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Particle production in higher derivative theory
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Abstract. The effect of particle production on the evolution of the spatially flat Friedmann–
Lemaitre–Robertson–Walker cosmological model during the early stages of the universe is analysed
in the framework of higher derivative theory. The universe has been considered as an open thermo-
dynamic system where particle production gives rise to a supplementary negative creation pressure
in addition to the thermodynamic pressure. The dynamical behaviour of both exponential as well as
power law solutions have been discussed.
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1. Introduction

There have been a number of investigations into quantum and theoretical treatment of
gravity which have attracted attention in studies of the early universe [1–4]. The infla-
tionary universe model [1,2] in which the universe has undergone a period of exponential
expansion, has successfully explained many problems in standard cosmology. Attractive
features of these models are that they provide a mechanism to generate the small scale
density fluctuations in the universe which are needed to seed galaxy formation [4]. Many
different alternative theories have been proposed to explain the cosmological problems of
the early universe [5]. Generalized Einstein theory [6] with an additionalR 2 term (higher
derivative theory) was introduced to regularize ultraviolet divergences in Einstein theory
and applied to cosmology to obtain bouncing models, thus avoiding the singularity at the
big bang [7]. Subsequently, a number of authors have elaborated the structure and prop-
erties of the higher derivative gravitational theory (refer [8] and references therein). Very
recently Paul, Mukherjee and Beesham [9] have studied causal viscous cosmological mod-
els in higher derivative theory. Although bulk viscous stress in expanding universe has
been phenomenologically described in terms of particle production, but thermodynamical
behaviour of the universe changes in both cases. In this context it is important to investi-
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gate cosmological models with particle production during evolution of the universe in the
frame work of the higher derivative theory of gravity.

The idea of particle production in cosmology has been dealt by many authors [10]. Pri-
gogineet al (refer [11] and references therein) have studied thermodynamics of open sys-
tems in the reference of cosmology and suggested a quantitative expression for the particle
production out of gravitational energy. They have presented a new concept of adiabatic
transformation from closed to open systems. If we consider the universe as an adiabatic
open thermodynamic system, allowing for irreversible matter production from the gravita-
tional field, then the thermodynamic energy conservation equation becomes

d(�V ) + pdV �
(�+ p)

n
dN = 0 ; (1)

whereV is the volume of the system,n = N=V is the particle number density, andN is
the number of particles inV . This conservation equation may be written as

d(�V ) + (p+ pc) dV = 0 : (2)

Herepc is the supplementary pressure corresponding to creation of matter and expressed
as

pc = �
(�+ p)

n

dN

dV
= �

(�+ p)

N

dN

dt

1

3H
; (3)

the creation pressurepc is negative or zero depending on the presence or absence of par-
ticle production. Thus, the effect of production of new particles is equivalent to adding a
supplementary pressure termpc to the thermodynamic pressurep so that the conservation
equation for a closed system

d(�V ) + pdV = 0 (4)

is modified to eq. (2) for an open system.
For an adiabatic open system, the increase in entropy is only due to the creation of matter

and since entropy (S) is an extensive property of the system (i.e.,S is proportional to the
number of particles included in the system), we have the relation

dS

S
=

dN

N
: (5)

The second law of thermodynamics requires thatdS � 0, which imposes the condition
that the only particle number variations admitted are such thatdN � 0. Several authors
[12] have studied the thermodynamics of particle production in different contexts.

Cosmological models with constant deceleration parameter have been undertaken by
several authors [13] in general relativity (GR). Johri and Kalyani [14] have shown that
many known cosmological models of Brans–Dicke theory (BDT) for flat Friedmann–
Lemaitre–Robertson–Walker (FLRW) space-time universe are models with constant de-
celeration parameter. These models may be categorized in two classes, the first category
is of singular models where the cosmic expansion is driven by the big-bang impulse; all
the matter and radiation energy is produced at the big-bang epoch. In the second category
of models the universe has a non-singular origin, the expansion starting from a vacuum
fluctuation, and then particle production occurs. Further, constant deceleration parameter
measures the deviation of the growth of the scale factor from its linear growth in time [15].
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Motivated by the aforesaid studies in GR as well as in BDT, in this paper we have
considered constant deceleration parameter models to study the particle production out of
the gravitational field in higher derivative theory. The dynamical behaviour of models will
also be discussed.

2. Field equations

In order to study classical solutions with particle production, we consider the following
generalized action

I =

Z
p
�g

�
�
1

2
(R+ �R2) + Lmatter

�
d4x ; (6)

whereg is the determinant of the 4-dimensional metric,G is the gravitational constant,R
is the scalar curvature and� is a positive constant. It is straight forward to write down the
field equation from the action (6) as

Rij�
1

2
gijR+�

�
2R

�
Rij �

1

2
gijR

�
+ 2(R;ij � gij2R)

�
= �8�GTij ; (7)

where (;) represents the covariant derivative andT ij is the energy-momentum tensor for
matter distribution defined as

Tij = (�+ p)uiuj + pgij : (8)

The field equation (7) for a homogeneous and isotropic universe represented by a spa-
tially flat FLRW metric

ds2 = �dt2 + a2(t) [dr2 + r2(d�2 + sin2� d�2)] (9)

takes the form

H2 � 6�[2H �H � _H2 + 6H2 _H ] =
8�G

3
� (10)

together with the conservation equation for the matter

_�+ 3H(�+ p) = 0 ; (11)

whereH = _a=a is the Hubble parameter. It may be mentioned [11] here that the space–
space components of the field equation given by eq. (7) can be obtained using the time–
time component (10) and the conservation equation (11), hence the relevant field equations
are (10) and (11) respectively [8].

Let us treat the universe as an open thermodynamic system with initiallyN particles
and assume that a random fluctuation in curvature induces a transformation of gravitational
energy into matter energy, producing an additional number of particledN . This increase
in the number of particles fromN to N + dN gives rise to a negative supplementary
pressure to the thermodynamic pressure and this negative pressure drives the expansion of
the universe. Hence, the perfect fluid pressure should be replaced by an effective pressure
of the cosmic fluid which is given by

pe� = p+ pc : (12)
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By using eq. (12) and the equation of state

p = (
 � 1) � ; (13)

where
 (1 � 
 � 2) is a constant, the conservation equation (11) reduces to

_�+ 3H
� = �3Hpc : (14)

With help of (3), eq. (14) after integration yields

N(t) = N0a
3(t)�1=
 ; (15)

whereN0 is an integration constant. Equation (15) gives rise to a relation between the
particle number density (n) and energy density (�) as

n / �1=
 : (16)

According to Gibbs integrability condition, one cannot independently specify an equa-
tion of state for the pressure and temperature [16]. If we consider one barotropic relation
then the other relation must be barotropic and hence

T / exp

Z
dp

�(p) + p
(17)

which, with help of the equation of state (13), gives

T = T0�
(
�1)=
 : (18)

HereT0 is a proportionality constant.
As we have only four independent equations viz. (10), (13), (15) and (18) and five

unknown variables viz.a, �, p,N andT , we have to assume one more physically plausible
relation.

3. Cosmological solutions

In order to study pariticle production during the early stages of evolution, we take the
deceleration parameter to be constant (see [13–15])

�
_H +H2

H2
= q (constant) : (19)

The deceleration parameterq measures the deviation from linearity of the growth of the
cosmic scale factor. Equation (19) may be written as

_H + (q + 1)H2 = 0 (20)

which gives the solutions

a(t) = (B +MAt)1=M ; M = q + 1 6= 0 (21)

a(t) = C eDt ; M = 0 (22)
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whereA, B, C andD are constants. It is worthwhile to mention that matter creation may
not be in the contracting phase of the universe. Thus particle production from gravitational
energy take place only in the expanding phase (H > 0) of the universe providedM > 0.
Equation (21) represents inflationary models of the universe for�1 < q < 0. Now, we
shall consider, in turn, the power law and exponential models separately.

3.1 Power-law model

Using (21), eq. (10) yields

� =
3A2

8�G(B +MAt)2

�
1 +

18�M(2�M)A2

(B +MAt)2

�
: (23)

ForM � 2, the energy condition� � 0 is satisfied. The energy density is decreasing with
time. Substituting the values ofa(t) and�(t) from eqs (21) and (23) into (15), we get an
explicit expression for the particle numberN ,

N = N1(B +MAt)(3
�2M)=
M

�
1 +

18�M(2�M)A2

(B +MAt)2

�1=

; (24)

where

N1 = N0

�
3A2

8�G

�1=


:

The second law of thermodynamics suggests thatdN � 0 which implies
 � (2M=3).
From eqs (18) and (23), we obtain for the temperature

T = T1(B +MAt)(2(1�
))=

�
1 +

18�M(2�M)A2

(B +MAt)2

�(
�1)=

; (25)

whereT1 = T0(N1=N0)

�1. In this model the number of particles increases. ForM = 1:5

and large value oft, in the dust model (
 = 1) of the universe the number of particles
becomes constant. The energy density, thermodynamic pressure, creation pressure and
particle number density are decreasing functions of time. These results also follow the
results of Johri and Kalyani in Brans–Dicke theory [14]. The model solves the entropy
problem.

3.2Exponential model

Considering (22), eqs (10) and (15) suggest that the cosmological model has uniform en-
ergy density and that the number of particles is directly proportional to the volume of the
universe. In this case the strong energy condition (T�� �

1
2g��T )v�v� � 0 is violated.

The field equation (10) permits an alternative exponential solution

a(t) =

�
a0 + exp

�
t

p
6�

��2=3
: (26)
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The corresponding energy density is

�(t) =
exp

�
4tp
6�

�

36��G
h
a0 + exp

�
tp
6�

�i4 : (27)

By using eqs (26) and (27), (15) yields

N(t) =
N0

(36��G)1=


exp
�

4t



p
6�

�
h
a0 + exp

�
tp
6�

�i(4�2
)=
 : (28)

The weak energy conditionT��v�T��v� � 0 suggests thata0 � 0 and the strong energy
condition suggests thata0 < 0.

From eqs (18) and (27), we get

T (t) = T0

2
64 exp

�
4tp
6�

�

36��G
h
a0 + exp

�
tp
6�

�i4
3
75
(
�1)=


: (29)

4. Discussion

In standard cosmology, the field equation (10) reduces to

3H2 = 8�G� (30)

and the continuity equation (14) remains the same. The energy-density, total particle num-
ber, and temperature with scale factor given by (21), take the following form

� =
3A2

8�G(B +MAt)2
; (31)

N = N0

�
3A2

8�G

�1=


(B +MAt)(3
�2M)=
M ; (32)

T = T0

�
3A2

8�G

�(
�1)=


(B +MAt)(2(1�
))=
 : (33)

It can be seen from the above expressions that in higher derivative theory with power
law relation between scale factor and time, the universe starts with higher energy density,
total number of particles and temperature in comparison with standard cosmology based on
general relativity. The additional terms in these physical quantities is decreasing fast and
later on reduces to those of general relativity. ForM = 2 all solutions of higher derivative
theory are similar to solutions of standard cosmology.

The horizon distance (proper distance travelled by light emitted at timet 1) [17] for the
model is
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dH(t) = a(t) lim
t1!�1

Z t

t1

d�t

a(�t)
=

B +MAt

A(M � 1)
(34)

for all M < 1 (i.e. q < 0). From (34) it can be easily seen that horizon distance is
finite throughout and hence causal communication between two observers exist. During
expansion of the universe the ratio of potential energy and kinetic energy
 = 8�G�=3H 2

becomes


 = 1 +
18�M(2�M)A2

(B +MAt)2
: (35)

This agrees with the fact that universe was curved during early stages of its evolution. For
large value oft, the second term on the right hand side is negligible and hence universe
becomes flat.

In adiabatic particle production processes the entropy per particle associated with parti-
cle creation is constant.

The energy-density, total particle number and temperature with exponential solution
given by eq. (22), have the following expressions

�(t) =
exp

�
2tp
6�

�

36��G
h
a0 + exp

�
tp
6�

�i2 ; (36)

N(t) =
N0

(36��G)1=


exp
�

2t



p
6�

�
h
a0 + exp

�
tp
6�

�i(2�2
)=
 ; (37)

T (t) = T0

2
64 exp

�
2tp
6�

�

36��G
h
a0 + exp

�
tp
6�

�i2
3
75
(
�1)=


: (38)

In the case of exponential model also, it is clear that during early stages universe gets
more energy-density, total number of particles and temperature in comparison to standard
cosmology. After a large time, both the higher derivative theory as well as general relativ-
ity become similar and yield uniform energy density and temperature. The total number
of particles also remains the same which may be interpreted that particle production is
balanced by particle annihilation.
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