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We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same

semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis

(CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were

considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two

observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum

value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence

found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site

were considered as the two views, and statistically significant relationships were established between these two views

to elucidate the viral preference as an important factor for the correlation.

[Sarkar BK and Chakraborty C 2015 DNA pattern recognition using canonical correlation algorithm. J. Biosci. 40 709–719] DOI

10.1007/s12038-015-9555-z

1. Introduction

Progresses in genome sequencing technology enable scien-

tists to search some common sequence elements in the DNA

sequence. For example, DNA-binding proteins composed of

DNA-binding domains are likely to bind related DNA se-

quences (Dickerson 1983; Pabo and Sauer 1984). Searching

for functionally similar DNA sequences is very important to

find some particular pattern in the sequence. In order to

identify common patterns, several search approaches can

be found in the literature. Hertz and Stormo (1999) modelled

a succession of mechanisms to conclude alignments of mul-

tiple sequences. Based on the greedy algorithm they de-

scribed log-likelihood scoring systems for searching

alignments of functionally related sequences. Guha

Thakurta and Stormo (2001) implemented Gibbs sampling

method to explore subjective binding site patterns in DNA

sequences. In Gibbs sampling method a stochastic variant of

expectation maximization is determined (Lawrence et al.

1993; Neuwald et al. 1995) and a predetermined motif is

substituted by another one that possesses a higher score, thus

permitting escape from local optima. An algorithm based on

palindromic behaviour between the frequencies of bases was

formulated to explore the integration sites in HIV-1 consen-

sus sequences (Holman and Coffin 2005; Wu et al. 2005).

But in such stochastic motif detection algorithm, it some-

times results in non-identical outputs in multiple runs of the

simulation, keeping the input unchanged. Another drawback

is that they are single modal techniques that can only deal

with data from a single view. However, multimodal data

from the semantic groups is prevalent in practice.

Therefore, handling such multimodal data at the same time

is a fundamental and practical problem. One effective meth-

od to address this issue is ‘canonical correlation analysis’

(CCA) (Hotelling 1936).

CCA compares two sets of multidimensional variables (in

this case, a set of DNA sequence and a set of pattern) to

examine the correlation between them (Hotelling 1936).

CCA looks for correlated functions which are covariates of

two different sets having some relation (Kettenring 1971;

Johnson and Wichern 1992; Hardoon et al. 2004; Tenenhaus

and Tenenhaus 2011). The attainability of such correlated
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functions of two semantic sets is likely to persist due to a

causal factor accountable for the correlation. CCA aims to

discover the correlation between a linear combination of the

variables in one set and another linear combination of the

variables in the other set by projecting them onto a lower-

dimensional space and maximum correlated (Kettenring

1971; Breiman and Friedman 1985; Yu et al. 2006; Iaci

et al. 2010). The advantage of CCA is evident: First, it keeps

the operative discriminant information of multiple modali-

ties; secondly, it also removes the information redundancy to

a certain limit. Thus, CCA has received more attentions in

pattern recognition (Liang et al. 1995; Zhou and Shen 2009;

Lei et al. 2010; Jing et al. 2011; Yuan et al. 2011). In this

article, we describe an algorithm for recognizing a pattern in

DNA sequence based on multivariate statistical method,

canonical correlation analysis or CCA and here we analysed

DNA pattern recognition using canonical correlation

algorithm.

2. Methodology

2.1 Genomic sequence dataset

We have taken Homo sapiens beta hemoglobin coding

sequences (HBB) for proposed simulation. A hemoglo-

bin molecule contains two alpha hemoglobin and two

beta hemoglobin chains. The alpha as well as beta

chains is coded by separate genes. The alpha hemoglo-

bin gene is found on chromosome 16, and the beta

hemoglobin gene is found on chromosome 11. A se-

quence of 444 nucleotide bases from beta hemoglobin

sequence of the human genome is downloaded from

GenBank with accession number NM_000518.4 from

51 to 494.

2.2 Canonical correlation analysis

Canonical correlation analysis is to find two sets of basis

vectors for two sets of variables which on projections

upon their respective basis vectors offer maximal correla-

tion (Al-Kandari and Jolliffe 1997; Kursun et al. 2011).

The underlying assumption is that the basis vectors X and

Y will exist for variables x and y, {x(n) ∈ ℝ
P, y(n) ∈ ℝ

Q;

n = 1, 2,···, N} in such a way that the transformed

projection upon X and Y are mutually maximized

(Hotelling 1936). Thus, canonical correlation analysis

finds which directions account for much of the covariance

between two data sets.

Canonical correlation analysis computes two projec-

tion vectors, Wx ∈ ℝ
P , Wy ∈ ℝ

Q to find the

correlation between x and y, such that, the correlation

is given as

ρ ¼
E xy½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E x2½ �E y2½ �
p ¼

E W T
x xy

TW y

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E W T
x xx

TW x

� �

E W T
y yy

TW y

h i

r

ρ ¼
W T

x CxyW y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W T
x CxxW xW

T
yCyyW y

q

ð1Þ

Cxy is the covariance matrix of x and y. Cxx and Cyy are the

dispersion matrices of x and y, respectively.

The maximum value of ρ with respect to Wx and Wy is the

maximum canonical correlation or simply canonical correla-

tion (CC):

ρ x; yð Þ ¼ max
W x; W y

W T
x CxyW y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W T
x CxxW xW

T
y CyyW y

q ð2Þ

To maintain the invariance of ρ subject to the scaling of

vectors Wx and Wy, CC can be expressed as the following

optimization problem:

max
W x; W y

W T
x CxyW y

subject to W T
xCxxW x ¼ W T

y CyyW y ¼ 1
ð3Þ

Assuming Cyy as nonsingular, one can obtain Wx by

solving the optimization problem

max
W x

W T
x CxyC

−1
yy CyxW x

subject to W T
xCxxW x ¼ 1

ð4Þ

The eigenvectors corresponding to top eigenvalues are

determined from the following generalized eigenvalue prob-

lem:

C−1
xxCxyC

−1
yyCyxW x ¼ ρ

2W x ð5Þ

The eigenvalues ρ2 are the squared canonical correlations.

The eigenvectors, Wx and Wy are the normalized canonical

correlation basis vectors. The maximum number of canoni-

cal correlations are restricted to the minimum dimensionality

of x and y. For example, if the dimensionality of x and y is 10

and 6 respectively, the maximum number of canonical cor-

relations is 6.

2.3 Nucleotide density

CCA analyzes were done by introducing a w-wide window

sliding in base-by-base manner along the sequence between

position i = 1 to 444 region of Homo sapiens beta
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hemoglobin gene (HBB). Window sliding is to find the

density of nucleotide {A, C, G, T} in the sequence. The

following definitions are helpful for the calculation of nu-

cleotide density in the sequence.

Definition 1. Nucleotide Signature: For a sequence, the

nucleotide signature Sk is the mapping with bk ∈ {A, C, G,

T} where i-th bit in Ski, is corresponding to the presence or

absence of bk.

Example 1. Consider a sequence, S = ‘AACTCG’. The

signatures of A, C, G, T in the sequence is SA, SC, SG, ST:

SA ¼ 1 1 0 0 0 0½ �; SC ¼ 0 0 1 0 0 0½ �; SG

¼ 0 0 0 0 0 1½ �; ST ¼ 0 0 0 1 0 0½ �

Definition 2. Nucleotide Density: A sequence x[n] is

transformed through mapping of the sequence into the output

sequence y[n] via a weighted window b by means of the

convolution summation as

y n½ � ¼
X

i

bix n−i½ � ð6Þ

b is independent of x[n] and y[n], where n is the base

position. y[n] is the response of the transformation to input

signal x[n]. The output is computed as a weighted, finite

term sum, of previous and present input.

Example 2. Weighted output of SA with the weighted

window b = [0.2 0.1 0.3 0.4] is as follows:

SA ¼ 1 1 0 0 0 0½ �

yA n½ � ¼
X

3

0

bkSA n−k½ � with b0¼0:2; b1¼0:1; b2¼0:3; b3¼0:4:

⇒yA n½ � ¼ b0SA n½ � þ b1SA n−1½ � þ b2SA n−2½ � þ b3SA n−3½ �

yA = [0.2 0.3 0.4 0.7 0.4 0]; Similarly for other nucleotide

viz., C, G, T, the output is obtained as

yC ¼ 0:2 0:0 0:2 0:1 0:5 0:5½ �; yG

¼ 0:0 0:0 0:0 0:0 0:0 0:2½ �; yT

¼ 0:0 0:0 0:0 0:2 0:1 0:3½ �:

For nucleotide density calculation, evenly distributed

window of unit value is considered. As explained, the output

of the convolution summation represents the nucleotide den-

sity along the sequence.

3. Results

The validity and applicability of the proposed CCA are

assessed on the basis of the simulated data. We have con-

sidered a predetermined pattern of DNA sequence as

GGCCTGGCTCACCTGG having nucleotide density gener-

ated as {x(n) ∈ ℝ
4, n = 1, 2,···, 16}, such that they have a

relationship with Homo sapiens beta hemoglobin gene HBB

(NM_000518.4 from 51 to 494) of length 444 bp. HBB

sequence has nucleotide density distribution generated as

{y(i) ∈ ℝ
4, i = 1, 2,···, 444}. Here four dimension vector

space is considered as an attribute of four nucleotides (A, C,

G, T). Figure 1 shows the nucleotide density distribution

along the pattern sequence (henceforth called as pattern set).

The pattern shows enriched G nucleotide zone at the two end

positions. The intermediate region of the pattern sequence (~

position 9 to 13) is enhanced with C nucleotide. Similarly

the nucleotide density along the HBB sequence (henceforth

called as test set) is shown in figure 2. A pattern matrix P (=x

′) of 4×16 dimension is constructed such that the (k,i) entry

of P, includes the nucleotide density of k-th nucleotide, bk ∈

{A, C, G, T} at i-th position in the sequence. Similarly, test

matrix of Homo sapiens beta hemoglobin sequence is pre-

pared as Q (= y′) of 4×444 dimension.

For the recognition of the pattern, we make ‘sliding’ of

the pattern sequence of length 16 sites along the test se-

quence one-by-one positions. At each position, we perform

the canonical correlation analysis between P and Q. In

figure 3, the correlation between first two pairs of canonical

variates (U1, V1 and U2, V2) are shown at base pair posi-

tion, i=1. Figure 4 shows the correlation between first two

pairs of canonical variates at position i=429. Analogous to

the scatter plot of canonical variates over the test sequence

starting at i=1, correlation between first two pairs of canon-

ical variates at position i=429 also shows the same type of

scattering.

For the searching of pattern on the HBB sequence, we

evaluate first and second correlation (r1 and r2) base-by-

base, for the first and second component pair, respectively.

Figure 1. Distribution of the nucleotide density along base posi-

tion on the pattern sequence.
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We have calculated values of r1 and r2 with window size,

w=3, 5 and 10. The variations of correlations between pat-

tern and test sequence for the entire 444 bp region are shown

in figures 5–7 with different window sizes. Scatter plot of

first two pairs of canonical variates at 223 bp position is

shown in figure 8. We notice that the values of first two pairs

of canonical variates at 223 bp position maintain a high

correlation among themselves.

For further application of CCA we have applied the

method of pattern recognition in case of retroviral integration

sites in the human genome (Schröder et al. 2002; Wu et al.

2003; Mitchell et al. 2004). Schröder et al. analysed the

integration site in the human genome by human immunode-

ficiency virus type 1 (HIV-1). They infected human lym-

phoid and generated 689 HIV-1 clones in human SupT1

cells, which are deposited in GenBank with accession no.

BH609398 to BH610086. We took these sequences from

GenBank and consequently, and used the NCBI BLAST

program to find the integration sites to the human genome.

The BLAST program takes HIV-1 clone as a query sequence

and searches it against the entire database of sequences

maintained at NCBI. The output is obtained as ‘hits’ and

these are combined into a Seq-annotation. Among all these

hits, we considered DNA/assembled sequences that were

found in the chromosome region. The sequences were

aligned to their integration site, and each base position was

numbered according to distance from integration site. The

numbering of the base position started from the first genomic

base 3′ to the viral integration point, labelled as offset 0 and

flanked by 500 bases 5′. The end side is denoted as offsets –

500 through –1. Similarly base positions are flanked by 500

bases 3′ on the other side as offsets 1 to 500. As before, the

nucleotide density distribution was generated for the se-

quence. Figure 9 shows canonical correlations along the

sequence between –500 and +500 base positions based on

1-gram word calculations with different window width.

Figure 10 depicts canonical correlations along the sequence

based on 2- gram word calculations with different window

width.

Figure 2. Distribution of the nucleotide density along base posi-

tion on the Homo sapiens beta hemoglobin sequence.
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Figure 3. (a) Scatter plot of first pair of canonical variates at base position n=1 with regression (solid line). (b) Scatter plot of second pair

of canonical variates at base position n=1.
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4. Discussion

We used CCA in two cases for pattern recognition, one in

the presumed model investigation in HBB sequence and

another in the case of integration site searching in the human

genome by human immunodeficiency virus type 1 (HIV-1).

In the first case, a comparison was done with the test set

(HBB sequence) and the training set (ideal pattern). At two

extreme points (i = 1 and 429) of the HBB sequence

(figures 3 and 4), it shows that the pair of canonical variates

follow a scattered clustering which clearly indicates that the

pattern is not existing at these positions. Figures 5–7 show

the first and second correlation dispersion along the se-

quence with window width of 3, 5 and 10 units. It is evident
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Figure 4. Scatter plot of (a) first pair and (b) second pair of canonical variates at base position n=429.
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Figure 5. Canonical correlations on test set along the 1-429 base with a peak at n=223 (correlation of 0.991 (a) and 1.0 (b)) with

window=3.
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in each figure that the highest peak of the correlation distri-

bution appears at the base position i=223 with a value >0.94,

which indicates the presence of the pattern on the test se-

quence starting from the base position i=223. It is worthy to

be mentioned that the peak height decreases with the in-

crease of window size. Basically, window size of unity

makes one-to-one nucleotide comparison for learning the

correlated function. On the other hand, larger window size

results in loss of significance of the correlations because it

shows significant base preferences proximal to the site of

assessment and little liking distant from it. Figure 8a–b

provides a strong support for the existence of the pattern at

the base position i=223. Scatter plot of two pair of canonical

variates demonstrates good regression relation and validate

the existence of the pattern on the test sequence at 223 base

positions.

For the validation of the CCA method, we considered

large data sets and performed a detailed analysis. We have

applied CCA analyses to explore integration site in the

human genome by human immunodeficiency virus type 1

(HIV-1). CCA was performed by making ‘sliding’ of 2w-

wide window along the test sequence one-by-one position

along x=–500 to +500 region, a total of 1001 base posi-

tions with 20 sequences kept in row-wise. Similar work is

reported by Gumus et al. (2012). But they used two

overlapping windows with an adverse gap between them

for sequence dynamics study. In the present work one

window was halved into two parts and overlapping, and

was not considered for simplicity. Two halves of the

window (each with width w) were taken as the input for

the correlation calculations. The window sliding was to

check whether the relationship at a particular position was

sound enough to be more than the relationships found

somewhere else. Correlation distributions with different

window width are shown in figures 9 and 10. In the

correlation analysis, the 20 HIV-1 sequence sets revealed

significant preferences at offsets in the vicinity of the

integration site. During integration, both the 3 ends of

the viral DNA were introduced into the host DNA sepa-

rated by few bases, being contingent on the viral species

(Goodarzi et al. 1995, 1997).

To investigate the highly significant base preferences

surrounding the integration sites of HIV-1, we imple-

mented statistical validation. Twenty sequences in the

vicinity of the integration point were considered. The

dataset was randomized, and 11 samples were generat-

ed in each base position with offset from –5 to +5

flanking the viral insertion point. A randomization test

was performed based on ANOVA to determine whether

there was a base preference in the vicinity of the

integration site. The randomization was to ensure that

all bases are permitted at all locations; none is categor-

ically required or even proscribed. In doing so, it was

assumed that structural features ideal for interaction
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Figure 6. Canonical correlations on test set along the 1-429 base with a peak at n=223 (correlation of 0.984 (a) and 0.952 (b)) with

window=5.
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with integration site is determined by the DNA primary

sequence. However, ANOVA determined F-distribution

with P-values to check whether correlations (viral pref-

erence patterns) still exist in different sequences. The

F-distribution with P-values is shown in table 1.

It should be kept in our mind that CCA maximizes the

correlations between two sets of features obtained from the

same semantic pattern, and subsequently extracts the effec-

tive discriminant feature. So, CCA is an unsupervised linear

abstraction from two sets. For further improvement of

discriminative power of CCA features, one can use super-

vised algorithms (Sun et al. 2005, 2008; Peng et al. 2010),

for example, generalized CCA (GCCA) (Sun et al. 2005),

and discriminant CCA (DCCA) (Sun et al. 2008). These

algorithms apparently enhance multimode recognition rates

from different viewpoints. Nevertheless, CCA approaches

only deal with two sets of features, which cannot accurately

describe the correlations among more than two sets of

features.
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Figure 7. Canonical correlations on test set along the 1-429 base

with a peak at n=223 (correlation of 0.982 (a) and 0.941 (b)) with

window=10.
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Figure 9. (a) Canonical correlations along the sequence between –500 and +500 base position with a peak at integration site (correlation

of 0.984). Calculation is done based on 1-gram word with window width 2w=6. (b) Canonical correlations along the sequence between –

500 and +500 base position with a peak at integration site (correlation of 0.978). Calculation is done based on 1-gram word with window

width 2w=10. (c) Canonical correlations along the sequence between –500 and +500 base position with a peak at integration site

(correlation of 0.968). Calculation is done based on 1-gram word with window width 2w=14.
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Figure 10. (a) Canonical correlations along the sequence between –500 and +500 base position with a peak at integration site (correlation

of 0.903). Calculation is done based on 2-gram word with window width 2w=6. (b) Canonical correlations along the sequence between –

500 and +500 base position with a peak at integration site (correlation of 0.897). Calculation is done based on 2-gram word with window

width 2w=10. (c) Canonical correlations along the sequence between –500 and +500 base position with a peak at integration site

(correlation of 0.882). Calculation is done based on 2-gram word with window width 2w=14.
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5. Conclusions

We present the canonical correlation analysis applied on a

sequence dataset to recognize a predetermined pattern on the

sequence. CCA is an unsupervised numerical tool to find

correlated functions over different sets of variables, and in its

use of DNA sequence, the two sets can be sequence struc-

tures constructed from a pattern and a target sequence. The

pattern having a relationship with HBB target sequence was

considered for CCA test. HBB sequence of 444 bp length

was deliberated as test sequence. CCA finds correlations

between two observations of the same semantic pattern and

test sequence. We found that there were significant correla-

tions at 223 bp position, confirming the presence of the

pattern starting from 223 bp position in the test sequence.

Window width, which is a parameter for the determination of

the nucleotide density, plays a crucial role in CCA design.

For better understanding of small pattern recognition, small

a window width is very useful. The standard CCA is very

useful to find the linear relationship, and it is very sensitive

to outliers due to its high dependence on the correlation

coefficient. CCA very efficiently addressed integration

mechanism in the human genome by HIV-1. The analysis

has revealed very significant base preferences in the vicin-

ity of the integration sites of HIV-1.
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