratio of�4:3. Measurements of individual filamets show that
the pulse duration is�100 fs, the same as for the 2D STS. These filaments quickly evolve
to the circular cross section expected for 3D STS, but eventually broaden in time and space
as a consequence of our use of the diffraction grating to produce GVD. Thus, true 3D STS
are not observed, but the experiments demonstrate that production of 3D STS through TI
of the 2D STS will occur if the GVD is not produced using diffraction gratings.

The transverse instability is closely connected to the periodic evolution of STS in
quadratic media. In cubic nonlinear media, the spatial frequency at which the TI gain
is maximum (which is the observed spatial frequency in practice), increases slowly with
input intensity,Ωmax� I1=4

0
– this intensity-dependence is viewed as the hallmark signa-

ture of TI. Liu et al found that the filament spatial frequency varies much more rapidly
than this for STS in quadratic media. Analytic and numerical calculations show that the
intensity-dependence can be understood using the sameI 1=4 dependence, as long as the ap-
propriate value ofI is used. It is important to recall that the evolution of STS in quadratic
media is generally periodic. TI is most likely to occur at the points of highest intensity,
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simply because that is where the TI gain will be maximum. Once one realizes that the
maximum intensity achieved by the 2D STS is the appropriate value, the TI of STS can be
understood in terms of an effective cubic nonlinearity. It is interesting to note that only the
fully-confined light bullet is truly stable; all lower-dimensional solitons are susceptible to
TI.

5. Spatiotemporal solitons through non-collinear second-harmonic generation

Finally, Liu et al recently showed that 2D STS can be generated through non-collinear
SHG [29]. The main idea for this experiment was proposed by Drummondet al [30]. Non-
collinear input beams that are not solitons interact, and an output 2D STS appears at the
bisector of the angle between the inputs (figure 5). This experiment helps us understand
the detailed mechanisms by which the fundamental fields self-focus while the fundamen-
tal and harmonic fields couple and trap each other. Since the output STS only appears

Figure 5. The top panel illustrates noncollinear generation of STS and bottom panel
presents experimental results. STS produced by one input beam are shown in (a) and
(b), and STS produced with both input beams present are shown in (c). The inset shows
the temporal profiles of the input pulse and the STS generated by noncollinear SHG.
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when both the inputs are present, this mechanism could be the basis for an all-optical
AND gate. Compared to interacting solitons, this type of interaction will be much less
phase-sensitive, which should be an advantage in applications. Information-processing
systems based on spatiotemporal solitons could have bandwidths of many terahertz, and
this motivates further investigation of soliton production and interactions in this context.

6. Conclusions and future directions

The initial demonstrations of STS by Liu and co-workers makes it possible to plan studies
of a number of intriguiging aspects of STS. Interactions among STS are of great scientific
interest, and will be the basis of soliton logic. Collisions in saturable nonlinear media ex-
hibit a greater variety of phenomena than those in Kerr media; the coupled wave equations
are not integrable, so interactions are accompanied by radiation, and soliton number is not
conserved. Thus, annihilation, fission, and fusion of STS are all possible. We hope to
investigate these phenomena in the near future.

Of course, there is still great interest in the direct generation of 3D STS, the true light
bullets. By the use of Bragg gratings or more general periodic structures it may be possible
to create an environment that will support 3D STS, and this is another direction that we
hope to pursue in the near future.
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