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Abstract. Rather than regarding the restriction of current lattice QCD simulations to quark masses
that are 5–10 times larger than those observed as a problem, we note that this presents a wonderful
opportunity to deepen our understanding of QCD. Just as it has been possible to learn a great deal
about QCD by treatingNc as a variable, so the study of hadron properties as a function of quark mass
is leading us to a deeper appreciation of hadron structure. As examples we cite progress in using the
chiral properties of QCD to connect hadron masses, magnetic moments, charge radii and structure
functions calculated at large quark masses within lattice QCD with the values observed physically.
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1. Introduction

In striving to understand the properties of QCD the generalization to an arbitrary number
of colours,Nc, particularly the limitNc !1 (or ‘largeNc’) has been extremely valuable.
It has even proven possible to distinguish between models of hadron structure and to guide
the further developments of such models on the basis of their largeN c behaviour [1]. Until
recently it has generally been regarded as an unfortunate liability that current limitations on
computer power restrict lattice QCD simulations with dynamical fermions to large quark
masses. We would like to present a rather different view concerning the lattice data at large
quark masses. In particular, we argue that like the behaviour as a function ofN c, lattice
results as a function of quark mass offer extremely valuable new insights into the nature of
QCD and especially into hadron structure.

To be a little more quantitative, the restriction to large quark masses in lattice simulations
means typically 50 MeV or higher. Thus, in order to compare hadron properties calculated
on the lattice one has to extrapolate as a function of quark mass (on top of all the other
extrapolations, lattice spacing, lattice size, etc.) all the way to the physical light quark
masses, around 5 or 6 MeV. Such extrapolations are complicated enormously by the fact
that chiral symmetry is spontaneously broken in QCD. The mass of the pion, which is the
Goldstone boson corresponding to this broken symmetry [2], behaves as:
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m2
� / �m; (with �m = mu = md 6= 0); (1)

as the quark mass,�m, moves away from zero – this is the Gell Mann–Oakes–Renner (GOR)
relation. While eq. (1) is, in principle, only guaranteed for quark masses, near zero, explicit
lattice calculations show that it holds over an enormous range, as high asm� � 1 GeV.
For convenience, rather than measuring the deviation from exact chiral symmetry using�m,
which is scale dependent, we shall usem2

�.
In terms ofm�, current lattice calculations are typically restricted to pion masses larger

than 500 MeV, with some pioneering work reporting preliminary results as low as 310
MeV. In order to compare these results with experimental data on hadron properties it is
necessary to extrapolate the calculations at large pion masses to the physical value. In
doing so it is crucial to respect the constraints imposed by chiral symmetry in QCD. In
particular, as we discuss below, the existence of Goldstone bosons necessarily leads to
behaviour which isnon-analyticin the quark mass.

The structure of this article is that we first explain the origin of the non-analyticity asso-
ciated with Goldstone boson loops. We then explain, using the specific case of the nucleon
mass, how this non-analytic structure has been incorporated into a new method for ex-
trapolating hadron masses from the large values characteristic of lattice calculations to the
physical region. The consequences of this for the sigma commutator are then explained.
Next we turn to recent results for baryon electromagnetic properties. Finally we discuss
the most recent investigations of the proton structure function, especially the importance of
chiral symmetry in connecting existing calculations of lattice moments with data. We con-
clude with a summary of the promised insights into the nature of hadron structure within
QCD that follow from all these investigations.

2. Goldstone boson loops and non-analyticity

For our purposes the primary significance of spontaneous chiral symmetry breaking in
QCD is that there are contributions to hadron properties from loops involving the resulting
Goldstone bosons. These loops have the unique property that they give rise to terms in an
expansion of most hadronic properties as a function of quark mass which are not analytic.
As a simple example we consider the nucleon mass. The most important chiral corrections
to MN come from the processesN ! N� ! N (�NN ) andN ! �� ! N (�N�).
(We will come to what it means to say these are the most important shortly.) We write
MN =Mbare

N + �NN + �N�. In the heavy baryon limit one has

�NN = �
3g2A

16�2f2�

Z
1

0

dk
k4u2(k)

k2 +m2
�

; (2)

wheregA; f� are strictly evaluated in the chiral limit. Hereu(k) is a natural high momen-
tum cut-off which is the Fourier transform of the source of the pion field (e.g. in the cloudy
bag model (CBM) it is3j1(kR)=kR, withR the bag radius [3]). From the point of view of
PCAC it is natural to identifyu(k) with the axial form factor of the nucleon, a dipole with
mass parameter1:02� 0:08 GeV.

Regardless of the form chosen for the ultra-violet cut-off, one finds that�NN is a non-
analytic function of the quark mass. The leading non-analytic (LNA) piece of�NN is
independent of the form factor and gives
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�LNANN = �
3g2A

32�f2�
m3
� � �m

3
2 : (3)

This has a branch point, as a function of�m, at �m = 0. Such terms can only arise from
Goldstone boson loops.

2.1 Case study: The nucleon mass

It is natural to ask how significant this non-analytic behaviour is in practice. If the pion
mass is given in GeV,�LNANN = �5:6m3

� and at the physical pion mass it is just –17 MeV.
However, at only three times the physical pion mass,m� = 420 MeV, it is �460 MeV
– half the mass of the nucleon. If one’s aim is to extract physical nucleon properties
from lattice QCD calculations this is extremely important. The most sophisticated lattice
calculations with dynamical fermions are only just becoming feasible at such low masses
and to connect to the physical world one must extrapolate fromm � � 500 MeV tom� =
140 MeV. Clearly one must have control of the chiral behaviour.

Figure 1 shows recent lattice calculations ofMN as a function ofm2
� from CP-PACS

and UKQCD [4]. The dashed line indicates a fit which naively respects the presence of a
LNA term,

MN = �+ �m2
� + 
m3

�; (4)

Figure 1. A comparison between phenomenological fitting functions for the mass of
the nucleon – from ref. [5]. The two parameter fit corresponds to using eq. (4) with


set equal to the value known from�PT. The three parameter fit corresponds to letting


vary as an unconstrained fit parameter. The solid line is the two parameter fit based on
the functional form of eq. (5).
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with �; � and
 fitted to the data. While this gives a very good fit to the data, the chiral
coefficient
 is only�0:761, compared with the value�5:60 required by chiral symmetry.
If one insists that
 be consistent with QCD the best fit one can obtain with this form is the
dash-dot curve. This is clearly unacceptable.

An alternative suggested recently by Leinweberet al [5], which also involves just three
parameters, is to evaluate�NN and�N� with the same ultra-violet form factor, with mass
parameter�, and to fitMN as

MN = �+ �m2
� + �NN (m�;�) + �N�(m�;�): (5)

Using a sharp cut-off (u(k) = �(� � k)) these authors were able to obtain analytic ex-
pressions for�NN and�N� which reveal the correct LNA behaviour – and next to leading
(NLNA) in the �� case,�NLNAN� � m4

� lnm�. These expressions also reveal a branch
point atm� = M� �MN , which is important if one is extrapolating from large values of
m� to the physical value. The solid curve in figure 1 is a two parameter fit to the lattice
data using eq. (5), but fixing� at a value suggested by CBM simulations to be equivalent
to the preferred 1 GeV dipole. A small increase in� is necessary to fit the lowest mass data
point, atm2

� � 0:1 GeV2, but clearly one can describe the data very well while preserving
the exact LNA and NLNA behaviour of QCD.

2.2 Consequences for the sigma commutator

The analysis of the lattice data forMN , incorporating the correct non-analytic behaviour,
can yield interesting new information concerning the sigma commutator of the nucleon:

�N =
1

3
hN j[Qi5; [Qi5; HQCD]]jNi = hN j �m(�uu+ �dd)jNi: (6)

This is a direct measure of chiral SU(2) symmetry breaking in QCD, and the widely ac-
cepted experimental value is45� 8 MeV [6]. (Although there are recent suggestions that
it might be as much as 20 MeV larger [7].) Using the Feynman–Hellmann theorem one
can also write

�N = �m
@MN

@ �m
= m2

�

@MN

@m2
�

: (7)

Historically, lattice calculations have evaluatedhN j(�uu+ �dd)jNi at large quark mass and
extrapolated this scale dependent quantity to the ‘physical’ quark mass, which had to be
determined in a separate calculation. The latest result with dynamical fermions,�N =
18� 5 MeV [8], illustrates how difficult this procedure is. On the other hand, if one has a
fit to MN as a function ofm� which is consistent with chiral symmetry, one can evaluate
�N directly using eq. (7). Using eq. (5) with a sharp cut-off yields�N � 55 MeV, while a
dipole form gives�N � 45MeV [9]. The residual model dependence can only be removed
by more accurate lattice data at lowm2

�. Nevertheless, the result�N 2 (45; 55) MeV is
in very good agreement with the data. In contrast, the simple cubic fit, with
 inconsistent
with chiral constraints, gives� 30 MeV. Until the experimental situation regarding�N
improves, it is not possible to draw definite conclusions regarding the strangeness content
of the nucleon. However, the fact that two-flavour QCD reproduces the current preferred
value should certainly stimulate some thought and a lot of work.
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3. Electromagnetic form factors

It is a general consequence of quantum mechanics that the long-range charge structure of
the proton comes from its�+ cloud (p ! n�+), while for the neutron it comes from
its �� cloud (n ! p��). However, it is not often realized that the LNA contribution to
the nucleon charge radius goes likelnm� and diverges as�m ! 0 [11]. This cannot be
reproduced by a constituent quark model. Figure 2 shows the latest data from Mainz and
NIKHEF for the neutron electric form factor, in comparison with CBM calculations for a
confinement radius between 0.9 and 1.0 fm. The long-range� � tail of the neutron plays a
crucial role.

While there are only limited (and indeed quite old) lattice data for hadron charge radii,
recent experimental progress in the determination of hyperon charge radii has led us to
examine the extrapolation procedure for obtaining charge data from the lattice simulations
[12]. Figure 3 shows the extrapolation of the lattice data [13] for the charge radius of the
proton. Clearly the agreement with experiment is much better once the chiral log required
by chiral symmetry is correctly included, than if, for example, one simply made a linear
extrapolation in the quark mass (orm2

�). Full details of the results for all the octet baryons
may be found in ref. [12].

The situation for baryon magnetic moments is also very interesting. The LNA contribu-
tion in this case arises from the diagram where the photon couples to the pion loop. As this
involves two pion propagators the expansion of the proton and neutron moments is

�p(n) = �
p(n)
0 � �m� +O(m2

�): (8)

Here�p(n)0 is the value in the chiral limit and the linear term inm� is proportional to�m
1
2 ,

a branch point at�m = 0. The coefficient of the LNA term is� = 4:4�N GeV�1. At the
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Figure 2. Recent data for the neutron electric form factor in comparison with CBM
calculations for a confining radius around 0.95 fm – from ref. [10].
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Figure 3. Fits to lattice results for the squared electric charge radius of the proton –
from [12]. Fits to the contributions from individual quark flavours are also shown: the
u-quark sector results are indicated by open triangles and thed-quark sector results by
open squares. Physical values predicted by the fits are indicated at the physical pion
mass, where the full circle denotes the result predicted from the first extrapolation pro-
cedure and the full square denotes the baryon radius reconstructed from the individual
quark flavor extrapolations. (N.B. The latter values are actually so close as to be indis-
tinguishable on the graph.) The experimental value is denoted by an asterisk.

physical pion mass this LNA contribution is0:6�N , which is almost a third of the neutron
magnetic moment.No constituent quark model can or should get better agreement with
data than this.

Just as forMN , the chiral behaviour of�p(n) is vital to a correct extrapolation of lattice
data. One can obtain a very satisfactory fit to some rather old data, which happens to be
the best available, using the simple Pad´e [14]:

�p(n) =
�
p(n)
0

1� �

�
p(n)

0

m� + �m2
�

: (9)

The data can only determine two parameters and eq. (9) has just two free parameters while
guaranteeing the correct LNA behaviour asm� ! 0 and the correct behaviour of heavy
quark effective theory (HQET) at largem2

�. The extrapolated values of�p and�n at the
physical pion mass,2:85 � 0:22�N and�1:90 � 0:15�N , respectively, are currently the
best estimates from non-perturbative QCD [14]. For more details of this fit we refer to
[14], while for the application of similar ideas to other members of the nucleon octet we
refer to [15], and for the strangeness magnetic moment of the nucleon we refer to [16].

Incidentally, from the point of view of the naive quark model it is interesting to plot
the ratio of the absolute values of the proton and neutron magnetic moments as a function
of m2

�. The agreement of the constituent quark result, namely 3/2, with the experimen-
tal value to within a few percent is usually taken as a major success. However, we see
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Figure 4. Absolute value of the ratio of the proton to neutron magnetic moments as
a function ofm2

�
obtained from the Pad´e approximants in eq. (9). We stress that the

behaviour asm2

�
! 0 is model independent.

from figure 4 that it is in fact fortunate to obtain such close agreement [17]. We stress that
the large slope of the ratio nearm2

� = 0 is model independent.

4. Structure functions

The parton distribution functions (PDFs) of the nucleon are light-cone correlation func-
tions which, in the infinite momentum frame, are interpreted as probability distributions
for finding specific partons (quarks, antiquarks, gluons) in the nucleon. They have been
measured in a variety of high energy processes, ranging from deep-inelastic lepton scat-
tering to Drell–Yan and massive vector boson production in hadron–hadron collisions. A
wealth of experimental information now exists on spin-averaged PDFs, and an increasing
amount of data is being accumulated on spin-dependent PDFs [18].

At high momentum transfer (Q2) the dominant component of the PDFs are determined
by non-perturbative matrix elements of certain ‘leading twist’ operators. In principle these
matrix elements, which correspond to moments of the measured structure functions, con-
tain vital information about the non-perturbative structure of the target. An extensive
phenomenology has been developed over the years within model QCD studies, and in
some cases remarkable predictions have been made from the insight gained into the non-
perturbative structure of the nucleon. An example is the�d � �u asymmetry, predicted [19]
on the basis of the nucleon’s pion cloud [20], which has been spectacularly confirmed in
recent experiments at CERN and Fermilab [21]. Other predictions, such as asymmetries
between strange and antistrange [22] and spin-dependent sea quark distributions,��u�� �d,
still await experimental confirmation. Note that none of these could be anticipated without
insight into the non-perturbative structure of QCD.
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Figure 5. First moment of the differenceu � d from various lattice QCD simulations
(QCDSF [24–26] and MIT [27]), at a scaleQ2

= 4 GeV2. Calculations from the CBM
are shown as small squares. The dashed curve is a simple fit which is linear inm

2

�
,

while the solid curve incorporates the constraints of chiral symmetry, as in eq. (10).

Despite the phenomenological successes in correlating deep-inelastic and other high
energy data with low energy hadron structure, thead hocnature of some of the assumptions
made in deriving the low energy models from QCD leaves open a number of questions
about the ability to reliably assign systematic errors to the model predictions. One approach
in which structure functions can be calculated systematically from first principles, and
which at the same time allows one to search for and identify the relevant low energy QCD
degrees of freedom, is lattice QCD.

Early calculations of structure function moments within lattice QCD were performed
by Martinelli and Sachrajda [23]. However, the most comprehensive analysis has been
performed by the QCDSF Collaboration [24–26] – albeit within quenched QCD. Recently
the MIT group has performed the first full (unquenched) QCD calculations of non-singlet
moments [27]. The moments from the full QCD simulations are very similar to those from
the quenched calculations. This is consistent with the suggestions of chiral quark models,
like the CBM, that in the mass region currently accessible quark loops are suppressed.

As for the other nucleon properties discussed above, we propose to extrapolate the lat-
tice data to the physical pion mass using a formula which is compatible with the LNA
structure of the PDFs. This behaviour was derived recently, with the result that the LNA
behaviour involved a term inm2

� lnm� [28]. For an initial investigation we concentrate
on the non-singlet combination of PDFs,u� d, in which ‘disconnected’ quark loops can-
cel. Calculations based on the CBM (which incorporate the LNA chiral structure just dis-
cussed) actually produce quite a reasonable description of the behaviour of the moments of
the PDFs as a function of quark mass, as shown in figure 5 (open squares). More important
from the phenomenological point of view, the CBM calculations (for thenth moment of
the PDFs) can be fit with the simple expansion inm�:
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hxnu � xnd i = an + bnm
2
� + ancLNAm

2
� ln

�
m2
�

m2
� + �2

�
; (10)

wherecLNA is model independent.
The scale� in eq. (10) is effectively the scale at which the rapid, chiral variation at

low m� turns off. The best fit to the lattice data is obtained with a value� � 0:4�0:5
GeV – a very similar scale to that found, for example, for the magnetic moments. Clearly
eq. (10) gives a very good description of the lattice data for the first moment of the non-
singlet distributiond � u. Taking into account the rapid chiral variation asm 2

� ! 0
there is also quite good agreement between the extrapolated value of the first moment and
the experimentally determined moment. A similar result holds for the second and third
moments too [29].

5. Conclusion

In the light of the numerous examples presented in this brief review, it should be evident
that the study of hadron properties as a function of quark mass shows a clear pattern:

� In the region of quark masses�m > 60 MeV or so (m� greater than typically 400–
500 MeV) hadron properties are smooth, slowly varying functions of something like
a constituent quark mass,M �M0 + c �m (with c � 1).

� Indeed,MN � 3M;M�;! � 2M and magnetic moments behave like1=M .
� As �m decreases below 60 MeV or so, chiral symmetry leads to rapid, non-analytic

variation, withÆMN � �m3=2; Æ�H � �m1=2 andÆhr2ich � ln �m.
� Chiral quark models like the cloudy bag provide a natural explanation of this transi-

tion. The scale is basically set by the inverse size of the pion source – the inverse of
the bag radius in the bag model.

These are remarkable results that will have profound consequences for our further ex-
ploration of hadron structure within QCD as well as the analysis of the vast amount of
data now being taken concerning unstable resonances. In terms of immediate results for
the structure of the nucleon, we note that the careful incorporation of the correct chiral
behaviour of QCD into the extrapolation of its properties calculated on the lattice has pro-
duced:

� The best values of the proton and neutron magnetic moments from QCD.
� The best value of the sigma commutator.
� Improved values for the charge radii of the baryon octet.
� Improved values for the magnetic moments of the hyperons.
� Good agreement between the extrapolated moments of the non-singlet distribution
u� d and the experimentally measured moments.

In addition, although we did not have time to discuss it, this approach has led to the best
current value for the strangeness magnetic moment of the proton from lattice QCD,G s

M =
�0:16� 0:18�N [16].

Clearly, while much has been achieved, even more remains to be done. It is vital that lat-
tice calculations with dynamical fermions are pushed to the lowest possible quark masses,
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taking advantage of developments of improved actions and so on. It is also vital to further
develop our understanding of the physics of chiral extrapolation by comparison with these
new calculations, by looking at new applications and by further comparison with chiral
models.
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