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Abstract. Electrical resistivity (�) of the amorphous (a-)Fe100�cZrc (c = 8.5, 9.5 and 10) alloys
has been measured in the temperature range 77 to 300 K, which embraces the second-order magnetic
phase transition at the Curie temperature pointTc. Analysis of the resistivity data particularly in
the critical region reveals that these systems have a much wider range of critical region compared to
other crystalline ferromagnetic materials. The value ofTc and specific heat critical exponent,� has
the same values as those determined from our earlier magnetic measurements. The value of� for all
the present investigated alloys are in close agreement with the values predicted for three-dimensional
(3D) Heisenberg ferromagnet systems, which gives contradiction to the earlier results on similar
alloys. It is observed from the analysis that the presence of quenched disorder does not have any
influence on critical behavior.
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exponents.

PACS No. 73.61.Jc

1. Introduction

The amorphous Fe–Zr metallic glasses in the composition range near 90 at. % of Fe forms
an interesting disorder magnetic behavior. In some way, these alloys behave magnetically
like re-entrant spin-glass systems. The phase diagram for Fe rich amorphous FeZr alloys
shows that the ferromagnetic-like state occurs with the Curie temperature decreases mono-
tonically with increasing Fe concentration from 87 to 93 at.% of Fe [1–3], which represents
the one way of nearest approach to the pure amorphous iron. The critical behavior of such
spin systems with quenched or frozen disorder has recently drawn interesting attention.
General scaling arguments show that in this case random disorder does not change the
asymptotic critical exponents (Harris criterion [4]), in the sense if� < 0 (i.e. for d = 3
Heisenberg andd = 3xy systems with spin dimensionalityn = 3 andn = 2 respectively)
quenched randomness acts as an irrelevant scaling field and hence leaves the sharpness of
the transition as well as the values of the static critical exponents of the pure system unal-
tered and if� > 0, a cross-over from pure to random fixed point (characterized by critical
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exponents, whose values are widely different from the actual one, so that the sign of�
changes. i.e� > 0) occurs. High temperature series expansion calculations [5], renor-
malization group calculations [6,7], and a field theoretical calculation [8] corroborate this
argument. The specific heat and magnetic measurements [9–11] on some amorphous fer-
romagnetism reports the theoretical point [4,6,12] of view that the addition of short-range
disorder to a pure system, which undergoes a second order phase transition should not al-
ter, if the specific heat critical exponent of the system is negative. A serious problem one
has to consider, when studying the magnetic phase transitions with structural disorder is
the question whether or not the topological or substantial short-range disorder is the only
relevant parameter describing the structure. Principally, a thermodynamic phase transition
can also exist, but the asymptotic critical behavior, which can only be observed, if the cor-
relation length is larger than the spatial correlations of the density flucutations, which can
be shifted to low reduced temperature regions.

Yamauchi, Onodora and Yamamoto [13] reported based on magnetic measurements near
Tc that these systems present an anomalous critical behavior with the exponents�, 
 andÆ,
differing subsequently from those expected for homogeneous and collinear ferromagnets.
However, Kaul [14] has found experimentally and from reanalysis of experimental data
(reported by Hiroyoshiet al [15] on magnetization for a-Fe91Zr9 and those of Yamauchi
et al for Fe92Zr8) that the exponents� and
, which do not significantly differ from those
normally expected for a three-dimensional (3-D) Heisenberg ferromagnet in the real critical
region. From these studies, it is not clear, whether these systems will exhibit a ordered 3D
Heisenberg like ferromagnet behavior in asymptotic critical region or not.

A complete understanding of the critical phenomena in amorphous systems, therefore
demands a systematic experimental study on materials having varying degrees and types
of quenched disorder. The specific heat measurement is the most informative experimental
tool for this kind of study. Because, it has very small critical exponent and hence it is
most sensitive to the smearing of the phase transition. But the main requirement for this
study is that a large amount of sample is needed to perform accurate specific heat mea-
surement in the critical region. An alternative, but indirect method to study the critical
behaviors of specific heat makes use of theoretically predicted [16–19] and experimentally
[20–23] verified fact that the magnetic contribution to the temperature derivative of elec-
trical resistivity,d�m=dT , since thermal derivative of resistivity is directly proportional to
the specific heat of the system[d�m(T )=dT / Cm(T )] in the critical region. The elec-
trical resistivity measurement can be preformed even on a very small sample with closed
interval of temperature and it could be given same types of information about the nature
of magnetic phase diagram as the specific heat measurements. We have chosen here a set
of binary alloy samples of Fe100�cZrc (c = 8:5; 9:5 and10) for critical behavior analy-
sis using the highly precise electrical resistivity data in order to resolve the controversy,
whether or not the iron rich amorphous Fe–Zr alloys exhibit a normal phase transition to
long-range ferromagnetic order atTc and to confirm whether the presence of disorder has
any influence on critical behavior of resistivity or not?

2. Experimental details

Amorphous (a-)Fe100�cZrc (c = 8:5; 9:5; 10) alloy ribbons of 1–3 mm width and 15–30
�m thickness was prepared by melt-spun quenching technique from high purity elements.
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The amorphous nature of the samples is confirmed by X-ray diffraction studies using Cu-
K� radiation. Highly precise electrical resistivity measurements were performed in these
alloys in the temperature range from 77 to 300 K using a standard dc four-probe technique
in the temperature interval of approximately 0.7 K and 0.1 K in the transition region with a
resolution better than one part in105 using Keithly nanovoltmeter system. The direction of
the constant current passing through the sample was reversed at each temperature, in order
to correct the measured voltage for any thermo-emf generated due to some temperature-
gradient across the sample. The sample temperatures were determined with an accuracy
of 10 mK by precisely measuring the resistance of a Pt sensor and calibrated silicon diode
thermometer.

3. Results and discussion

From the measured electrical resistivity data as a function temperature (� vs. T ), the tem-
perature derivative of resistivity (d�=dT ) has been derived as follows: A set of three ad-
jacent experimental points with coordinates (�1; T1), (�2; T2) and (�3; T3). The slopes
(��=�T ) = (�2 � �1)=(T2 � T1) and(��=�T )0 = (�3 � �2)=(T3 � T2) are computed
and then their average value[(��=�T ) + (��=�T )

0

]=2 is taken to represent the value of
(d�=dT ) at the middle temperatureT = (T1+T3)=2. The values of temperature derivative
of resistivity at different temperatures so obtained, are normalized to the resistivity value
at Curie temperature�(Tc), because the absolute value ofd�=dT is inaccurate to within
7–10 %, mainly due to the measurement in thickness of the ribbon sample, since the thick-
ness of the sample is in the order of�m. Figure 1 depict the temperature derivative of resis-
tivity normalized with respect to resistivity at Curie temperature, is plotted as a function of
temperature in the temperature range 77 to 300 K for a-Fe100�cZrc with c = 8:5; 9:5 and
for c = 10 respectively. The temperature derivative of resistivity is positive and its value
increases as Zr concentration increases almost by one order at room temperature. But it de-
creases continuously with temperature and assumes negative values. At about 187 K, 208
K, 228 K, there is a clearly defined kink, where the slope changes rapidly forc = 8:5; 9:5
and10 respectively. The anomaly at these particular temperatures corresponds well to
the temperature, where the paramagnetic to ferromagnetic transition is reported from bulk
magnetization (BM) and ac susceptibilty (ACS) measurements [14,27]. Below this point,
the temperature derivative of resistivity decreases till 77 K. The total fractional change in
the thermal derivative of resistivity from 77 to 300 K is almost equal for all the investigated
samples. It is very clear from the figures that the sharpness of the transition is not clear as
observed in crystalline ferromagnets.

The interesting feature is that the temperature derivative of resistivity of the system at
this particular temperature is directly proportional to the specific heat of the system. In case
of ferromagnetic materials, as the temperature approachesT c the charge carriers interact
with electron spins undergoing the critical spin-fluctuations. So, in ferromagnets for the
spherical Fermi surface, the resistivity can be written in the form of

� /

Z 2kF

0

q3�(q; T )dq: (1)

kF is the Fermi wave vector and�(q; �) = c=(k2+q2), wherek = k0�
1=2 and the reduced

temperature� = [(T � Tc)=Tc]. The thermal derivative of the resistivity as a function of
reduced temperature will be
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Figure 1. The thermal derivative of resistivity normalized with respect to resistivity
value atTc, �(Tc) [C(T ) = (1=�(Tc))(d�=dT )], is plotted as a function of tempera-
ture for a-Fe100�cZrc with c = 8:5 (o), 9.5 (�) and 10 (�). The line passing through
the data is a best fit to eqs (4) and (5) for temperature below and aboveTc with the
exponents obtained from fitting results.

�
d�

d�

�
=

�
d�

dT

�
/ ��� / Cp; (2)

whereCp is the specific heat, which is given by Fisher–Langer [17] relation

�
d�as
dT

�
/

dU

dT
= Cp: (3)

In order to analyse the experimental data, the usual power law for the divergence ofd�=dT
in the critical region is given by Geldertet al [24], which is another form of eq. (2),
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�
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�
=
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�0

�
���

0

� 1
�
+B� T > Tc; (5)

whereA andB are constants,� and�0 are specific heat critical exponents below and above
Curie temperature. The parameter values given in table 1, have been arrived at by adopting
the following fitting procedure: (i) the Curie temperature,T c (taken from thermal derivative
to the resistivity at whichd�=dT begins to increase rapidly with increasing temperature)
is kept fixed and the values of the remaining parameters are varied so, as to achieve the
best fit to the experimental data in a given temperature range, (ii) the values determined by
the above method in a given temperature interval for the parametersA;B and� and the
assumed value ofTc, are taken as the initial values for these parameters while attempting
a theoretical fit to the experimental data in terms of eqs (4) and (5) by varying all the
four parametersA;B; � andTc. The temperature range defined by�min � � � �max

is varied by varying�max in order to find out the extent to which the best values of the
fitting parameters and the quality of the fit, as determined by the mean-square error, which
is defined as:

�2 =

�
1

N �Npara

� NX
1

[Ctheo � Cexp]
2

�2
; (6)

whereN is number of data within the selected temperature region,N para is the number
of parameters, which are used in eqs (4) and (5) for fitting. As is usually the case, the
values of the fitting parameters are found to depend on the range of� over which the
data are fitted. The parameters listed in table 1 give the best fit to the data as inferred
from the least value of the mean squared error in the specified temperature range and do
not vary significantly (i.e. the variation of� falls well within the error limits given for
these parameters in table 1) as the fit range is progressively narrowed down by decreasing
�max towards�min. Inclusion of experimental data outside the specified temperature range

Table 1. Values of different parameters used to fit the experimental data to eqs (4) and
(5) of the text. Relevant parameter values deduced from the magnetic data are included
for comparison.

c A B TMc (K) T
�
c � = (T � T

�
c )=T

�
c �� �M

(10�4 K�1) (10�4 K�1) fit range [�0]

8.5 5.45(12) 3.32(4) 186.5(3) 187.4(8) 0.01 to 0.12 �0.22(9) –
[�0.10 to�0.005] [�0.33(10)]

9.5 5.25(9) 3.56(4) 207.6(2) 208.2(6) 0.02 to 0.10 �0.18(14) –
[�0.12 to�0.01] [�0.22(8)]

10 4.98(14) 3.78(4) 227.6(2) 228.5(9) 0.005 to 0.13 �0.13(7) �0.18(6)+

[�0.13 to�0.009] [�0.20(6)]

Abbreviations:TMc (T �c ) and�M (��) are theTc and� values deduced from the mag-
netization (resistivity) data.+ values of� calculated from the relation� = 2(1��)�


using the values of� and
 determined in ref. [26,27].
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(listed in table 1) results not only in the different parameter values, but also in a significant
increase in their error limits and mean-square error of the best fit. All computed work has
been performed using the nonlinear least-square fit computer program, which is based on
Marquardt’s maximum likelihood algorithm. The calculated values ofT c, and� are almost
same and comparable with the values calculated from the Rushbrook’s scaling relation with
the values of� = 0:366 and
 = 1:393, as experimentally (from BM and ACS) found by
Kaul et al and Perumalet al [11,27]. The constant values ofA andB observed from the
fitting procedures, have less values (almost one order of magnitude) when compared to the
values obtained for Ni rich samples.

The interesting features that emerge from the above data analysis are: (i) the resistivity
and magnetic measurements, performed on the glassy ribbons from the same alloys yield
identical results so far as the values ofTc and� are concerned, (ii) the range of the critical
region for the investigated alloys is much wider, compared to crystalline ferromagnets.
From our observation that the critical exponent� can be determined up to a temperature
value as high as�max � 0:12 for T > Tc andT < Tc, (iii) the values of� determined in
this study compare favourably not only with those previously deduced for other amorphous
ferromagnets from the specific heat measurements, but also with the value predicted by a
3D Heisenberg model.

It has been reported earlier by Pureuret alon a-Fe92Zr8 that the second order transition
occurs due to the presence of short-range interactions and specific heat critical exponent
obtained from the thermal derivative of resistivity deviates from those values expected for
ordered 3D Heisenberg ferromagnet. But in our opinion, it is too precipitate to draw any
such conclusions, since the data are not much capable of pinpointing exactly whether the
transition is due to quenched disorder or whether it is caused by (i) thermal gradients, (ii)
external stresses, (iii) large magnetostriction in these alloys, if any and (iv) the method
of deriving thed�=dT values from the electrical resistivity as a function of temperature
curves, which could result in some sort of averaging over a wide temperature region. Very
accurate measurements are taken for temperatures very close toT c with very slow tem-
perature drift rates. The scaling critical behavior near the ferromagnetic–paramagnetic
transition of amorphous Fe–Zr rich alloys in Fe rich side is studied by Kaul [14] based
on bulk magnetization measurement results that the critical exponents obtained from these
studies are in close agreement with the values calculated for ordered three-dimensional
Heisenberg ferromagnet. These results can be explained in terms of the infinite ferro-
magnetic matrix along with finite-spin-clusters model, states that even at low temperatures
(T � Tc), the ferromagnetic coupling between the spins (that establish the finite clusters)
is much stronger than that between the spins of the ferromagnetic matrix. The exchange
interaction between the spins in the ferromagnetic matrix weakens and the ferromagnetic
couplings between the spins within the spin clusters are still stronger, when the tempera-
ture increases towardsTc. Subsequently, the number of spins in the ferromagnetic matrix
will decrease as the temperature increase towardsTc(T ! Tc). So, only a small fraction of
spins participates in the ferromagnetic to paramagnetic transition atT c. Considering that
this model is based on a bond-frustrated 3D Heisenberg model [25], the critical exponents
are expected to possses 3DNN Heisenberg values. The magnetic order–disorder phase
transition at the Curie pointTc is characterized by a set of critical exponents�, �, Æ and
.
Based on Rushbrook’s relation[� = 2(1� �)� 
], the specific heat exponent is extracted
from other critical exponent values, which are obtained from the BM measurement. The
extracted values are not only close to our observed results, but also in good agreement to
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3D Heisenberg values. Now, it is clear thatTc marks the temperature at which a transition
occurs from the paramagnetic state to a state with homogeneous long-range ferromagnetic
ordering, the presently studied spin systems should behave exactly the same way as crys-
talline ferromagnets, so far as the behavior in the critical region and at temperatures just
aboveTc is concerned. In order to find the sharpness of the phase transition, we have car-
ried out very low field ACS on present studied samples. The right hand axes of figure 2
depicts the real (�0) part of ACS curve under the external field of 26 mOe for a-Fe90Zr10,
where the sharp transition from paramagnetic to ferromagnetic state is observed. We have
made some rough estimate of difference between the peak temperature (T p) observed from
ACS and theTc calculated from fitting procedure, to explain the width of the transition
(�T = Tc � Tp), which indicates the amount of inhomogeneity in the present system.
The earlier fact along with the observation of specific heat critical exponent in the real

Figure 2. TheC(T ) is plotted as a function of temperature (left hand axes) and the
real part of ac susceptibility as a function of temperature is plotted (right hand axes) for
amorphous Fe90Zr10 alloy.
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critical region further strengthens our results that the quenched disordered has no way to
alter the critical behavior of the present investigated systems.

4. Conclusions

The critical behavior of the amorphous Fe100�cZrc with c = 8:5; 9:5 and10 is studied by
measurement of thermal derivative of the resistivityd�=dT . The temperature at which the
clear kink exists ind�=dT is similar to the results of the magnetic measurements, where
the existence of a very sharp Hopkinson maximum and the sharp onset of the spontaneous
magnetization in the low-field susceptibility measurements. These two aspects suggest that
theTc is temperature at which transition occurs from paramagnetic to long-range ferro-
magnetic. The specific heat critical exponent is found to be negative for the present system
and the value of� is in close agreement with the value predicted for ordered Heisenberg
ferromagnet, which shows that the sharpness of the ferromagnetic–paramagnetic transi-
tion is not affected by the quenched disorder, which is also been supported from our ACS
measurement, where the width of the transition,�T , is very small. At the same time, it
remains unanswerable to us why the value of� is not changed till� = �0:12, where the
other critical exponent values, calculated from the ACS data analysis are varying consid-
erably, beyond� = �0:05 [26,27].
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