
PRAMANA c
 Indian Academy of Sciences Vol. 57, No. 4
— journal of October 2001

physics pp. 755–761

Neutrino beam plasma instability
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Abstract. We derive relativistic fluid set of equations for neutrinos and electrons from relativistic
Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dis-
persion relation describing neutrino beam plasma instability, which is little different from normal
dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or
electroweak) stable and unstable modes also. The growth of the instability is weak for the highly
relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of
parameters appropriate to the early universe and supernova explosions. However, this mode is dom-
inant only for the beam velocity greater than 0:25c and in the other limit electroweak unstable mode
takes over.
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Recently, there were a series of work [1–4] on neutrino flux passing through electron–
positron or electron–proton plasma in the context of early universe, stars and supernova
explosion. Neutrinos, produced in these astrophysical objects, carry lot of energy and es-
cape from the system without much interactions. They can undergo only Fermi weak inter-
action. Still, it is argued that their collective interactions with background plasma, through
weak interactions, can cause loss of energy of neutrino to plasma. One mechanism of loss
of energy is via excitation of unstable modes in the plasma, which eventually damps and
deposit energy in the plasma. Hence plasma gets heated. It is suggested in the literature
that this process may lead to supernova explosions. Similarly, in the early universe and in
stars flux of neutrinos streams through plasma and neutrino driven instabilities are impor-
tant. In this letter, we examine the possibility of neutrino beam plasma instability which
can also deposit the neutrino beam energy into the plasma. Here we derive the dispersion
relation and conditions for the excitation of electron–neutrino streaming instability due to
weak interactions.

We consider a plasma of electron and proton with neutrino beam streaming through
it. It is a three species electroweak plasma. However, we neglect the proton dynamics
because of its larger mass compared to electron and neutrino. Protons just serve as a
constant background of positive charge in our problem. We first derive the fluid set of
equations for electrons and neutrinos including the Fermi weak interaction term in addition
to electromagnetic interactions starting from single particle relativistic dynamics. Then we
perturb the system about the equilibrium, which consists of electrons and protons at rest
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and neutrinos streaming with velocity~V0, and derive the dispersion relation and look for
the condition for instability. We assume a homogeneous neutrino fluid streaming into a
homogeneous electron fluid. This is a valid assumption as long as the scale length of
inhomogeneity is large compared to that of perturbation.

It should be noted that our work is purely classical and earlier work in [1–4] were some-
what unconventional with mixture of classical and quantum theory, which is strongly ques-
tionable. They treat Klein–Gordon equation for neutrino as fluid equation which is not
proper. Of course, in their later work on kinetic theory (KT) [5] of neutrino plasma inter-
action they followed purely classical approach without mentioning the error they made in
their earlier work. Even though they obtained dispersion relation for streaming instability
from KT, they have not made any detailed quantitative estimate of growth rates, which we
do here using relativistic fluid theory.

Let us first consider the single particle relativistic dynamics of neutrino and electron in
electroweak potential. Each neutrino feels a potentialVN = G

p
2ne due to the medium

of electrons with densityne. SubscriptN in V stands for neutrino. Earlier this form
of potential was used by Bethe [6] to explain the solar neutrino puzzle. It follows from
electron–neutrino Fermi weak interaction term [7]

Hint =
Gp
2

�
ν̄eγλ (1+ γ5)νe

�h
ēγλ

(1+ γ5)e
i
; (1)

whereG is the Fermi constant of weak interaction.νe andeare neutrino and electron fields.
γµ andγ5 are Dirac matrices. The interaction HamiltonianH int also suggests that electron
will also experience a force due to weak interaction potential energyVe = G

p
2nN, in

addition to usual electromagnetic interactions, due to the medium of neutrinos with density
nN. This term gives the ponderomotive force term due to neutrino field discussed in ref. [1].
Note that, since we are developing a theory (here it is fluid theory) to describe a medium
of neutrinos or electrons from a single particle dynamics, we consider the potential, each
kind of species feels, due to the medium of other species. Medium effects due to same
species is contained in the theory describing the medium. Thus the total relativistic energy
of neutrino is given by

(EN�VN)
2
= ~p2

N+m2
N (2)

and that of electron is

(Ee�Ve+eφ)2 = (~pe+e~A)2+m2
e; (3)

whereφ and~A are electromagnetic scalar and vector potentials. Here we are interested in
only electrostatic mode and hence~A= 0. Thus the Hamiltonian describing the motion of
neutrino through plasma is given by

HN =

q
~p2

N+m2
N+VN; (4)

and that of electron is

He=
p
~p2

e+m2
e+Ve�eφ : (5)

Equations of motion of neutrino, which follows from Hamilton equations of motion, is
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~̇pN =�G
p

2∇ne: (6)

Similarly, equations of motion for electron is

~̇pe=�G
p

2∇nN+e∇φ : (7)

Let us now derive relativistic fluid equations without collision starting from Vlasov equa-
tion. The relativistic Vlasov equation is [8]

pµ

m
∂ f
∂xµ +

dpµ

dτ
∂ f

∂ pµ = 0; (8)

wherepµ � (p0;~p), the 4-momentum andτ is the proper time. Proper timeτ and time
t are related by the relation dτ = dt=γ , whereγ = 1=

p
1�~v2. ~v is the particle velocity.

Using this relation, it is easy to see from the equation of motion for neutrino, eq. (6), that

d~pN

dτ
=�G

p
2γ∇ne and

dp0
N

dτ
= 0: (9)

Hence the Vlasov equation for neutrino becomes

p0
N

∂ f
∂ t

+~pN �∇ f �G
p

2p0
N∇ne �∇p f = 0: (10)

Now taking different moments of the above equation with respect to momentum (p µ ) we
get the continuity equation

∂µ(P
µ
N nN) = 0; (11)

from the zeroth moment and the equation of motion for fluid element

nNPµ
N ∂µPσ

N =�G
p

2nNP0
Nδσ i∂ine�∂µΠµσ ; (12)

from the first moment, using the well-known procedure given in the text books [8].P µ
N

is the fluid 4-momentum andΠµσ is the pressure tensor which we will replace by usual
pressure gradient term�∇p� �γkT∇nN ∝ �S2

N∇nN, appropriate to isotropic medium.
SN is the speed of sound in neutrino fluid.δσ i is a Kronecker delta. Similar equation exists
for electron also with additional electric potential term.

Linearizing the equation of motion for neutrino fluid, eq. (12), about the equilibrium
flux of neutrino with energyEN0 and momentum~PN0 we get,E0

N = 0 and 
ω�

~k �~PN0

EN0

!
(~k �~P0

N) = G
p

2~k2n0e+S2
Nk2n0N; (13)

where prime refers to perturbed quantities and ‘0’ here refers to the unperturbed quanti-
ties. ω and~k are frequency and wave vector of the perturbation respectively. Similarly,
continuity equation for neutrino gives

~k �~P0

N =

 
ω�

~k �~PN0

EN0

!
n0N
nN0

EN0: (14)
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Combining the above two equations we get 
ω�

~k �~PN0

EN0

!2

n0N�S2
Nk2n0N =

G
p

2~k2nN0

EN0
n0e: (15)

For simplicity, let us take the cold plasma limit by neglecting the term involvingSN. It is
valid as long as the beam speed is greater than sound speed which we can see by comparing
terms.

Similar analysis for electrons, which is assumed to be at rest at equilibrium, gives the
set of fluid equations

∂µ(P
µ
e ne) = 0; (16)

and

neP
µ
e ∂µ Pσ

e =�G
p

2neP
0
e δσ i ∂inN+eneP0

e ∂iφ δσ i ; (17)

gives

~k �~P0

e= ω
n0e
ne0

Ee0 (18)

and

E0

e= 0; ω~k �~P0

e= G
p

2~k2n0N�e~k2φ : (19)

The potential generated by charge perturbation is given by Poisson equation

�~k2φ =
e
ε0

n0e; (20)

where we assumed a uniform positive background of protons at rest. Combining all the
above equations related to electrons we get�

ω2� e2ne0

ε0Ee0

�
Ee0

ne0
n0e=G

p
2~k2n0N: (21)

Finally substituting forn0N from eq. (15) we get the dispersion relation

(ω2�ω2
p)(ω�~k�~V0)

2 = κ2~k4; (22)

whereω2
p �

e2ne0
ε0Ee0

, plasma frequency,~V0 �
~PN0
EN0

andκ2 =
2G2nN0ne0

EN0Ee0
. Normalizingω andk

by ωp, the dispersion relation may be expressed as

1=
1

ω2 +
κ2k4

ω2 (ω�kVd)
2 ; (23)

whereVd � V0cosθ , with θ the angle between~V0 and~k. Note that it differs from the
standard dispersion relation of beam plasma instability by an extraω 2 in the third term,
which gives rise to new effects.
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Let us now consider different limits of the dispersion relation eq. (23). Forκ 2 = 0
we get back the usual plasma oscillations due to electric field interactions and no weak
interactions. Forκ 6= 0, it may be solved to obtain the roots ofω . Imaginary roots ofω give
the growth rate of the instability. The condition for the instability may be obtained using
the familiar method given in text books. The exact expression is complicated, however, we
can look at various limits of eq. (23). Forω � 1, we get

ω =
kVd

2
� 1

2

q
k2V2

d �4κk2; (24)

which has 4 roots. Two of them are complex forVd < 2
p

κ . One of the complex roots
represents the growth of the instability and hence the condition for the instability isVd <

2
p

κ. In astrophysical problems, generally,ne0� nN0 � 1038=cm3 andEe0 andEN0 are of
the order of MeV. Putting these values along withG= 1:2�10�5 GeV�2 we get the value
of κ � 10�4. For this value ofκ andω � 1 we get the growth rate of instability, from eq.
(24),

ωi �
p

κ k

r
1� V2

d

4κ
: (25)

Other real roots in this limit are

ω � kVd+κ
k

Vd
and ω � κ k

Vd
: (26)

These are new nonelectromagnetic neutrino plasma waves due to weak interactions and
modified by the neutrino beam. It is easy to see that forω � 1 there is always an unstable
mode. Of course, one more limit discussed in text books, is to get the expression for the
maximum growth rate,ω i � (κ2k4)1=3, for ω � kVd � 1. This is what we see in the plot of
growth rate given in figure 1. It is purely due to beam mode resonating with plasma mode.
However, in the other limits, discussed earlier, the instability exists even whenVd = 0,
which is not the case in usual beam plasma instability. These are new electroweak unstable
mode, excited by electroweak free energy and modified by neutrino beam. In fact, for
Vd = 0, the dispersion relation, eq. (23), can be easily solved to get

ω2 =
1
2
� 1

2

p
1+4κ2k4; (27)

which has 4 roots consisting of stable and unstable modes. It can be seen from the Hamil-
tonian, eq. (4), streaming instability is due to free energy in kinetic energy term and elec-
troweak energy term gives electroweak unstable modes as well as stable modes. The new
electroweak unstable mode may be explained as follows. From the Hamiltonian of neu-
trino and electron, we can see that any neutrino density fluctuation causes electron to have
higher potential energy in the region where neutrino density is higher. Hence electrons
flow to lower neutrino density region and increasing its density there. This increase in
electron density causes neutrino potential energy to be large. So neutrino flows away from
there, means towards higher neutrino density region. The density fluctuation grows and
hence the instability.

We have also solved exactly the dispersion relation, eq. (23) forκ = 10�4 and plotted in
figure 1. The maximum growth rates of the instability are 0:0015 and 0:0322 in units
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Figure 1. Plots ofωi=k as a function ofk for κ = 0:0001 andVd = 1:0 (continuous
curve), 0:1 (dotted curve), 0:03 (dash-dashed curve) and 0:01 (dash-dotted curve).

of ωp for Vd = 1 and 0:1 in units of the velocity of light (c) respectively. ForVd < 0:02c,
the growth rate is proportional tok for largek. The growth rate is weak for the mode
propagating in the direction of the flow with the velocity of light and becomes stronger for
Vd < 10�2c. The dependence of the growth rate (ω i) on the neutrino beam velocityVd is
shown in figure 1. ForVd > 0:25conly long wavelength modes are unstable and the growth
rate is maximum forkVd � 1. This is mainly due to streaming instability. Whereas in the
other limits, the growth rate increases withk and finally it becomes proportional tok. This
is due to electroweak unstable mode. Both of the above observations are consistent with
our earlier discussions of dispersion relation at various limits.

In conclusion, we have derived relativistic fluid equations for neutrino and electron flu-
ids from relativistic Vlasov equations with electric and weak interactions. We found that
for typical value of various parameters of electroweak plasma of early universe and super-
nova, the neutrino beam electron instability may be weak for the electrostatic-weak mode
propagating in the direction of the flow of neutrino with the speed of light, but becomes
stronger for weakly relativistic andVd > 0:25c. ForVd < 0:25c, electroweak unstable mode
dominate over streaming instability. We also find that there exists new nonelectromagnetic
waves, neutrino plasma wave, in this electroweak plasma.
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