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dimensional space-time. We show that the central singularity of collapse can be a strong curvature
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1. Introduction

Cosmic censorship conjecture is still an outstanding open problem and possesses a prime
position in the study of general relativity. The issues and intricacies regarding the final fate
of gravitational collapse and having a bearing on the cosmic censorship hypothesis have
very nicely been brought out in a number of review articles [1]. The existence of strong
curvature naked singularities in gravitational collapse of spherically symmetric space-times
with matter fields like inhomogeneous dust [2], perfect fluid [3], radiation [4], counter
rotating particles with vanishing radial stresses [5] is now a well accepted phenomenon.
These are counterexamples to strong cosmic censorship hypothesis in the sense that naked
singularities that arise here are at least locally naked. Even then a suitable formulation
of cosmic censorship hypothesis and its proof is still far away. Lately there has been
growing interest in studying gravitational collapse in higher dimensions [6]. Ilhaet al
[6] have generalized the Oppenhimer–Snyder collapse model to higher dimensions. The
idea that space-time should be extended from four to higher dimensions was introduced
by Kaluza and Klein [7] to unify gravity and electromagnetism. Five dimensional (5D)
space-time is particularly more relevant because both 10 D and 11 D supergravity theories
yield solutions where a 5D space-time results after dimensional reduction [8]. Many papers
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on higher dimensional solutions [9] have appeared lately because of their implications in
astrophysics, cosmology, string theory and particle physics.

An interesting problem that arises is the effect that higher dimensions can have on the
formation of naked singularities. Sil and Chatterjee [10] studied dust collapse in five di-
mensional space-time. By considering a self-similar Tolman type model in higher dimen-
sional space-time they showed the occurrence of a naked shell focusing singularity which
may develop into a strong curvature singularity. Recently Ghosh and Saraykar [11] showed
that strong curvature naked singularities arise as a result of radiation collapse in a five di-
mensional Vaidya space-time.

In this paper we consider the nature and structure of singularities arising in a non-self-
similar dust collapse in 5D. We show that the central singularity of collapse may indeed
be a (strong or weak curvature) naked one depending on the conditions of initial density
distribution. To this end we follow the method as in [12] where initial data is given by a
convergent power series.

Thus inx2, we describe five dimensional Tolman type dust model and show the existence
of a naked shell focussing singularity. Inx3 we discuss the strength of the naked singularity.

We end the paper by giving concluding remarks inx4.

2. Dust collapse in five dimensional Tolman type model

A spherically symmetric inhomogeneous dust cloud in five dimensional space-time [10] is
given by

ds2 = �dt2 + R02

1 + f
dr2 +R2(d�21 + sin2 �1d�

2
2 + sin2 �1 sin

2 �2d�
2
3); (1)

wheref(r) is an arbitrary function of comoving coordinater, satisfyingf > �1. R(t; r)
is the physical radius at a timet of the shell labeled byr, in the sense that4�R2(r; t) is the
proper area of the shell at timet. A prime denotes the partial derivative with respect tor.

The energy momentum tensor is given by

T ij = "ÆitÆ
j
t ; (2)

where

"(t; r) =
3F 0

2R3R0
: (3)

The functionR(r; t) is the solution of

_R2 =
F (r)

R2
+ f(r); (4)

where an over dot denotes partial derivative with respect tot. The functionsF (r) andf(r)
are arbitrary, and result from the integration of the field equations.

For simplicity we shall confine ourselves to the marginally bound casef(r) = 0.
Since in the present discussion we are concerned with gravitational collapse, we require

that
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_R(t; r) < 0:

Hence we get

_R =
�
p
F

R
: (5)

After integrating and using scaling freedomR(r; 0) = r we get

R2 = r2 � 2
p
Ft: (6)

According to (6) the area radius of the shellr shrinks to zero at the timet c(r) given by

tc(r) =
r2

2
p
F
: (7)

The Kretschmann scalar is given by

K =
28F 02

R6R02
� 144FF 0

R7R0
+

288F 2

R8
: (8)

At t = tc(r), the Kretschmann scalar and energy density both diverge, indicating the
presence of scalar polynomial curvature singularity [13]. The time and radial coordinates
are respectively in the ranges�1 < t < tc(r) and0 � r <1.

It has been shown that [14] shell crossing singularities (characterized byR 0 = 0 andR >
0) are gravitationally weak and hence such singularities need not be considered seriously.
We therefore consider only the shell focusing singularity. We thus assumeR 0 > 0 in the
following discussion. We shall restrict ourselves to the study of future directed radial null
geodesics. In order to check whether the singularity is naked, we examine the null geodesic
equations for the tangent vectorsK a = dxa=dk, wherek is an affine parameter along the
geodesics. For radial null geodesics, these are

Kt =
dt

dk
=

P

R
: (9)

Kr =
dr

dk
=

Kt

R0
=

P

RR0
; (10)

where the functionP (t; r) satisfies the differential equation

dP

dk
+ P 2

 
_R0

R0R
�

_R

R2
� 1

R2

!
= 0: (11)

Let u = r�(� > 1), then

dR

du
=

1

�r��1

�
_R
dt

dr
+R0

�
:

From eq. (1) we see that, for outgoing radial null geodesics,dt=dr = R 0, hence with
the help of (5) above equation becomes
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dR

du
=

R0

�r��1

 
1�

p
F

R

!
=

R0

�r��1

�
1� �

X

�
= U(X;u); (12)

where

� =

p
F

u
; X =

R

u
: (13)

If the null geodesics terminate in the past at the singularity with a definite tangent, then at
the singularity the tangent to the geodesicdR=du is positive and must have a finite value.
From eq. (12) we note that thedR=du is positive forX > � i.e.R >

p
F . Thus boundary

of the trapped surface i.e. apparent horizon is given byR =
p
F . Using this relation we

find from eq. (6) that

tah(r) =
r2

2
p
F
�
p
F

2
= tc(r) �

p
F

2
;

wheretah(r) denotes the time at which apparent horizon forms.
SinceF (r) is strictly positive forr > 0, withF (r) = 0 atr = 0, we havetah(r) < tc(r)

for r > 0 andtah(0) = tc(0). Thus all other points on the singularity curve, except the
pointr = 0 are covered by the apparent horizon. We therefore consider the singularity of
collapse atr = 0 i.e. the central singularity. We now find conditions on the initial data so
that the central singularity of collapse is naked.

If the outgoing null geodesics are to terminate in the past at the singularity atr = 0,
which occurs at timet = tc at whichR(tc; 0) = 0, then along these geodesics we have
R ! 0 as r ! 0. After simplifying differential equation (12), we see that the right
hand side of this equation is of the form 0/0 in the limit of approach to the singularity
(R = 0; u = 0). The pointR = 0; u = 0 in the (R; u) plane is thus a singularity of the
differential equation (12) (cf. [15] ).

By using eq. (6) one can write

R0 =
RF 0

4F
+

�
1� rF 0

4F

�
r

R
; (14)

=
�Xr��1

4
+

�
4� �

4

�
1

r��1X
; (15)

where� = rF 0=F .
The initial state of the spherically symmetric dust cloud is described in terms of the

density and velocity profiles specified at an initial epoch of time from which collapse com-
mences. We denote by�(r) = "(r; 0), the density distribution of the cloud at the starting
epoch of collapse.

From eq. (3) we get

F (r) = (2=3)

Z
�(r)r3dr: (16)

We assume that the density�(r) can be expanded [12] in a power series about the central
density�0:
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�(r) = �0 + �1r +
�2r

2

2!
+
�3r

3

3!
+ � � � �nr

n

n!
� � � ; (17)

where�0 > 0 and�n stands for thenth derivative of� at r = 0.
ThenF becomes

F (r) = F0r
4 + F1r

5 + F2r
6 + � � � ; (18)

where

Fn =
2

3

�n

n!(n+ 4)
and n = 0; 1; 2; : : : : (19)

Also � appearing in eq. (15) is given by

� =
rF 0

F
=

P
1

0 (n+ 4)Fnr
n+4P

1

0 Fnrn+4
: (20)

Since we are interested in the behavior of� near the center, we can simplify this further
to get

�(r) = 4 + �1r + �2r
2 + �3r

3 + � � � ; (21)

where

�1 =
F1

F0
; �2 =

2F2

F0
� F 2

1

F 2
0

; �3 =
3F3

F0
� 3F1F2

F 2
0

+
F 3
1

F 3
0

: (22)

If all the derivatives�n of the density vanish forn � (q � 1), and theqth derivative is
the first nonvanishing derivative, thenT q

� , theqth term in the expression for� is

T q
� =

qFq

F0
rq : (23)

Hereq takes the values 1, 2 etc. andT 0
� = 4.

In this case we can write�(r) as

�(r) = 4 +
qFq

F0
rq +O(rq+1): (24)

We use expression for4� � from eq. (24) keeping only the terms up to the orderr q and
substituting in eq. (15) to get

R0 =
�X

4
r��1 � qFqr

q

4F0r��1X
: (25)

With the help of (25), eq. (12) becomes

dR

du
=

1

�

�
1� �

X

��
�X

4
� �

X

�
= U(X;u); (26)
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where

� =
qFqr

q

4F0r2(��1)
: (27)

Let us consider the limitX0 of the tangentX along the null geodesic terminating at the
singularity atR = 0, u = 0. Using L’Hospital’s rule we get

X0 = lim
R!0

u!0

R

u
= lim

R!0

u!0

dR

du
= lim

R!0

u!0

U(X;u) = U(X0; 0): (28)

The necessary condition that the null geodesic emanates from the central singularity is
the existence of the positive real rootX0 of the equation,

V (X0) = 0; (29)

where

V (X) = U(X; 0)�X (30)

=
1

�

�
1� �0

X

��
�0X

4
� �0

X

�
�X; (31)

where�0 = limr!0 �; �0 = limr!0 �.
The constant� is to be determined by the requirement that� 0, the limiting value of�

asr ! 0, should not be equal to zero or infinite, which gives

q = 2(�� 1)) � = 1 + q=2; �0 =
qFq

4F0
: (32)

Limiting value of the function� =
p
F=r� is found by using (18) and (32) to be

�0 = 0; q < 2

=
p
F0; q = 2 (33)

=1; q > 2:

Since�0 takes different values for different choices ofq, the nature of roots depends on
the first nonvanishing derivative of density at the center. So we analyse the various cases
one by one.

Case1: �1 6= 0. In this caseq = 1; � = 3=2, and eq. (31) gives

X2
0 =

�F1
2F0

=
�2�1
5�0

: (34)

We assume the density to be decreasing outward, i.e�1 < 0 and henceX0 will be
positive and thus singularity is naked.

Case2: �1 = 0; �2 6= 0. In this case,q = 2; � = 2 and�0 =
p
F0. Since density is

decreasing outward we take�2 < 0.
Then equationV (X0) = 0, gives
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1

2

�
1�

p
F0

X0

��
X0 � F2

2F0X0

�
= X0

i.e.

2X3
0

F
3=2
0

+
2X2

0

F0
+
F2X0

F
5=2
0

� F2

F 2
0

= 0:

Definey = X0=
p
F0; � = F2=F

2
0 . The last equation then becomes

2y3 + 2y2 + y� � � = 0: (35)

If this equation admits real positive roots then the singularity is naked. Numerical cal-
culations show that the above equation has positive real roots if

� � (1�
p
5)=(9� 4

p
5) i.e. � � �22:18033: (36)

Thus whenever� � �22:18033, the central singularity is naked and it is covered if�
is greater than this number. In the analogous four dimensional case, one gets a quartic
equation and the shell focusing singularity is naked iff� � �25:9904 [12].

Case3: �1 = 0; �2 = 0. This happens when the first two derivatives of the density are zero
at the center, thenq � 3; � � 5=2. In this case�0 = 1 and positive value ofX0 cannot
satisfy eq. (31) and the collapse ends into a black hole.

Stability of occurrence of a naked singularity under small perturbations of initial density
distributions (in an appropriate metric space) can be discussed along the lines of [16].

3. Strength of the singularity

We now examine the strength of this naked singularity. The strength of the singularity is
an important issue because there have been attempts to relate it to stability [17]. The naked
singularity is said to be strong if at least along one null geodesic with affine parameterk,
with k = 0 at the singularity, the following condition is satisfied in the limit of approach
to the singularity:

S = lim
k!0

k2RabK
aKb > 0; (37)

whereKa is the tangent to the null geodesic andRab is the Ricci tensor.
In the dust case we find that

S = lim
k!0

k2RabK
aKb = lim

k!0
k2

3F 0(kt)2

2R3R0

=
3�0�

2
0

2�X6
0

lim
k!0

�
kP

r2�

�2

; (38)

whereKt = P=R andP satisfies eq. (11).
Using L’Hospital’s rule and eqs (9)–(13) and the fact that at the singularityr ! 0,

X ! X0, we get
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lim
k!0

kP

r2�
=

�X3
0

�X0 + 2�0(�� 1)
; if P0 = lim

k!0
P = 0;1

=
X2

0

2
; elsewhere: (39)

Hence, we get

S = lim
k!0

k2RabK
aKb =

6��2
0

(�X0 + 2�0(�� 1))2
for P0 = 0;1

=
3�2

0

2�X2
0

; elsewhere: (40)

Hence by using eqs (32) and (33) we can write

S = lim
k!0

k2RabK
aKb = 0; for q = 1

> 0; for q � 2:

However, from our earlier conclusions (fromx2) naked singularity occurs only whenq � 2,
therefore the strong curvation condition is satisfied along singular geodesics only for the
classes whereq = 2.

Thus combining this result with the results inx2 one may write

i) If �1 < 0, the singularity is naked and weak.
ii) If �1 = 0 and�2 < 0, the singularity is naked if� = F2=F

2
0 = 2�2=�

2
0 is less

than the critical value�c = �22:18033, and it is covered if� > �c. Further, naked
singularity is a strong curvature singularity.

iii) If �1 = 0; �2 = 0, the singularity is covered.

4. Conclusion

The Tolman-Bondi metric in the 4D case has been extensively used to study the formation
of naked singularities in spherical gravitational collapse [2]. We have extended this study
to a higher dimensional Tolman-Bondi metric and found that strong curvature naked sin-
gularities do arise for a different critical value. Also we have examined the strength of the
naked singularity and found it gravitationally strong under certain conditions.

In conclusion, this offers a counter example to the cosmic censorship conjecture.
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