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Non-linear wave packet dynamics of coherent states
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Abstract. We have compared the non-linear wave packet dynamics of coherent states of various
symmetry groups and found that certain generic features of non-linear evolution are present in each
case. Thus the initial coherent structures are quickly destroyed but are followed by Schr¨odinger cat
formation and revival. We also report important differences in their evolution.
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1. Introduction

Coherent states were first introduced by Schr¨odinger to describe non-spreading wave pack-
ets for harmonic oscillators. They have many interesting properties, chief among which is
that these are minimum uncertainty states and, therefore, are most classical within the
framework of quantum theory. In recent years, the non-linear quantum dynamics of these
states have revealed some striking features. It was found that under the action of a Hamil-
tonian which is anon-linear function of the photon operator(s)only, an initial coherent
state loses its coherent structure quickly due to quantum dephasing induced by the non-
linearity of the Hamiltonian; then regains it (revival) after an interval. At fractions of this
time interval, the initial coherent state breaks up into a superposition of two or more co-
herent states which also can have a coherent structure. This is an example of the quantum
phenomenon of fractional revival [1–6], or, the formation of Schr¨odinger cat and cat-like
states [7] which, unlike a coherent state, have many non-classical properties.

We should stress that these features are not unique to coherent states of light. In fact,
they arise in the evolution of a wide variety of systems (where the initial state can be a light
field, a material particle or a light-matter combination) such as light propagation in Kerr
media [7], optical parametric oscillators [3], Rydberg atoms [2], particle in potential wells
[8], molecular vibrational states [9] and the Jaynes–Cummings model [4].

From a group theoretic point of view, the harmonic oscillator (HO) coherent states arise
in systems whose dynamical symmetry group is the Heisenberg–Weyl group. Coherent
states of other symmetry groups also exist. Thus, for example, the much studied pair [10]
and Perelomov [11] coherent states belong to the SU(1,1) group and are special cases of
what may be called generalized SU(1,1) coherent states [12,13]. Coherent states of the
SU(2) group have also been constructed [14].
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Our objective is to present a comparative study of how coherent states of various sym-
metry groups evolve under the action of thesametwo-mode generic Hamiltonian. Through
a series of pictures, we show how the initial coherent structure is lost due to quantum de-
phasing and then regained later on to form spectacular and varied quasi-coherent structures
leading up to the formation of Schr¨odinger cats in some cases and to full revival in all cases.

The plan of the paper is as follows. Inx2, we explain the basic concepts of revival and
cat formation, introduce the HO coherent state and give an example of cat formation for a
single mode case. Inx3, we generalise our formalism to include two-mode cases and also
coherent states of other groups. The paper ends with concluding remarks inx4.

2. Basic concepts

We start with thenumberor Fockstatesjni. These are eigenstates of the number operator:

ayajni = njni for which hxi = hpi = 0: (1)

The statejni contains preciselyn photons.
Coherentstatesj�i are a particular superposition of number states:

j�i = exp(�j�j2=2)
X
n

�np
n!
jni; (2)

where� can be complex. Note thatjhnj�ij2 = exp(�j�j2)j�j2n=n! is a Poisson distribu-
tion peaked atn = j�j2.

HO coherent states can be defined in three equivalent ways:

1. These are displaced vacuum states:j�i = e�j�j
2=2e�a

y

e��
�a| {z }

Displacement Operator

j0i|{z}
vacuum

.

2. These are eigenstates of the annihilation operator:aj�i = �j�i. Since light is,
in general, detected by absorption, coherent states have the nice property that they
remain coherent even after detection.

3. HO coherent states are states of minimum uncertainty:�p�x = �h=2, and thus are
most classical within the quantum framework.

Output from a well stabilised laser is a coherent state.
A cat-likestatej	i can be considered as a superposition of two or more coherent states

and is formed when an initial coherent statej�i is rotated in phase space by a set of angles
�p:

j�i �!
X
p

cpj�ei�pi: (3)

Since rotations in phase space conserve photon numbers, the underlying Hamiltonian for
the formation of cat states should be a function of the number operator only. Cat states
have highly non-classical features, such as sub-Poissonian statistics and squeezing. It is
interesting to note that a superposition of quantum statesjni produces a coherent statej�i

268 Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001



Non-linear wave packet dynamics of coherent states

which has many classical features, and a superposition of these classical-like states, in turn,
produces the non-classical cat states. What makes all this happen is, of course, quantum
interference.

How do we form a cat state of coherent states? Let us first consider linear evolution.
If UL(t) is the evolution operator corresponding to a Hamiltonian which is linear ina ya:
UL(t) = exp(�i!taya), thenUL(t)j�i = j� exp(�i!t)i. Thus the linear evolution of
j�i is a rotation in phase space. The initial state will be revived at!t = 2�, 4� as expected,
but we need a Hamiltoniannonlinearin aya for the formation of cat states. Let us provide
an example.

2.1Propagation of a single mode field in a Kerr medium

A Kerr medium is nonlinear in the sense that its refractive indexn has a component which
varies with the intensity of the propagating field~�, that is,n = n0 + n2j~�j2, wheren0 and
n2 are constants. Silica fibres are good examples of Kerr media. For a single mode field
(described by the creation and annihilation operatorsa, a y) propagating through a low-loss
Kerr media, the interaction Hamiltonian can be written as

H = �ay
2
a2 = �(aya)(aya� 1); (4)

where� is the third-order nonlinear susceptibility of the medium. The number statejni is
an eigenstate of this Hamiltonian so that if the initial state is a coherent state

j�i =
X
n

cnjni cn = exp(�j�j2=2) �
n

p
n!
; (5)

then the state at timet will have the form

j�(t)i =
X
n

cne
�i�t(n2�n)jni: (6)

Sincen2 � n is always an even number, the system will revive whenever�t is a multiple
of �.

In between revivals, let�t = �r=s wherer, s are mutually prime withr < s. Then
we can write the quadratic (inn) phase in terms of linear phases usingdiscrete Fourier
transform:

exp(�i�rn2=s) =
l�1X
p=0

a(r;s)p exp(�2�ipn=l); (7)

where

l =

�
s; if r is odd,s is even or vice-versa,
2s; if both r ands are odd; (8)

and
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a(r;s)p =
1

l

l�1X
k=0

exp(�i�rk2=s+ 2�ipk=l): (9)

The coefficientsa(r;s)p have closed-form analytic expressions [15]. Substituting in (6), we
get

j�(t)i =
l�1X
p=0

a(r;s)p j� exp [i� (r=s� 2p=l)]i (10)

which is a cat-like state. To visualise this, we will study the evolution of itsQ function.

2.2TheQ function and its evolution

Coherent states satisfy the completeness relationZ
d2�

�
j�ih�j = 1 (11)

Figure 1. Contour plot of theQ function jh�j�(t)ij2=� of an initially coherent state
j�i propagating through a Kerr medium. The horizontal and vertical axes represent
respectively the real and imaginary parts of�. The plots are labeled by their time
values (in units of the revival time).

270 Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001



Non-linear wave packet dynamics of coherent states

which allows us to write

j�(t)i =
Z

d2�

�
j�ih�j�(t)i: (12)

Thus the probability ofj�(t)i being in a coherent statej�i is given byjh�j�(t)ij 2=� which
is theQ function. In figure 1, we plot the time evolution of theQ function as a function
of the real and imaginary parts of�. Note that att = 0, theQ function is a Gaussian,
Q(0) = exp(�j� � �j2)=�, peaked at� = �. For t � the revival timeT = �=�, theQ
function spreads along the perimeter of a circle of radiusj�j until the head meets the tail.
Thereafter it begins to break up into bits and at fractions of the revival time, it produces
replicas of the initialQ function. Can we observe these things? There is good news and
bad news. The good news is that theQ functions can be measured by eight-port homodyne
detectors [16]. The bad news is that in the present example,� is a very small quantity
which makes the revival timeT = �=� (and hence the revival length) too large for the
experiment to be feasible.

3. Generalisations

The above example was somewhat special in that the initial state was a coherent state which
was expanded in terms of number states that were eigenfunctions of the HamiltonianH .
The energy eigenvaluesEn = �(n2 � n) were quadratic inn. We have seen that it is the
quadratic term inEn that was responsible for cat formation. How can we generalise this
result?

Let us consider a more complicated HamiltonianH = f(aya) =
P

k �k(a
ya)k and let

the initial state be given byj	(0)i = P
n �njni. Then the state at timet has the form

j	(t)i =
X
n

�n exp[�itf(n)]jpi: (13)

If the amplitude�n is sufficiently peaked aboutn = n0, thenone can expand the energy
eigenvaluef(n) in a Taylor series aboutn = n0 and drop the higher order terms:

f(n) = f0 + (n� n0)f
0

0 +
(n� n0)

2

2
f 000 + � � � : (14)

In this way, one can recover a quadratic energy eigenvalue even for a more general Hamil-
tonian. Thus, both the non-linearity ofH and the peaked nature of the initial wave packet
are needed for the formation of Schr¨odinger cats.

Of course, the basis functions need not be number states. A classic example is the
case of Rydberg atoms. Here, the basis functions are the negative energy solutions of
the Schr¨odinger equation for the Coulomb potential. The energy eigenvaluesE n have the
highly nonlinearn�2 dependence. But for Rydberg wave packets, the energy levels are
close enough so that the spread�n = jn � n0j is much less thann0, the mean value
about which the levels are chosen. This makes it possible to expandEn aboutn = n0 in a
Taylor series and approximate it as a quadratic polynomial inn. No wonder, then, that the
Rydberg wave packets have proved to be fertile ground for the study of fractional revivals
in quantum systems [2].
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There are two other ways we can extend our previous result: (a) we can consider two-
mode systems for which the Hamiltonian has the formH = f(aya; byb); (b) we can also
consider, as our initial state, coherent states of other symmetry groups such as SU(1,1) and
SU(2).

4. Two-mode systems and their evolution

TheQ function for two-mode cases will be four-dimensional and difficult to visualize. So,
we will look at the evolution of quadrature distributions instead. The quadrature distribu-
tion for a state vectorj (t)i is defined asj (x; y; t)j2 = jhx; yj (t)ij2, wherejx; yi is
the eigenvector of(a + ay)=

p
2 and(b + by)=

p
2 with eigenvaluesx andy respectively.

Quadrature distributions can be measured by homodyne method [16]. We have studied the
wave packet dynamics of two-mode coherent states under the action of a generic, phase
insensitive Hamiltonian (we use�h = 1):

H = c1
�
(aya)2 + (byb)2

�� c2a
yabyb: (15)

SettingT� = �=(2c1 � c2), the Hamiltonian can be readily diagonalised:

H =
�

4

�
(aya+ byb)2=T� + (aya� byb)2=T+

�
: (16)

4.1HO coherent states

Two-mode HO coherent states can be written in terms of two-mode number states in the
following way:

j�; �i =
X
m;n

Cmnjm;ni m, n = 1, 2, 3, . . .1: (17)

We construct the even (+) and odd (�) states

j�; �i� = j�; �i � j � �;��i) (18)

which have number state expansions in the form

j�; �i+ =
X
p;q

C(+)
pq j2p; 2qi+D(+)

pq j2p+ 1; 2q + 1i (19)

j�; �i� =
X
p;q

C(�)
pq j2p; 2q + 1i+D(�)

pq j2p+ 1; 2qi: (20)

Our major findings [17] on the evolution of their quadrature distribution are as follows:
(a) In the short-term, the nonlinearity of the Hamiltonian destroys the initial coherence,
and the patterns are similar for both even and odd states (see figure 2); whereas (b) the
long-term evolution guarantees revival and fractional revival of the initial state but depends
crucially on the ratioT+=T� and on the symmetry of the initial state. The even and odd
states evolve quite differently in the long term andthe even state takes twice as long to
revive as the odd state(see figure 3).

272 Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001



Non-linear wave packet dynamics of coherent states

Figure 2. Contour plots of the quadrature distributions forj�; �i� at different times
for � = 2, � = 3 andT+=T� = 2=3. The plots are labeled by their time values (in
units ofT�). Notice how the initial coherent structure is quickly eroded. Furthermore,
the corresponding plots forj�; �i+ are the same (in the scale of the plots).

Figure 3. Contour plots of the quadrature distributions forj�; �i� (top row) and
j�; �i+ (bottom row) at later times. All other parameters are as in figure 2.

4.2SU(1,1) coherent states

SU(1,1) states arise in nonlinear parametric processes where photons are either created
or destroyed in pairs so that in a two-mode (a, b) system, the photon number difference
q = aya� byb is an integer constant.

How do we define SU(1,1)coherentstates? It is possible to suitably generalise any
of the three defining properties of a HO coherent state to realize coherent states of the
SU(1,1) group. But the outcomes are not equivalent to one another. Thus, the action of
the SU(1,1) squeeze operator on the vacuum state produces the so-called Perelomov [11]
coherent states, the eigenstates of the lowering operator element of the SU(1,1) algebra are
the Barut–Giradello [18] or pair coherent states [10], and equalized (rather than minimum)
uncertainty states are called ‘intelligent’ SU(1,1) states [19]. Here, we adopt a unifying
approach [12,13] which unites all these three definitions by defining the SU(1,1) coherent
states to be the minimum uncertainty states with equal variance in two orthogonal variables.
These are superpositions of number states of the formjn + q; ni wheren = 0, 1, 2, : : :,
1:
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Figure 4. Contour plots of the quadrature distribution att = 0 for the
SU(1,1) coherent statej (�; �; 0)i (top row) andj (�; �; 1)i (bottom row) when (a)
� = �i tanh�=4, � = 0; (b) � = 0, � = 3; (c) � = 0, � = �3i; (d)
� = �i tanh 2�=5, � = 3i. Note that case (a) is a Perelomov coherent state, cases
(b) and (c) represent pair coherent states whereas case (d) is more general.

j�; �; qi = N(�; q) exp(����)

�
1X
n=0

�n(1� j�j2)n+ q+1

2

p
(n+ n0)!(n+ n0 + q)!

n!(n+ q)!
jn+ n0 + q; n+ n0i; (21)

where

N(�; q) =

"
1X
n=0

j�j2n
n!(n+ q)!

#�1=2
: (22)

For pair coherent states� ! 0 whereas for Perelomov coherent states� ! 0. Since
� and� are continuous and (in general) complex parameters, infinitely many other cases
of j�; �; qi exist even for the same value ofq. Some illustrative examples are shown in
figure 4. For SU(1,1) coherent states,q = aya � byb being constant, it is clear from eq.
(16) thatT+ and hence the ratioT�=T+ does not play an active role in the evolution of
these states. However, the parity ofq was found to be crucial in determining the revival
features of SU(1,1) coherent states. Thus for odd values ofq, the quadrature distribution is
revived at all integer values ofT�. This is so for even values ofq as well only when� and
� are pure imaginary. In general, however, the quadrature distribution for even values ofq
is revived atevenmultiples ofT�. In figure 5, we show how the quadrature distribution of
a pair coherent state (with� = 3 andq = 0) evolves in time.

4.3SU(2) coherent states

SU(2) states can be produced in parametric processes in which a ‘photon’ in modea is
created at the expense of a ‘photon’ in modeb, and vice-versa keeping the total number of
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Figure 5. Contour plots of the quadrature distributions for a pair coherent state (� = 3,
q = 0, � = 0) at different times. The plots are labeled by their time valuest (in units
of T�). Note how the initial coherent structure is lost quickly, but is regained later on
to form a Schr¨odinger cat att = 1=2 and eventually to experience full revival att = 2.

photonsN = aya + byb constant. The word ‘photon’ is placed under quotes to mean that
one of the modes can, in fact, represent something other than a light field. A celebrated
example is the interaction of a system ofN two-level atoms with a single-mode (repre-
sented by its annihilation operatora) near-resonant radiation field. The field will induce
transitions between the two levels. Letb andc be the annihilation operators of the atom
in the excited and ground states respectively. Then an interaction term of the formab yc
will excite a single atom to the upper level thus depleting both the ground state population
and the available number of photons by unity. In parametric approximation, the ground
state population is sufficiently large so that its depletion is ignored (i.e.,c is treated as a
c-number). Let us now assume that all the atoms are initially in the ground state. Let the
atomic system interact with the radiation field up to a timet1 and then evolve freely up to
the timet2. The final state will be an SU(2) coherent state.

The SU(2) coherent state can be constructed (defined) in ways similar to the SU(1,1)
coherent state. One can also form a generalized SU(2) coherent state. Here however, we
have chosen to define the SU(2) coherent state in the Perelomov sense, that is, by shifting
the vacuum state with a unitary operator. In the Schwinger representation of the SU(2)
algebra [14], SU(2) coherent statesj�;Ni are formed by the superposition of number states
of the formjK;N �Ki whereN = aya+ byb is an integer constant andK = 0, 1, 2, : : :,
N :

j�;Ni = �
1 + j� j2��N=2 NX

K=0

�
N
K

�1=2

�K jK;N �Ki: (23)

The parameter� is, in general, complex and has a physical meaning in thatj� j 2 is the ratio
of the mean number of photons in the two modes.

Although the probability of findingK bosons in one mode is clearly seen to be binomial,
it should be noted that the photon distribution in each mode has sub-Poissonian statistics.
To see this, we evaluate Mandel’sQ parameterQ1 (for the first mode) andQ2 (for the
second mode) and find
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Figure 6. Contour plots of the quadrature distributions for the SU(2) coherent state
j�; 10i for � = 1 (left picture) and� = i (right picture).

Figure 7. Contour plots of the quadrature distributions for the SU(2) coherent state
jei�; 11i for different values of the phase�. The plots are labeled by their phase values
(in degrees).

Q1 = � j� j2
1 + j� j2 ; Q2 = � 1

1 + j� j2 : (24)

The SU(2) coherent states given by eq. (23) are represented by the wave function

 (x; y; 0) =
1p

�2NN !

�
1 + �2

1 + j� j2
�N=2

e�(x
2+y2)=2HN

�
�x + yp
1 + �2

�
: (25)

Clearly the corresponding quadrature distribution will depend not only onN but also on the
amplitude and phase of the parameter� . The distribution, which is a Gaussian modulated
by the square of a Hermite polynomial, will have dark fringes at the nodes of the latter and
will be lined up at an angletan�1 (1=�) with respect to the positivex-axis. For� = �1,
the distribution is along the diagonalsx = �y. An altogether different pattern arises in the
limiting case� ! �i. One obtains a wave function with vortex structure:
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Figure 8. Contour plots of the quadrature distributions for the SU(2) coherent state
j1; Ni as a function of time forN = 11 (top row) andN = 10 (bottom row). The
plots are labeled by their time values (in units ofT+).

Figure 9. As in figure 8, but at later times.

 (x; y; 0)j�=�i = (x2 + y2)N=2

p
�N !

e�
x
2+y2

2
�iN� ; � = tan�1

�
x

y

�
: (26)

The quadrature distributions corresponding to� = 1 and� = i are shown in figure 6. The
remarkable transition from one pattern to another can be realized by setting� = e i� and
changing the phase� from zero to 90 degrees. This is shown in figure 7 forN = 10.
ForN � 1, the quadrature distributions ofj�;Ni andj�;N + 1i will have similar initial
patterns and short-time evolutions (see figure 8). But their long-time evolutions and revival
features (see figure 9) will depend critically on the parity ofN . In fact, one can show that
under the action of the HamiltonianH given by eq. (16),j�;Ni revives (but for an over-all
phase factor) atall integer multiples ofT+ if N is odd, and atevenmultiples ofT+ if
N is even. If� is pure imaginary, then the revival time is the same forall values ofN .
Fractional revivals (if any) will occur at timest = (r=s)T+, wherer ands are mutually
prime withr < s.
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As an illustration of fractional revival and cat formation, we explain the patterns obtained
at t = T+=2 (see figure 9). IfU(t) = exp(�iHt) is the time evolution operator, then one
can show that

U(T+=2)j1; 10i ! j � 1; 10i+ ij1; 10i; (27)

U(T+=2)j1; 11i ! j � i; 11i+ iji; 11i: (28)

The wave functions corresponding toj � 1; Ni are real (see eq. (25)). In eq. (27), these
state vectors are added with a�=2 phase difference yielding a cat state whose quadrature
distribution is an incoherent sum of the distributions forj1; 10i andj � 1; 10i. In eq. (28),
on the other hand, the state vectorsj� i; Ni are added with a�=2 phase difference. But the
wave functions forj � i; Ni are complex (see eq. (26)) giving rise to strong interference.
The quadrature distribution forU(T+=2)j1; 11i is found to be

(1� sin 2�N)� the quadrature distribution forj � i; Ni;

whereN = 11 and� = tan�1(x=y). Dark fringes will appear whenever sin2�N= 1, i.e.
� = (m + 1=4)�=N wherem is an integer. Since0 � � � 2�, the total number of such
fringes will be2N . Although there will also be2N bright patches, the phenomenon isnot
a 2N -way fractional revival. Rather, it is more like‘slicing a doughnut’radially in 2N
equal parts.

5. The odd-even paradox – a simple explanation

There is no problem, no matter how complicated, which, when viewed in the
correct light, does not appear more complicated– Piers Anthony

An interesting and recurring aspect of this work is the observation that the revival time
for ‘even’ states is, in general, twice as long as for ‘odd’ states. In the following we give a
simple explanation as to why this is so.

Recall that the two-mode HO coherent states were described as even (odd) if they were
composed of Fock statesjm;ni wherem andn have (same) different parity (see eqs (19)
and (20)). For SU(1,1) coherent states, the parity of the photon number differenceq =
aya� byb determines whether the state in question is even or odd. Finally, SU(2) coherent
states are described as even or odd depending on whether the total number of photons
N = aya+ byb is even or odd respectively.

In each case, the time evolution of the quadrature distribution involves sums of the form

f(t) =
X
p

cp expf�2�ip2(t=T )g: (29)

The summation indexp runs through even (odd) integer values for even (odd) states. One
can now easily show that for odd statesf(T=8) = f(0) (but for an over-all phase factor)
whereas for even statesf(T=4) = f(0). Thus the revival time for even states is twice that
of odd states.
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6. Conclusion

In conclusion, we have given a brief introduction to coherent states of various symmetry
groups and compared the non-linear wave packet dynamics of their two-mode realizations.
In each case, the initial coherent structure is lost quickly but is regained later on to experi-
ence the quantum phenomenon of revival and the formation of Schr¨odinger cats. We have
also shown that the parity of the initial state determines the long-time dynamics.
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V Bužek and T Quang,J. Opt. Soc. Am.B6, 2447 (1989)
A Luis and J Peˇrina,Phys. Rev.A53, 1886 (1996)
G S Agarwal, R R Puri and R P Singh,Phys. Rev.A56, 2249 (1997)

[15] J H Hannay and M V Berry,PhysicaD1, 267 (1980)
[16] U Leonhardt,Measuring the quantum state of light(Cambridge Univ. Press, Cambridge, 1997)
[17] Details are to be found in G S Agarwal and J Banerji,Phys. Rev.A57, 3880 (1998)
[18] A O Barut and L Girardello,Commun. Math. Phys.21, 41 (1971)
[19] C C Gerry and R Grobe,Phys. Rev.A51, 4123 (1995)

280 Pramana – J. Phys.,Vol. 56, Nos 2 & 3, Feb. & Mar. 2001


