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Abstract. The models of the nonlinear optics in which solitons appeared are considered. These
models are of paramount importance in studies of nonlinear wave phenomena. The classical ex-
amples of phenomena of this kind are the self-focusing, self-induced transparency and parametric
interaction of three waves. At present there are a number of theories based on completely integrable
systems of equations, which are, both, generations of the original known models and new ones.
The modified Korteweg-de Vries equation, the nonlinear Schr¨odinger equation, the derivative non-
linear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota
equation, the principal chiral field equations, and the equations of massive Thirring model are some
soliton equations, which are usually to be found in nonlinear optics theory.

Keywords. Solitons; self-induced transparency; nonlinear fibres; wave interaction.

PACS No. 42.65.Tg

1. Introduction

A nonlinear wave is one of the fundamental objects of nature. They are inherent to aerody-
namics and hydrodynamics, solid state physics and plasma physics, optics and field theory,
chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-
linear waves can be divided into two parts: dispersive waves and dissipative waves. The
history of investigation of these waves are about two centuries old. In 1834, J S Russell
discovered the extraordinary type of waves without the dispersive broadening. In 1965, N J
Zabusky and M D Kruskal found that the Korteweg-de Vries equation has solutions of the
solitary wave. This solitary wave demonstrates particle-like properties, i.e. stability under
propagation and the elastic interaction under collision to one another. For these reasons
these solitary waves were named solitons. In the succeeding years there has been a great
deal of progress in the understanding of the soliton nature. Now solitons have become the
primary components in many important problems of nonlinear wave dynamics. It should
be noted that nonlinear optics is the field where all soliton features are exhibited to a great
extent.

The self-focusing of light beams and the self-induced transparency phenomenon are
good examples of a important role of solitons in nonlinear optics.

The nonlinear wave propagation in a nonresonant medium also occupies an important
place in nonlinear optics. As a consequence of modulation instability, a continuous wave
transforms to a number of single pulses. Under certain conditions, these pulses can evaluate

953



Andrey I Maimistov

into solitons. Nowadays the optical solitons propagation in fibres is attracting considerable
attention.

The other classical problem of nonlinear optics is the parametric interaction of waves.
The harmonic generation, stimulated by Raman and Brillouin scattering, parametric am-
plifications, sum-frequency mixing, and four-wave mixing have been the subject of many
investigations in this field. The three-wave interaction process is of particular interest be-
cause it gives us a new instance of the application of the soliton occurrence in a nonlinear
system without dispersion.

There are cases of the Hamiltonian systems when the canonical transformation makes
the equations of motion trivially integrable after the conversion to new variables. Then they
say that Hamiltonian system admits the action-angle variables. If the action-angle variables
exist, then the Hamiltonian system iscompletely integrable. There is a powerful tool to
investigate the integrable systems. It is the inverse scattering transform (IST) introduced
by Gardner, Greene, Kruskal and Miura (1967). The implementation of IST in nonlinear
optics results in new examples of the optical soliton phenomena. Moreover, this method
leads to new analytical approaches for near integrable systems.

2. Classical examples

Let us consider the three phenomena mentioned above for theories that have been based on
completely integrable equations.

2.1Self-induced transparency

A self-induced transparency (SIT) phenomenon consists of the propagation of a powerful
ultra-short pulse (USP) of light through a resonance medium without the distortion and
energy loss of this pulse [1–4]. This phenomenon is characterised by the continuous ab-
sorption and re-emission of electromagnetic radiation by resonant atoms of the medium in
such a manner that a steady-state optical pulse propagates. In the ideal case the energy dis-
sipation of the USP is invisible and the state of the resonant medium is not varying. In this
means the medium is transparent. The group velocity of such a steady-state pulse, called
2π-pulse or soliton of SIT, is less than the phase speed of light in a medium. The group
velocity depends on a 2π-pulse duration: the shorter the duration, the higher is its speed
[2–5]. When two pulses of different velocities spread in the medium, the second pulse
may overtake the first and a collision may take place. After the collision, the solitons keep
their shape and velocity (but in general all other parameters of solitons may alter). This
fundamental property of the SIT solitons has been studied many times both theoretically
and experimentally [3,6,7].

From the mathematical point of view this property is a consequence of the complete inte-
grability of the reduced Maxwell-Bloch equations, describing the SIT in the two-level me-
dia with non-degenerate levels [8–13]. The 2π-pulses answer the single-soliton solutions
of these equations, and the process of ‘collision’ reflects the evolution of the double-soliton
solution – its asymptotical transformation into a pair of solitons under certain conditions
(see, for example, [6,9], and [14,15]).
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The simplest theory describing the self-induced transparency phenomenon was devel-
oped by McCall and Hahn [1,2]. In general, the theory of the interaction of radiation
with an ensemble of two-level atoms is based on the Bloch equations for atoms and the
Maxwell equations for the classical electromagnetic field. In an isotropic dielectric the
set of Maxwell equations reduced to one equation for the electric field~E =~lE. For a
plane wave with constant polarisation vector~l one can obtain the following system of total
Maxwell-Bloch (MB) equations
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whered is the projection of a matrix element of the dipole operator on the direction of~l , nA
is the concentration of resonant atoms. It should be noted that the components of the Bloch
vectorr1, r2 andr3 depend on the atomic resonance frequencyω a. Hereafter the angular
brackets represent summation over all the atoms characterized by the frequencyω a.

The Bloch equations contain products of the fieldE and the polarisationsr 2 and r3
responsible for interference between the opposite propagated waves. It has been shown
[16,17], however, that if the density of resonant atoms is small enough to make the pa-
rameter 4πnAd2=~ωa less than unity, interference may be neglected. It was found that for
a typical value ofd � 1 Debye,ωa � 1015 s�1 and nA � 1023cm�3 one may not take
into account the backward wave generation by a forward running pulse. Thus, the MB
equations convert into the simple reduced Maxwell-Bloch (RMB) system of equations:
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It should be emphasised that in both the MB and RMB equations symbolE denotes the
real value of the electric field strength. However, so often the electromagnetic wave can be
represented as a quasi-monochromatic wave

E(z; t) = 2A(z; t)cos[k0z�ω0t +ϕ(z; t)] = E (z; t)exp[i(k0z�ω0t)]+ c:c:; (3)

whereω0 is the radiation frequency,k0 is the wave number, and the real envelopeA(z; t)
and the phaseϕ(z; t) are slowly varying functions ofz and t: This is an approximation
which means that the envelope and the phase obey the inequalities

0jAj; j∂A=∂zj � k0jAj; j∂ϕ=∂ tj � ω0jϕ j; j∂ϕ=∂zj � k0jϕ j: (4)

Besides, the envelope amplitudes are usually so weak that the Rabi frequency (maxjdAj=~)
turns out to be much less than the resonance transition frequency. The resulting system of
equations can be represented as
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where∆ω = (ωa�ω0), α 0 = 2πω0nAd2=~c, q = dA=~ is a normalised slowly varying
pulse envelope andP, Q andR are connected with the initial Bloch vector components by
the relations

r1 =�P(z; t)sin[k0z�ω0t +ϕ(z; t)]+Q(z; t)cos[k0z�ω0t +ϕ(z; t)];

r3 =�R(z; t)

To describe the SIT phenomenon McCall and Hahn used the system (5). Furthermore, if
we confine the analysis to situations when the input optical pulse does not carry any phase
modulation, i.e.∂ϕ=∂z= ∂ϕ=∂ t = 0 atz= 0 and the form factor of the inhomogeneous
line is a symmetrical function of frequency detuning∆ω , then equations (5) yield∂ϕ=∂z=
∂ϕ=∂ t = 0 at anyzandt. In this case equations (5) reduce to the system of SIT equations
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If an absorption line is homogeneously broadened and the exact resonance condition holds,
then the SIT equations reduce to the well-known Sine-Gordon equation

∂ 2u
∂τ∂ζ

+sinu= 0; (7)

whereτ = (t�z=c), ζ = α 0z, andq= ∂u=∂τ .
These equations (i.e. (2), (5), (6) and (7)) may be represented as the condition of the

integrability of some linear equations that provides the solution of these equations by the
IST method. If we assume, that before the arrival of an ultra-short pulse all two-level
atoms are in the ground state and after the passing of the USP all atoms recover in the
initial states, then the boundary conditions are

lim
jτj!∞

R(τ ;ζ ;ωa) =�1; lim
jτj!∞

r1;2(τ ;ζ ;ωa) = 0:

Both RMB-equations and SIT-equations with these boundary conditions can be solved
by the IST method in a regular way [8–15]. In general cases one can obtain theN-soliton
solution of these equations. This solution representsL1 single solitons andL2 breathers(so
thatN = L1+2L2). Breather (or bion – soliton-antisoliton bounded state) is an extremely
stable solitary wave with internal oscillations. It has the same collision stability as ordinary
solitons in both the bion-bion and the bion-soliton collisions. It is worth noting that the
Sine-Gordon equation has the same soliton and breather solution.
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It should be noted that the one-soliton solution of the RMB equations corresponds to the
USP without the carrier wave, and represents a unipolar spike of electromagnetic radiation.
Sometimes these pulses are named asvideo pulses. The two-soliton solution of the RMB-
equations describes the collision of two video pulses in the same fashion as it was done for
the two-soliton solution of SIT equations by McCall-Hahn. However, the breather solution
of the RMB-equations can be used to obtain the generation of McCall-Hahn 2π-pulses. In
[6] it was shown that the RMB breather is a real solution in the form of localised pulse with
internal oscillations. Hence, this is an exact analogue of the McCall-Hahn 0π-pulse. If the
frequency of internal oscillations increases, then the envelope of RMB breather can be
described by the soliton solution of the SIT equations to a high accuracy. Thus admittedly,
the 2π-pulse of McCall-Hahn is the limiting case of the 0π-pulse of the RMB equations.

2.2Optical solitons in fibres

It is well known that the rate of the information transfer by means of fibre optical commu-
nication systems (FOCS) with the mode pulse-code modulation is limited mainly by the
effect of dispersion of group velocities. The influence of this effect can be suppressed effi-
ciently, and ideally can be completely excluded if one uses sufficiently powerful pulses of
light. Because of the nonlinear effect of self-influence such pulses in certain conditions are
transformed into solitons and their propagation in FOCS is not accompanied by dispersive
spreading.

It is important to emphasise that the soliton does not exist in real communication sys-
tems in the true sense of the word. The influence of group velocity dispersion of the high
orders, optical loss and some other effects break a dynamic balance between the nonlinear
compression of the pulse and its dispersion broadening. As a result of these effects the op-
tical pulse suffers envelope distortion and damping. But the distance, passed by the soliton
in a fibre considerably exceeds that which a weak pulse should pass in the linear regime
of propagation. The experiments made with powerful optical pulses confirm this. We can
consider the soliton as a good approach for the real nonlinear pulses in a fibre under certain
conditions.

The suggestion to use optical solitons for the information transfer along the fibre is made
in the works [18,19] and it is demonstrated in [20–22]. Later on the equation describing
the optical pulse propagation in a fibre with an account of only the second-order group-
velocities dispersion was received in works [23,24] and was investigated in [25,26]. In the
soliton theory it is known as the nonlinear Schr¨odinger (NLS) equation.

Let q be the normalised slowly varying complex envelope of the optical pulse defined
by the following expression

E(x;y;z; t) = A0q(z; t)Ψ(x;y)exp[i(β0z�ω0t)];

whereβ0 is the propagation constant depending on the frequency of the carrier waveω 0,
Ψ(x;y) is a mode function that determines the transverse distribution of the electric field
over the fibre cross-section. The slowly varying envelope of the optical pulse is governed
by the following equation [23,24] (NLS equation):

i
∂q
∂ζ

+s
∂ 2q
∂τ2 +µ jqj2q= 0: (8)
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Hereζ = z=LD, τ = (t�z=vg)t�1
p0 are normalised independent variables of co-ordinate and

time, accordingly,t p0 is a pulse duration atz= 0 andvg is the group velocity of an optical
pulse. The term in (8) with the second derivative with respect toτ describes the pulse
dispersion broadening (s= �1 for the normal dispersion ands= +1 for the anomalous
dispersion). LD is the dispersion lengthLD = 4β0t

2
p0(j∂ 2β (ω)=∂ω2j)�1. The effective

refractive indexneff is defined asβ (ω) = (ω=c)neff. The third term in (8) is responsible
for the self-action effect. Coefficientµ is equal to the ratio of the dispersion lengthL D
to the Kerr lengthLK , whereLK = c2β0(2πω2

0A2
0jχK;effj)�1. HereχK;eff is the effective

nonlinear susceptibility responsible for the Kerr effect.
The complete integrability of the NLS is established in the classical works [25–27].

Besides the multi-soliton solutions, the NLS equations have the new type of solutions
named multiple-pole solutions [8]. These solutions correspond to the multiple points of
a discrete spectrum of the Zakharov-Shabat problem in the IST method. It is difficult
to realise these solutions in practice because any small stir of the initial conditions will
remove degeneration in the multiple points of a discrete spectrum. It means that only
the exclusive initial optical pulses can be transformed into multiple-pole optical solitons.
Different properties of the NLS equations are described in excellent books [29–33].

2.3 Interaction of three waves

One of the broadest classes of phenomena in nonlinear optics is the transformation of the
frequency of an electromagnetic radiation propagating in the nonlinear medium. Harmon-
ics generation of the fundamental wave (pump), sum-frequency and difference-frequency
mixing are classified among these phenomena [34]. Under sufficiently high intensity of a
pump the polarisation of a medium is not a linear function of the electric field strength of
the wave. If the frequencies of an electromagnetic field are not in resonance with atomic
transition frequencies, one can use a standard perturbation theory to reveal this depen-
dency. So we can expand polarisation~P in a power series of electrical field strength. The
coefficients of this series are tensors of thenth rankχ̂ (n), named as nonlinear susceptibility,
and describe different processes of the electromagnetic waves interaction. The nonlinear
effects, described by thenth rank tensors of nonlinear susceptibility, are often interpreted
as the interaction of the(n+1) waves.

Let the nonlinear characteristics of a medium be described by nonlinear susceptibility
of the second order̂χ (2). It is called a quadratic nonlinear medium. Let the waves with the
carrier frequenciesω1 andω2 propagate along thezaxis. As the polarisation is the nonlin-
ear (quadratic) function of the electrical field strengths, the waves with carrier frequencies
ω = ω1�ω2, ω = 2ω1 andω = 2ω2 appear in such a medium. These waves, in their turn,
can cause generation of new waves with the frequenciesω = 2ω 1�ω2, ω = ω1� 2ω2,
and so on. But in a dispersive medium all these processes are not equally efficient. There
is a condition of phase matching, which selects a certain type of interaction of three waves,
leaving all others unaffected. Sometimes such phase matching takes place for the waves
propagating in the same direction. In this case one talks about collinear parametric in-
teraction. The distance where the interaction of waves occurs can be made sufficiently
long and, consequently, the effective frequency transformation will take place. On the
contrary, when the phase matching is achievable only for the waves propagating in differ-
ent directions, their interaction occurs only in the field of overlapping of the wave beams.
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Non-collinear parametric interaction is worth special attention as a number of interesting
results concerning the integrability of three-wave mixing equations have been found.

Let E1;E2 andE3 be the slowly varying envelopes of the interacting pulses. Let us
consider the situation when only the collinear propagating wave with sum-frequency or
difference-frequency is generated. In the slowly varying envelopes and phases approxima-
tion, the system of equations describing the interaction of the three waves can be written
in the following in unified form [35,36]:�

∂
∂z

+
1
v1

∂
∂ t

�
q1 = iσq�2q�3exp(+i∆kz); (9.1)

�
∂
∂z

+
1
v2

∂
∂ t

�
q2 = iσq�3q�1exp(+i∆kz); (9.2)

�
∂
∂z

+
1
v3

∂
∂ t

�
q3 =�iσq�1q�2exp(+i∆kz); (9.3)

where σ =
pγ1γ2γ3, and γn = 4πωnχ (2)(ω1;ω2)=cn(ωn), n = 1;2;3. In these equa-

tions we used∆k = k3� (k1 + k2), for a sum-frequency mixing processω = ω1 +ω2,
and∆k = k3� (k1� k2), for difference-frequency mixingω = ω1�ω2. Herevn are the
group velocities of the corresponding wave. The effects of group-velocity dispersion are
neglected. The uniformization variablesq1;2;3 are related toE1;E2 and E3 as follows
E1 =

pγ1q1, E2 =
pγ2q2 andE3 =

pγ3q�3, for the case of sum-frequency mixing, and
E1 =

pγ1q3, E1 =
pγ2q�2, E3 =

pγ3q�1 for the case of difference-frequency mixing (the
indices at the velocities of the first and the third waves should be changed in this case).

We would like to point out that the resonance Raman scattering under conditions of weak
variation of the energy levels population of a medium and the scattering of optical waves
by an acoustical wave can be considered from one position as the specific realisations of
the 3-wave interaction. In both cases the systems of equations, describing these processes,
can be transformed into one universal system (9). Furthermore, one can demonstrate that
under certain conditions the reduced Maxwell-Bloch equations appear here, which describe
the propagation of the ultra-short pulse in a resonance medium. Due to this property the
Raman scattering can be analysed in terms of the IST method.

The equations for 3-wave interaction (9) permit both the infinite number of conservation
laws and the B¨acklund transformation. They can be presented as the Hamiltonian equations
by employing ther-matrix. It is shown that these equations pass the Painlev´e test, and that
there is a class of self-similar solutions, expressed in terms of Painlev´e transcendents P-V
and P-VI.

It is remarkable that the system of equations, describing the parametric interaction of
three waves, can be solved by the IST method for a 3D case [37,38], whereas the most of
soliton equations are one-dimensional ones.

It should be emphasised that the 3-wave interaction gives an example of the dispersion-
less propagation of the nonlinear waves. They often say that the soliton is the result of
the compensation of dispersion broadening and nonlinear compression of the wave packet.
The 3-wave interaction just demonstrates the narrowness of this statement. Due to the ab-
sence of the phase and group velocities dispersion the solitons in this process do not detach
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from the nonsoliton part of the solution (which is often named radiation). It seems very
difficult to study the process analytically, so one has to confine the investigation to some
particular solutions. The non-collinear second harmonic generation provides an example
of a specific case of the 3-wave interaction, where an exact solution is found without em-
ploying the IST method. The solution obtained explicitly illustrates the non-separability of
the soliton and non-soliton parts of the solution of these 3-wave interaction equations.

3. New examples of the integrable systems

3.1Generalisation of the self-induced transparency theory

The development of the SIT theory is characterised by its going beyond the framework of
two-level approximation and by the spectral composition of the USP field becoming more
complex. The latter means that the resonant medium interacts with radiation containing
several carrier frequencies. Besides, factors such as the direct interaction between resonant
atoms, nonlinear properties of the dielectric doped with resonant atoms and polarisation of
the electromagnetic field should be taken into account.

Let the optical pulse propagate along axisz and the electric field strength be presented
in the form~E = ~E (t;z)exp(�iω0t + ik0z)+c:c: The carrier frequency is in resonance with
the frequencyω21= (ω2�ω1)=~ of an atomic transitionj2! j1 between energy levelsω2
andω1 degenerated over the projectionsmandl of the total angular momentaj 1 and j2. In
a general case the evolution of the envelope of the USP and states of the resonant medium
are described by the system of equations for which the exact solution is not known in the
case of arbitrary valuesj1 and j2. But the certain choice of transitionsj1 = 0$ j2 = 1, j1 =
1$ j2 = 1, and j1 = 1=2$ j2 = 1=2 makes this system of equations exactly integrable.
Its solution can be obtained by the inverse scattering transform method, as it is shown in
[39–41]. Generalised reduced self-induced transparency equations(GSIT equations), for
transitionsj1 = 0$ j2 = 1, j1 = 1$ j2 = 1, can be represented in the homogeneous form

∂qj

∂ζ
=�i ∑

a=1;2
βa

D
P(a)

j

E
;

�
∂

∂τ
� i∆ωtp0

�
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j
=�i ∑

l

ql M
(a)
l j
�qjN
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∂
∂τ
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jl

=�i
�

q�l P(a)
j
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(a)�
j

�
;

∂
∂τ
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= i ∑

j

�
q�j P

(a)
j
�qjP

(a)�
j

�
:

If we consider transitionj1 = 0! j2 = 1, then in (10) we assignq j = dE j tp0=~, β1 = 1 and

β2 = 0. For transitionj1 = 1! j2 = 0 we haveqj = dE j tp0=~, β1 = 0 andβ2 = 1 . Finally,

for transition j1 = 1! j2 = 1 we haveqj = jdE j tp0=~
p

2, β1 = β2 = 1=2. Everywhere
here the sub-index and upper index take the valuesj =�1. The slowly varying envelopes
of matrix elements of the density matrix̂ρ are determined asP(1)

j
=



j2;0jρ̂j j1; j
�
, P(2)

j
=
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j2;� jjρ̂j j1;0

�
, N(1) =



j2;0jρ̂j j2;0

�
, N(2) = �



j1;0jρ̂j j1;0

�
, M(1)

jl
=



j1; jjρ̂ j j1; l
�
,

M(2)
jl

=



j2;�l jρ̂ j j2;� j
�
. As we are well aware, GSIT equations are the zero-curvature

condition in the vector expansion IST method for the AKNS hierarchy. The spectral
problem with such a sort of IST was first reported by Manakov [42] to describe the self-
focusing of the polarised light beams. The expressions forN-soliton solutions, breathers
and Bäcklund transformation have been found in [43].

There are versions of the GSIT equations describing USP propagation in a three-level
medium. In the simplest case of this model the resonance levels haveV andΛ configu-
rations. It is determined [44,45] that, if the oscillator forces for every transition in aV or
Λ configuration are equal, then a two-frequency pulse (characterised by two different fre-
quencies of the carrier wave) is able to propagate in such a medium without the envelope
distortion. An ultra-short pulse of the kind was calledsimulton[46]. The simultons are
single-soliton solutions of the above GSIT equations. At the same time solutions which are
responsible for the propagation and collisions of simultons occur. The oscillating simul-
tons (colour breathers) are the two-frequency generalisations of 0π-pulse by McCall-Hahn.
It is worth noting at this point that a simulton is generally unstable with respect to trans-
formation into one-frequency 2π-pulse and may remain as a two-frequency pulse only for
a special choice of resonance level populations.

It should be mentioned that consideration of the polarised USP propagation in a three-
level medium leads tomatrix variants of the GSIT-equations. For more details, see ref.
[47,48], where the matrix expansion IST method for the AKNS hierarchy (or matrix Man-
akov spectral problem) occurs there.

3.2Femtosecond optical solitons in fibres

In order to describe the nonlinear phenomena associated with femtosecond optical solitons
in nonlinear fibres,the higher-order nonlinear Schrödinger (HNLS) equation has been
proposed [49,50] (see also [51]). Consider the following generalisation of the eq. (8)

i
∂q
∂ζ

+s
∂ 2q
∂τ2 +µ jqj2q+ i

�
η3

∂ 3q
∂τ3 +µ2jqj2

∂q
∂τ

+µ3q
∂ jqj2
∂τ

�
= 0: (11)

The parameterη3 corresponds to the third-order group-velocity dispersion, parametersµ 2
andµ3 represent the two inertial contributions to the nonlinear polarisation, i.e. Raman
self-scattering and self-steeping formation. Ifη3 = 0, µ2 = µ3 = 1 andµ = 0, then the
HNLS (11) reduced into thederivative nonlinear Schr̈odinger(DNLS) equation

i
∂q
∂ζ

+
∂

∂τ

�
s

∂q
∂τ

+ i(q �q�)q
�
= 0: (12)

This equation is a completely integrable one [52]. There are soliton and multi-soliton
solutions, which can be obtained in the framework of the IST method. Notice that the
conditionµ = 0 is not essential for the reduction of the HNLS into the integrable equation,
i.e. the resulting modified DNLS equation is completely integrable too.

If η3= 1, µ2 =�6, µ3= 0, then the eq. (11) is reduced tothe Hirota equations[53],

i
∂q
∂ζ

+s
∂ 2q
∂τ2 +µ jqj2q+ i

∂ 3q
∂τ3 �6ijqj2 ∂q

∂τ
= 0; (13)
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which represents the other example of a completely integrable equation.
In general, eq. (11) may not be completely integrable. However, if we suppose that

η3 = ε , µ2 = 6ε , µ3 = 3ε , andµ = 2s, then the HNLS equation can be reduced to the
other one –Sasa-Satsuma equation. In this case in terms of new variablesξ = τ�s2ζ=3ε ,
q(τ ;ζ ) = u(ξ ;ζ )exp(isτ=3ε +2is3ζ=27ε2) the equation (11) takes the form

∂u
∂ζ

+ ε
�

∂ 3u
∂ξ 3 +6juj2 ∂u

∂ξ
+3u

∂ juj2
∂ξ

�
= 0: (14)

The eq. (14) has been considered in [54], where it is shown that this equation could be
solved by means of the IST method.

3.3Vector optical solitons

In the general case thevector solitonis the soliton solution of the nonlinear system of the
evolution equations, which can be presented as a one-dimension array. For example, the
vector soliton of the NLS equation is the solution of the following vector equation

i
∂~q
∂ζ

+
1
2

∂ 2~q
∂τ2 +(~q�~q�)~q= 0; (15)

where~q= fq1;q2; :::;qMg. Hereafter, this equation will be referred to as thev-NLS equa-
tion. The vector index of this soliton can result from the different physical origin.

We have only one example where the v-NLS equation is the completely integrable one.
This equation is embedded into the AKNS hierarchy that allows to exploit the IST method
to find the soliton solution. The suitable spectral problem was found by Manakov [42].

As the simplest vector generation of the DNLS equation one can write the standard form
of thev-DNLS equation

i
∂~q
∂ζ

+
∂

∂τ

�
∂~q
∂τ

� iε(~q�~q�)~q
�

= 0: (16)

The other example of the vector nonlinear waves arises under consideration of ultra-
short optical pulse propagation in birefringent fibres with higher order effects like the third
order dispersion of group velocities, Kerr dispersion, and stimulated Raman scattering.
There istwo-component generalisation of the Sasa-Satsuma equation(14) [55]:

∂~q
∂ζ

+ ε
�

∂ 3~q
∂τ3 +6(~q�~q�)∂~q

∂τ
+3~q

∂ (~q~q�)
∂τ

�
= 0: (17)

In [55] the three-component generalisation of this equation is also considered. It is shown
that these equations have the zero-curvature representation and can be solved by the IST
method. However, the exact soliton solutions are simple to obtain using the Darboux-
Bäcklund transformation.
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3.4Extremely short pulse propagation in a non-resonant medium

The recent progress in the field of generation of femtosecond pulses has made it necessary
to revise theoretical models of their propagation in a nonlinear dispersive medium. It is
interesting to find a method to describe an USP evolution without the use of slowly varying
envelope approximation. The simplest way to do this is to combine the wave equation
for the electromagnetic field with the equations specifying the changes in the state of the
medium.

In the case of resonant medium we have the resonance transition frequency as a scale
parameter for time. When pulse durationt p obeys the inequalityt pωa � 1, the slowly
varying envelope approximation is adequate to describe the pulse propagation. On the
contrary, if tpωa � 1 we can use at least the unidirectional propagation approximation.
The ratioε = ωR=ωa, whereωR is the Rabi frequency (i.e.,ωR = dmaxjEj=~), provides
a new parameter. Let the USP amplitude (i.e.E) be of such magnitude that the Rabi
frequencyωR is small compared with the minimum of atomic transition frequency. That
meansε = ωR=ωa is a small parameter. Then we can attempt to solve the Bloch equation
(2.2) approximately and thus obtain an approximate equation of the USP electric field
strength without the assumption of a slowly varying envelope [56]. The Maxwell equations
under unidirectional wave approximation can be reduced into

∂E
∂z

+
1
c

∂E
∂ t

=�
�

2πnad
c

��
∂ r1

∂ t

�
; (18)

where polarisation of the ensemble of two-level atoms at the third order ofε is



r1

�
=

�
2d
~ωa

�
E�

�
2d
~ω3

a

�
∂ 2E
∂ t2 �

�
4jdj2d
~3ω3

a

�
E3: (19)

Substitution of the expression for polarisation into equation (18) in terms of new variables
τ = jbjz, ζ = t�z=V, u(τ ;ζ ) =�(a=6b)1=2E(z; t) yields themodified Korteweg-de Vries
equation(mKdV)

∂u
∂τ

+6u2 ∂u
∂ζ

+
∂ 3u
∂ζ 3 = 0: (20)

Here parametersa =


24πnajdj4=c~3ωa

�
, b =



4πnajdj2=c~3ωa

�
were introduced. The

expressionV�1 = c�1[1+


4πnajdj2=~ωa

�
] defines the re-normalised velocity of the USP

propagation. As it is known [57] this equation is completely integrable, and its solutions
can be found by the IST method [31–33]. There are other nonlinear equations describing
extremely short pulse propagation [58], however, they do not have soliton solutions.

3.5SIT in a Kerr-type nonlinear medium

There are intensive investigations of the nonlinear pulse propagation in optical fibres
[29,30]. However, practically all materials used for fibre fabrication contain impurities
that contribute to the absorption spectrum of the fibres. The losses due to the resonant
absorption decrease if the frequency of the carrier wave is located within the window of
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transparency of the glass fibre. Another way to decrease losses is to make pulse duration
shorter than the characteristic relaxation times of the resonant states or, in other words,
to make optical pulses ultra-short. In this case the well-known self-induced transparency
phenomenon can be expected to arise.

It is known that the nonlinear Schr¨odinger equation, which is used to describe opti-
cal solitons in nonlinear monomode optical fibre, is completely integrable [31–33]. The
reduced Maxwell-Bloch equations or their generalisations considered hereafter, as RMB-
equations are completely integrable too. The IST method for both the NLS and the RMB-
equations enabling the solution of some nonlinear evolution equations is based on the same
spectral problem. The model of the USP propagation in a Kerr-type nonlinear medium
doped by resonant impurity atoms incorporates both these systems. But there are no rea-
sons for the resulting system of equations to possess a complete integrability.

The evolution of the USP propagating in a nonlinear monomode optical fibre inz- di-
rection is described by the equations, which generalise the Maxwell-Bloch equations [59].
We could name them the nonlinear Schr¨odinger and Bloch equations.

i
∂q
∂ζ

+s
∂ 2q
∂τ2 +µ jqj2q+ahpi= 0; (21.1)

∂ p
∂τ

= iδ p+2i f R3q;
∂R3

∂τ
= i f (q�p�qp�) ; (21.2)

whereq is the normalised slowly varying complex envelope of the USP defined by the
following expression

E(t;x;y;z) = A0q(t;z)Ψ(x;y)expf�iω0t + iβ0zg;
Ψ(x;y) is a mode function that determines the transverse distribution of the electric field
over the fibre cross-section. Hereζ = z=LD, τ = (t�z=vg)t�1

p0 are normalised independent
variables of co-ordinate and time, accordingly,t p0 is a pulse duration atz = 0 andvg is the
USP propagation group velocity. The interaction of the radiation with the resonant impu-
rities is characterised by the dimensionless constantf = d̄A0tp0=~, whered̄ is an effective
matrix element of the dipole transition between the resonant states. The coefficienta is
expressed in terms of the dispersion lengthLD and the resonant absorption lengthLa [48]

asa= LDL�1
a f�1, whereLa = c~neff

�
2πω0nAd̄2tp0

��1
.

Now let us consider ultra-short pulses propagation in a Kerr-type dispersive medium
when the transition between energy levels of the impurity atoms are degenerated over the
orientations of the total angular momentumj a and jb. The same system of equations
appears when the fibre contains three-level impurity atoms, so that formally we could speak
about optical vector solitons in a general case. Let the electric field strength be written as

E( j)(t;x;y;z) = A0qj(t;z)Ψ(x;y)exp[i(β0z�ω0t)]:

The equations for the normalised envelopeq j(t;z) and the variables of the atomic resonant
system can be written in a unified form as it was done above

i
∂qj

∂ζ
+s

∂ 2qj

∂τ2 +µ j~qj2qj �a
D

Pj

E
= 0;
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∂P(a)
j

∂τ
� iδP(a)

j
=�i f

(
∑
l

ql M
(a)
l j
�qjN

(a)

)
; (22)

∂M(a)
jl

∂τ
=�i f

n
q�j P

(a)
l
�qlP

(a)�
j

o
;

∂N(a)

∂τ
=�i f ∑

j

n
qjP

(a)�
j

�q�j P
(a)
j

o

where j and l mark the spherical components of the vectors, andPj = ∑a βaP(a)
j

. The
variables into the Bloch equations in the system (22) have been determined above.

It has been found [48] that both systems of equations (21) and (22) are integrable ones
only under conditionLDL�1

K = 2 f 2. This condition implies that the soliton of the self-
induced transparency should simultaneously be also a soliton of the NLS equation. To
put this in another way, the amplitude and duration of the 2π-pulse should precisely be
of such values that the corresponding self-action (due to the high-frequency Kerr effect)
would lead to complete compensation of the dispersion broadening of the USP. Thereby,
the existence of the optical solitons in a fibre doped with resonant impurities is restricted.

Yet another example of integrable model describing USP propagation in fibre is pro-
posed in [60]. There the NLS equation (21.1) has been replaced by the Hirota-like equa-
tion:

i
∂q
∂ζ

+
1
2

∂ 2q
∂τ2 + jqj2q+ iε

�
∂ 3q
∂τ3 +3jqj2 ∂q

∂τ
+

3
2

q
∂ jqj2
∂τ

�
+ahpi= 0: (23)

The resulting system of equation admits the Painlev´e property for certain relations between
the physical parameters involved in the model. Also the zero-curvature representation of
this system has been explicitly found.

4. Conclusion

In conclusion some problems related with integrable models and development of the ideas
mentioned above will be considered.

In the traditional scheme of the IST method the spectral parameter of the auxiliary linear
problem is considered as a constant. The generation of the IST method, where the spectral
parameter depends on time and space co-ordinate is proposed in [61]. Nonlinear equations
arising in this approach include the explicit dependence on co-ordinates. In the framework
of this method the generation of the Maxwell-Bloch equations is constructed. This new
system describes evolution of the USP in a two-level medium wherein the pumping of the
excited states of atoms operated continuously.

Propagation of the USP in a long two-level amplifier is considered in [62,63]. The IST
method is applied to the SIT equations in order to obtain its uniform asymptotic solution at
long distance. It is shown that the amplified pulse is always of a quasi self-similar nature.
In the neighbourhood of the wave front USP is described by the Painlev´e equation, whereas
far from the front the solution goes into the rapidly oscillating self-similar regime.

The SIT equations have been employed [64] to describe the phenomenon of superflu-
orescence. Contrary to the self-induced transparency, the superfluorescence pulse is gen-
erated from an unstable state and the IST method is to be re-formulated for the boundary
problem at the halft-axis. It was done in [64].
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Progress in laser physics has made possible the generation of intense ultra-short pulses
to produce the multi-photon processes. The simplest one develops when the resonant mat-
ter interacts with a pair of USPs of different carrier frequenciesω 1 andω2 so thatω1� ω2
coincides with a transition frequencyωca. The nonlinear processes are two-photon absorp-
tion and Raman scattering, respectively. The coherent pulse propagation takes place under
both resonance conditions when the pulse duration is much less than the relaxation times.
This process is similar to SIT and it is referred to astwo-photon self-induced transparency
(TPSIT). This phenomenon can be described in the framework of the generalised Maxwell-
Bloch equations [65,66]. These equations are converted into a new system of equation for
new variables, which are quadratic functions of initial slowly varying envelopes of the
electromagnetic fields [66,67]. As is shown by Kaup and Steudel [67,68] under certain
conditions these equations can be solved by using a modified IST method.

It is interesting that both McCall-Hahn equations in the sharp-line limit and exact reso-
nance and GSIT equations can be mapped into the model ofprincipal chiral fields. The
Kaup-Steudel equations are related to the same model [69]. Recently the authors of [70]
have investigated the GSIT equations and found the hidden non-Abelian group structure
of these equations in the case of a multi-level resonant medium. They have discovered
that a non-degenerate two-level system of self-induced transparency is associated with
symmetric spaceG=H = SU(2)=U(1), while three-levelV- or Λ-systems are associated
with G=H = SU(3)=U(2). The same symmetric space is associated with the degenerate
two-level system of SIT in the case of transitionsj 1 = 1! j2 = 0 and j1 = 0! j2 = 1.
When one considers the transitionj1 = 1=2! j2 = 1=2, the GSIT equations are associated
with G=H = (SU(3)=U(2))2. There are many complex aspects related to the degeneration
of the energy levels in a three-level system of SIT. For instance, the transitions between
statesja = jc = 0; jb = 1 (or ja = jc = 1; jb = 0 ) are associated with the symmetric space
G=H = SU(4)=S(U(2)�U(2)) (accordinglyG=H = SU(5)=U(4)).

The degenerate four-wave interaction consisting of two counter-propagating pulses in a
cubic nonlinear medium, with arbitrary polarisations which can vary through each pulse
has been considered in [71,72]. The group velocity dispersion is neglected that the results
in the intensity envelopes propagating are unchanged from their initial forms. However,
the polarisation evolves according to the nonlinear interaction, and it is found it can exhibit
soliton behaviour. The problem is best approached if one introduces the following vectors
(i.e. Stokes vectors)

S(�) =
n

q(�)�x q(�)y +c:c:; iq(�)�x q(�)y +c:c:; jq(�)x j2�jq(�)y j2
o
;

whereq(�)x;y are the transverse normalised slowly varying envelopes of the pulses propa-
gating in the+ẑ and�ẑ directions, respectively. By using the cone co-ordinate 2x� =

�(z�ct), the evolution equations forq(�)x;y can be re-written as the equation of motion for
chiral field on the groupO(3):

∂+S(+) = S(+)� ĴS(�); ∂�S(�) =�S(�)� ĴS(+) (24)

where the diagonal matrix̂J is defined by constants of the model. These equations are
integrable by the IST method [73,74]. It should be pointed out that in the anisotropic case
(i.e. matrix elements of̂J are different) the equations (24) describe thedomain wall(DW)
in the configuration of the Stokes vectors. As far as we know it is the first example of
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domain structure in nonlinear optics, where DW’s represent space regions with different
stable polarisation states of the interacting optical waves. The Hamiltonian achieves the
minimum on these optical domains, and DW’s are the regions of polarisation switching.
Recently, the study of the DW’s is considered in systems of coupled NLS equations govern-
ing propagation of light in nonlinear fibres [75]. An important point is that group-velocity
dispersion is taken into account. Two types of the DW are found out: the one between
different elliptic polarisations in the bimodal fibre and a dark soliton in one core of the
dual-core coupler. However, both the models are considered in [75] and the models quoted
there are not integrable ones.
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