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Abstract. We present an overview of polarized neutron experiments observing SU(2) phases. The
first experimental separation of geometric and dynamical phases, the explicit verification of Pauli
anticommutation and the first observation of interference amplitudes and phases in noncyclic evolu-
tions are described. These experiments elucidate the physics of phases and phase jumps propounded
by the Pancharatnam connection.
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1. Introduction

Neutron, due to its electric neutrality and finite magnetic moment, is an ideal probe of
SU(2) phases acquired in cyclic and noncyclic special unitary evolutions. A neutronic ex-
periment [1,2] has clearly demarcated geometric and dynamical phases. The two phase
components here arise from distinct physical operations, viz. rotation and translation re-
spectively between two identical neutron spin flippers. This experiment also explicitly
verified Pauli anticommutation by reversing a sequence of successive�-precessions about
two orthogonal axes. The first observation [3] of interference amplitudes and phases in
noncyclic evolutions has clearly brought out the full implications of the Pancharatnam
connection.

2. Spinning neutron and SU(2) phases

Neutron is a chargeless spin 1/2 particle with a finite magnetic moment. In a magnetic
inductionB, the spin-dependent interaction Hamiltonian��� � B causes an evolution
of the 2-component neutron wavefunction	 in the 2-dimensional complex Hilbert space.
Here� is the neutron magnetic moment (�1.913�N ) and� is the vector of Pauli spin

operators. The general ordered evolution operatorPe
�i
R

(����B)dt=�h, generates an SU(2)
phase for the spinor	. In general there is also a spin-independent term in the neutron
Hamiltonian due, for instance, to the nuclear interaction with the medium traversed. This
produces a scalar, i.e. U(1), phase.
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A normalized ray in the ray space, viz.

 = cos
�

2
jzi+ sin

�

2
exp (i�)j � zi; (1)

differs from the wavefunction	 merely by a complex multiplicative factor which strips	
of its magnitude and phase information. The corresponding pure state density operator�
equals		y=	y	 =   y. In eq. (1), the two base statesjzi andj � zi are eigenstates of
thez-component�z of �. The angles� and� denote the polar coordinates of the unit spin
vectors = Tr��. There is a one-to-one correspondence between the gauge-invariant ray
space quantities� ands. The Schr¨odinger evolution of	 generates the classical Larmor
precession [4] of spins at an angular precession frequency!L = �2�B=�h about the
instantaneous magnetic field.

The spin vectors specifies a ray (1) completely. The spin sphere, i.e. the unit sphere
of spin directions, thus constitutes the ray space (or the projective Hilbert space) for the
spinor. As	 evolves, the tip ofs traces a curveC from s i to sf , say, in the ray space.

The evolution is termed cyclic ifC is closed, i.e.sf = si and noncyclic [5] ifC is
open, i.e.sf 6= si. For a general noncyclic evolution, the Pancharatnam connection [6–8]
provides a rigorous definition of phase� of the final wavefunction	 f with respect to the
initial wavefunction	i and the associated amplitude of interferenceA as

� = arg(	
y

i	f ) (2)

and

A =

���	y

i	f

���
	
y

i	i

: (3)

The total phase� has a dynamical phase component [9,10]

�D = �

Z
h��� �Bidt

�h
=

Z
�s �Bdt

�h
(4)

and a geometric phase component [9,10]

�G = ���D = �



2
; (5)

where
 is the solid angle subtended at the centre of the spin sphere by the spin trajectory
C, closed by the shorter geodesic if the evolution is noncyclic.

Geometric phase depends only on the geometry of the curve traced in the ray space. It
is the nonintegrable [6,9], Hamiltonian-independent phase component, equal to the phase
anholonomy [11,12] of a parallel transported wavefunction. For a 2-state, this phase an-
holonomy equals minus half the angle anholonomy for a vector parallel transported along
the curveC. Already included in the standard formulation of quantum mechanics, geomet-
ric phase arises in completely general [13] evolutions, whether nonadiabatic, noncyclic or
even nonunitary. Geometric phase manifests itself in a vast multitude of physical phenom-
ena [14,15].
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3. Observation of cyclic SU(2) phases

There are two well-known strategies to observe SU(2) phases. In the first, viz. ‘2-
Hamiltonian 1-state’ strategy [15], the phases are determined interferometrically. In the
other, the ‘1-Hamiltonian 2-state’ strategy [16–19], a coherent superposition of two or-
thogonal states,jzi and j � zi, say, is subjected to a single Hamiltonian. For a cyclic
evolution ofjzi state, thejzi andj � zi states acquire equal and opposite SU(2) phases�

and�� respectively. The final spin of the superposition differs from the initial spin by a
rotation�2� about̂z. The spinor phase forjzi is inferred polarimetrically from the spin
rotation of the superposition.

4. Interferometric observation of separated geometric and dynamical phases

A perfect crystal interferometer was first operated for neutrons a quarter century ago [20].
The neutron interferometer, affording observation of interference between neutron sub-
waves separated by a few cm over a few cm, has since served as a touchstone for several
quantum physical [21,22] concepts.

To observe the spinor phase dependence on theorientationof the precession axis, Wagh
proposed the interferometric experiment [4] depicted schematically in figure 1. Subse-
quently, Wagh and Rakhecha showed [10] that the proposed experiment was the first to
clearly demarcate geometric and dynamical phases. Here ajzi-polarized neutron beam of
velocity v incident on the interferometer permeated by a uniform vertical magnetic field
B0ẑ, splits into subbeams1 and2. The subbeams are taken to the statej � zi by identical
spin flippers F1 and F2. The spinor evolution is hence cyclic over path1 followed by re-
versed path2. For a relative rotationÆ� between F1 and F2 about̂z, the spin curves traced
on paths1 and2 enclose [10] a solid angle
 = �2Æ� of an ‘orange slice’ on the spin
sphere, yielding a pure geometric phase (cf. eq. (5))

�G = �



2
= Æ� : (6)

Thus�G is given by just theangle Æ� regardless of the Hamiltonian. The phase�G

identifies with the phase jump caused by the kinkÆ� in the spin curve [12,23] at the pole
j � zi, i.e. at the ray on the 2-sphere orthogonal to the initial rayjzi.

A linear translationÆx of F1, say, along its subbeam, leaves the spin curve and hence
�G unaltered. However, it changes precessions about the guide field in thejzi andj � zi
states byÆ� and�Æ� respectively on path1, to generate a pure dynamical phase shift [10]
(cf. eq. (4))

�D = �Æ� = �
2j�jB0Æx

�hv
: (7)

A translation of F2 produces an identical dynamical phase, but of opposite sign. As op-
posed to the geometric phase (cf. eq. (6)), the dynamical phase�D depends on the field
B0 in the Hamiltonian. In this experiment geometric and dynamical phases arise from two
distinct physical operations, rotation and translation respectively, of the spin flippers and
get separated.
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Figure 1. Interferometric separation of geometric and dynamical phases. A relative
rotationÆ� between the identical�-flippers F1 and F2 produces a pure geometric phase
�G, equal toÆ�, for the incidentjzi-state; their relative translationÆx results in a pure
dynamical phase�D, proportional toÆx. These phases are determined from the shifts
of the interferograms generated by rotating the phase flag and recorded in the He-3
detectors C2 and C3.

The experiment [1] was carried out at the interferometry facility of the 10 MW research
reactor of the University of Missouri (MURR) in a BARC-Vienna-MURR collaboration.
A 2.35 Å polarized neutron beam illuminated a skew symmetric (220) LLL silicon in-
terferometer. Due to the space constraints within the interferometer, the maximum me-
chanical rotation of each flipper was limited to�22Æ. Larger anglesÆ� were therefore
achieved electrically. A reversal of current in F1 effectively rotates F1 through 180Æ, yield-
ing Æ� = 180Æ. A current reversal of F2 instead results inÆ� = �180Æ.

The experimental geometric phases�G are plotted in figure 2. The straight line in the
figure represents the theoretical prediction (6). Points forÆ� values between�40 Æ and
+40Æ represent mechanical rotations of the flippers. RotationsÆ� = �180Æ, 180Æ and (the
second point at)0Æ were produced electrically by reversing the current in F2, F1 and both
flippers respectively.

Bhandari [24] has opined that plotting geometric phases for mechanical as well as elec-
tric rotations of the flippers on the same curve in figure 2 is unjustified, since the two
results originate from different parameter spaces. He has also questioned the assignment
of a phase magnitude of180Æ in figure 2 for a flipper current reversal, since a phase equal
to any odd integral multiple of180Æ can be obtained by a judicious variation of individual
currents in the two coils of a flipper, during the current reversal.

Contrary to Bhandari’s contention however, geometric phase is governed solely by the
geometry of the curve traced in the ray space, irrespective of the Hamiltonian or the param-
eter space of the experiment. Regardless of the means adopted for rotating F1 and F2, the
spinor acquires a geometric phaseÆ� equal to minus half the solid angle between the two
spin curves. Even for an electronically effected [25] rotationÆ� = (! 1 � !2)t between F1
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Figure 2. Pure geometric phase�G resulting from a relative rotationÆ� between the
flippers F1 and F2.

and F2, the corresponding time-proportional geometric phase manifests itself as quantum
beats (cf.x6). A current-reversed flipper is indistinguishable to the spinor from a flipper
rotated mechanically by�180Æ. The ambiguity in sign was removed in the experiment
[1] by assuming that a current reversal produces a counterclockwise, i.e.+180 Æ, rotation.
Furthermore, two coils of each flipper were connected in series, implying a single current.
Geometric phase was observed by reversing the current (not currents) in a flipper. For
a smooth current variation during the reversal, the spinor evolution (cf. eqs (11a), (11b)
and (12) of [4]) exhibits a phase jump equal to just180 Æ andnot any higher odd multiple
of 180Æ, as the current changes sign. All data points in figure 2 therefore belong there
rightfully.

With the flippers held normal to the respective subbeams(Æ� = 0) interference patterns
were recorded for several translations of F1 and F2. Figure 3 displays the variation of the
pure dynamical phase with displacementÆx of F1 (for Æ� = 0). The slope agrees well
with that expected (7) for the applied guide fieldB0.

5. Verification of Pauli anticommutation

In the experiment [1], each�-flipper was a dual-flipper [4] made of two coils producing
�-precessions in succession, about two mutually orthogonal axes, sayÎ and ÎI. These
axes of precession lie in a vertical plane and subtend angles+�=4 and��=4 respectively
with ẑ. The net operation is given bye(�i�II�=2)e(�i�I�=2) = (�i�II)(�i�I) = ��II�I.
Here�I and�II are the components of the Pauli spin operator� along Î and ÎI respec-
tively. On reversing the current in the coils, the order of the two fields gets reversed. The
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Figure 3. Pure dynamical phase�D as a function of the translationÆx of the flipper
F1.

Figure 4. Direct verification of Pauli anticommutation. The interferogram has shifted
by 180:5Æ � 3:0Æ on switching the current in the flipper F1 from the forward (F) sense
to the reverse (R) sense.

reversed flipper operates ase(�i�I�=2)e(�i�II�=2) = ��I�II = �II�I, since�I and�II an-
ticommute, being orthogonal components of the Pauli spin operator. The reversed flipper
operation thus differs only in sign from the original operation. This sign change manifests
as a� phase shift [4,12] of the spinor. This� phase jump can only be observed interfero-
metrically. A polarimetric experiment measures phases only modulo� [19,26] and hence
can not sense anticommutation.

Figure 4 depicts the interference patterns recorded with the current in the flipper F1

switched between the forward (F) and reverse (R) directions. On reversing the current, the
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pattern just gets reflected about the line representing its average, as expected. The observed
phase shift equals180Æ to within 2%, confirming the anticommutivity between� I and�II.
If the current in F2 is also reversed, the interferogram shifts further by180Æ becoming
identical to the initial interferogram.

This experiment constitutes the first direct verification of Pauli anticommutation.

6. Quantum beats: Manifestation of time varying geometric phase

In the quantum beats experiment of Badureket al [25], an incidentjzi-polarized neutron
beam traversed radiofrequency resonant spin flippers in the two arms of the interferometer.
A minute frequency differenceÆ� = 0:02 Hz maintained between the two flippers resulted
in interference oscillations with a time period of 50 sec. This experiment is a special case
of the experiment separating geometric and dynamical phases, described inx4. Here at
any instantt, the angle between the two flippersÆ� equals2�Æ�t and produces a pure
geometric phase [10,27]. The quantum beats result from the time-proportional part2�Æ�t
of this geometric phase. Thus interpreted by Wagh and Rakhecha, the quantum beats
experiment [25] constitutes an early measurement of geometric phase.

7. Polarimetric observation of geometric and dynamical phases

Since Berry discovered geometric phase in adiabatic evolutions [9], the early experimenters
implemented adiabatic evolutions and used the ‘1-Hamiltonian 2-state’ strategy (cf.x3)
to observe geometric phase. Tomita and Chiao [16] propagated linearly polarized light
along a coiled optical fibre and measured the concomitant rotation of the polarization. The
rotation equalled
, the solid angle spanned by the closed curve traced adiabatically by
the optical wave vector on the sphere of directions. This rotation resulted from geometric
phases�
 acquired by the two eigenstates, viz. the right and left circular polarizations.
In analogous neutron experiments, polarized neutrons were subjected to a magnetic field
completing a revolutionadiabaticallyover a cone. Bitter and Dubbers [17] employed a
spatial field variation and Richardsonet al [18], a temporal variation. From the observed
rotation of the neutron spin, a small geometric phase�
=2 for the two eigenstates was
discerned from the large dynamical phase characteristic of adiabatic evolutions.

The interferometric experiment described inx4 however takes no recourse to adiabatic-
ity. The neutron polarimetric version [2] of this experiment was carried out at the po-
larimetry setup on the tangential beam port of the 250 kWTRIGAresearch reactor at the
Atominstitut of the Austrian Universities in Vienna. A schematic sketch of the setup is
shown in figure 5. Here the incident neutron beam in thejyi state, viz. a superposition
of jzi andj � zi states, successively traversed the flippers F1 and F2. A uniform guide
fieldB0ẑ was applied over the setup. Geometric and dynamical phases forjzi state, orig-
inating from relative rotations and translations respectively of F1 and F2 were measured
by observing concomitant spin rotations of the incidentŷ spin. The polarization analysis
of the emergent beam yielded the intensityIyy which varies linearly withcos 2�. Two
sets of data were recorded, one for identical rotationsÆ�=2 (parallel flippers) and the other
with opposite rotations, of the two flippers. 3-D plots ofIyy made as a function of the
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flipper rotationsÆ�=2 and F2 translationsÆx are depicted in figures 6 and 7 for parallel
and opposite rotations respectively.

Ideally, one would not expect any variation of the detected intensity for parallel rotation
of the flippers, since for a fixed displacementÆx, neither the geometric nor the dynamical
phase should change. However, if the neutron beam is not centered exactly on the rotation
axis of a flipper, the rotation produces a spurious displacementÆx of the flipper and a
consequent dynamical phase contamination. A beam centre offset of about 1 mm can
explain the observed small intensity variation withÆ� in the parallel rotation data. For
opposite flipper rotations, the intensity varies cosinusoidally withÆ�, as expected.

Figure 5. Sketch of the polarimetric experiment to observe demarcated geometric and
dynamical phases for thejzi state, arising from relative rotations and translations re-
spectively between F1 and F2.

Figure 6. Measured intensityIyy for parallel rotationÆ�=2 of flippers F1 and F2 for
a series of downstream displacementsÆx of the flipper F2, along with computed fits to
data.Iyy is practically flat along theÆ�=2 axis.

294 Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001



Observing SU(2) phases with neutrons

Figure 7. Same as figure 6 but with the two flippers rotating in opposite directions.

Figure 8. Pure dynamical phase�D as a function of the translationÆx of flipper F2.
The straight line is the best fit to the data.

The dynamical phase variation with the translationÆx of F2, derived from the opposite
rotation data, is shown in figure 8. The slope of its linear fit is in close agreement with the
measured field value.

The geometric phases obtained from the opposite-rotation data, corrected for the dy-
namical phase contamination, are plotted in figure 9 against the angle between flippers F1

and F2. The experiment agrees with theory to within about 1%.

Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001 295



Veer Chand Rakhecha and Apoorva G Wagh

Figure 9. Observed geometric phase as a function of the angleÆ� between the flippers
F1 and F2. The straight line is the best fit to the data.

To eliminate the dynamical phase contamination, the experiment was repeated by plac-
ing the flippers within a ‘field-free’ soft magnetic box [28]. The intensity patterns
Iyy(Æ�=2) recorded for parallel and opposite rotationsÆ�=2 of the flippers F1 and F2,
are converted to the fractional polarizationPy(Æ�=2)=Py(0) in figure 10. The curve for
parallel-rotation remains flat as expected for the null geometric phase, while the opposite-
rotation curve oscillates cosinusoidally due to the concomitant geometric phase. The cor-
responding geometric phases extracted from the raw data for opposite rotations are dis-
played in figure 10 as a function of the flipper rotations. These phases conform to theory
very closely.

8. Phase observation: Polarimetry vis-a-vis interferometry

The polarimetrically observed geometric as well as dynamical phases [2] are within about
1% of theoretical predictions, representing a marked improvement over the agreement level
achieved in the interferometric experiment [1]. The improved precision has resulted pri-
marily from the inherent advantages of the neutron polarimetric method. Neutron po-
larimetry is insensitive to ambient mechanical and thermal disturbances. It is also free
from spatial constraints imposed by small perfect crystal interferometers. In an interfer-
ometric experiment, the perfect crystal interferometer accepts neutrons incident within an
angular range of only a few arcseconds at each neutron wavelength, thus reducing the us-
able neutron intensity by about 3 orders of magnitude. A polarimetric measurement on the
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Figure 10. Measured normalized polarizationPy(Æ�=2)=Py(0) for parallel (Æ) and
opposite (�) rotationsÆ�=2 of flippers F1 and F2, mounted in a field-free region within
a soft magnetic shielding. The phases derived from the parallel- and opposite- (shown
by filled triangles) rotation data without applying any corrections conform well to the
theoretical geometric phases equal to 0 andÆ� respectively. Curves through the data
points represent the best fits.

other hand, uses a substantial fraction of the incident neutron intensity and hence can be
carried out even at a low-flux reactor. Furthermore, here both the orthogonal states com-
prised in each neutron acquire identical scalar phases which therefore get eliminated in
the resultant spin rotation, providing a clean SU(2) phase measurement. The polarimet-
ric experiment of Badureket al [29] could thus observe scalar Aharanov–Bohm phases
with a white neutron beam and establish their nondispersivity. The only limitation of a
polarimetric experiment is its modulo180Æ phase measurement, since the two orthogonal
states acquire equal and opposite SU(2) phases� and��. This is the reason why Pauli
anticommutation can not be verified polarimetrically.

9. Observation of noncyclic phases and amplitudes

In a noncyclic evolution, the phase (2) is accompanied by a noncyclicity-dependent inter-
ference amplitude (3), as prescribed by the Pancharatnam connection. In an interferometric
experiment, the phase and amplitude are measured from theshift andattenuationrespec-
tively of the interference pattern relative to that recorded for a reference cyclic evolution.
Noncyclic phases and amplitudes can also be measured in a suitably devised polarimetric
[26] experiment.

In the first experiment [3] observing noncyclic phases and amplitudes, the neutron spin
underwent a precession�L about a static magnetic field at an angle�. The associated phase
� and interference amplitudeA for this unitary evolution are given by eqs ((2), (3))

Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001 297



Veer Chand Rakhecha and Apoorva G Wagh

A =

r
1� sin

2 � sin2
�L

2
= cos

G

2
=

r
1 + si � sf

2
� 1; (8)

tan� = � tan
�L

2
cos �: (9)

HereG is the length of the shorter geodesic between the initial and final spinss i andsf
respectively. The dynamical phase [10]

�D =

Z
�s �Bdt

�h
= �

�L

2
cos � ; (10)

is proportional to the integral of the component of the magnetic field along the spin direc-
tion (cf. eq. (4)) and the geometric phase [10,19]

�G = ���D = �



2
; (11)


 denoting the solid angle subtended at the centre of spin sphere by the closed curve on
the spin sphere obtained by joining the ends of the arc traced bys on the�-cone with the
shorter (G < �) geodesic.

The interference oscillations for this noncyclic evolution, viz.

I(�; �; �L) / D +A cos (�+�) ; (12)

are shifted by�� and attenuated by a factorA relative to the reference pattern

I(�; �; �L = 0) / D + cos� ; (13)

both recorded with an auxiliary scalar phase�.
Figure 11 depicts the experiment schematically. The experiment was performed at the

V9 interferometry setup [30] in the Berlin Neutron Scattering Center (BENSC) of the
Hahn-Meitner-Institut, Germany, employing a 2Å polarized neutron beam. A guide field
along the vertical (̂z) was applied over the entire setup (about 45 G in the interferometer
region).

Figure 11. Experimental arrangement (schematic). A magnetic guide field is applied
alongẑ, transverse to the plane of the diagram. The spin of the monochromatic neutrons
incident on the interferometer makes an angle� with ẑ. An O-beam interference pattern
is obtained by rotating the phase shifter for a given additionalẑ-field introduced on path
1 of the skew symmetric interferometer.
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The spin of the polarized neutron beam illuminating the interferometer (figure 11) could
be set at any desired angle� to the guide field alonĝz and any desired precession�L of
the neutron spins on a cone of polar angle� about̂z could be obtained by introducing an
additional field with âz-field gadget in path1 of the interferometer.

The experiment [3] involved 5 spinor states in all, characterized by incident spin angles
� = 0Æ, 70:5Æ, 90Æ, 109:5Æ and180Æ. In each run, two interference patterns were simul-
taneously recorded one for the evolution(�; �L) of interest and the other for a reference
evolution(�R; �LR), say. The pattern pairs belonged to two categories:�-pairs for fixed
�L and�L-pairs for fixed�. The relative phase difference and amplitude ratio between
the evolution of interest(�; �L) and the reference evolution(�R; �LR), could hence be
determined unambiguously.

The phases and amplitudes for four� pairs corrected for incomplete polarization of
incident beam are depicted against�L in figures 12 and 13 respectively.

The phase difference between� = 0Æ and�R = 180Æ states just equals��L. The phase
differences for� angles70:5Æ, 90Æ and109:5Æ reproduce the predicted nonlinear relations
as a function of the precession�L. For a given�, A has a minimum (figure 13) equal
to j cos �j at �L = �180Æ, where the angleG between the spin vector precessing over
the�-cone and the initial spin vector reaches its maximum, viz.2�. The reduction of the
interference contrast near�L = �180Æ, seen in figure 13 and the lower pattern of figure
14, lowers the precision of phase determination and causes relatively large error bars on
the measured phase shifts (figures 12 and 14) for� = 70:5Æ, 90Æ and109:5Æ.

For � = 90Æ, the spin traverses along the equator of spin sphere, spanning the angle
G = �L. The dynamical phase vanishes identically since the spin is orthogonal to the

Figure 12. Corrected phase shifts between incident states with spin angles� and�R as a
function of the precession�L. Solid curves represent the theoretical phases. Note large
error bars for noncyclic evolutions near�L = �180Æ due to the reduced interference
amplitude (cf. figure 13).
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Figure 13. Corrected interference amplitudes for 4 incident spin angles�. The smooth
curves are the theoretical predictions.

Figure 14. Interference patterns recorded withI = 1:2 and�1:2 A in the ẑ-field
gadget for� = 90Æ, display a phase shift197Æ � 17Æ against the expected180Æ phase
jump occurring across�L = 180Æ. The smooth curves are the best sinusoidal fits.

field (eq. (4)). The phase and amplitude are now determined byAe i� = cos (�L=2) which
is real and changes sign across odd integral values of�L(deg)=180. This corresponds to
an amplitudeA = j cos (�L=2)j (figure 13) and a staircase function [13], of180Æ high and
360Æ long steps, for the phase�. For�180Æ < �L < 180Æ, the geodesic traversed is
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shorter than� and the shorter geodesic between its ends just retraces it. Hence the closed
curve encloses no solid angle and yields a null geometric phase (eq. (5)). The total phase
acquired by the� = 90Æ state over this�L range is hence zero. At�L = �180Æ or 180Æ,
an infinite number of geodesics, each of length�, can be drawn between the ends�s i and
si of the traversed arc, rendering
, �G and hence� indeterminate. Here the initial and
final states of the evolution being mutually orthogonal (A = 0), do not interfere. When
�L crosses�180Æ or 180Æ, the shorter geodesic closing the arc lies on the other side and
completes the equator, enclosing a hemisphere (
 = �2�) to yield a�180 Æ jump [1,22] in
� = �G. This phase jump manifests itself as a shift between the interferogram pair (figure
14) for� = 90Æ recorded witĥz-field gadget currentsI = 1:2 and�1:2 A (�L = 204:3Æ

and�92:5Æ respectively). The difference between the staircase phase for� = 90Æ and
the phase��L/2 for �R = 0Æ climbs a sloped step function (figure 12), as verified in this
experiment.

Thus over the� domain, we have one extreme, viz.� = 0 Æ or 180Æ of cyclic evolutions
yielding unattenuated interferograms(A = 1) with dynamical phases��L/2 or �L=2
respectively. In the other extreme of� = 90Æ, the interference pattern just gets modulated
by cos (�L=2), implying an attenuationA = j cos (�L=2)j and geometric phase jumps of
180Æ.

The valuesA cos� computed from the observations for� = 0Æ, 70:5Æ, 90Æ, and109:5Æ

are plotted in figure 15. As expected [13], they all lie close to the single curve representing
cos (�L=2), the quantity that would be observed if the intensity oscillations are recorded
as a function of�L, without employing a scalar phase�. The productA cos� therefore
is independent of� thoughA and� depend individually on�. Figures 12, 13 and 15
conclusively dispel widely prevalent misconceptions (cf. e.g. [31–33]) about the noncyclic
phase.

Figure 15. The products of the observed interference amplitudes and cosines of the cor-
responding phases for 4 incident angles�, all lie close to the single curvecos (�L=2).
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Bhandari [24] contends that this experiment [3] measured not the noncyclic phase itself,
but thedifferencebetween phases for the� and�R states and hence failed to verify the
different sign of the phase for states in the upper and lower spin hemispheres. He also
objects to the ‘arbitrary’ choice made in the experiment for the sign of the phase jump
observed for� = 90Æ.

Contrary to Bhandari’s claim, the experiment [3] did determine the sign of�=� L un-
ambiguously for each of the five� spinors studied, from the interference pattern pairs
(�; �L)�(�; �LR). One pattern pair for each� corresponded to�LR = 0Æ, yielding the
noncyclic phase itself. Phase shifts derived from 14 such pattern pairs were included in the
data set subjected to a comprehensive least squares fit (cf. right column on p. 1993 in [3]).
A pattern pair of this kind recorded for� = 90Æ is depicted in figure 14.

Like most interference experiments, the experiment [3] could measure phases only mod-
ulo 360Æ. The consequent ambiguity about the sign of the180Æ phase jumps observed for
� = 90Æ (figure 12) was removed by assigning them the+ sign, i.e. treating90 Æ as the
limit taken from the obtuse angle side. The limit of the phase shift curve for�R = 0Æ taken
by varying� smoothly from180Æ through109:5Æ to 90Æ thus coincides with the90Æ curve.

Bhandari’s criticism [24] of the experiment [3] is therefore not correct.
To conclude, the first observation [3] of interference amplitudes and phases in noncyclic

evolutions has elucidated the physics underlying the Pancharatnam connection [6] in its
entirety.
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