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Protein–protein interaction (PPI) networks are believed to be important sources of information related to biological

processes and complex metabolic functions of the cell. Identifying protein complexes is of great importance for

understanding cellular organization and functions of organisms. In this work, a method is proposed, referred to as

MIPCE, to find protein complexes in a PPI network based on mutual information. MIPCE has been biologically validated

by GO-based score and satisfactory results have been obtained. We have also compared our method with some well-

known methods and obtained better results in terms of various parameters such as precession, recall and F-measure.
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1. Introduction

Protein–protein Interaction (PPI) networks are believed to be

important sources of information related to biological processes

and complex metabolic functions of the cell. Recent advances in

biotechnology have resulted in a large amount of PPI data. The

increasing amount of available PPI data necessitates a fast,

accurate approach to biological complex identification.

Because of its importance in the studies of protein interaction

network, there are different models and algorithms for identify-

ing functional modules in PPI networks. To analyse the com-

plex networks of PPIs and to identify protein complexes or

functional modules from them is one of the most im-

portant challenges in the post-genomic era. Identification

of functional modules in protein interaction networks is

a first step in understanding the organization and dy-

namics of cell functions. System-level understanding of

biological organization is a key objective of the post-

genomic era. Complex cellular processes are modular

and are accomplished by the concerted action of func-

tional modules. These modules encompass groups of

genes or proteins involved in common elementary bio-

logical functions as found in Collins et al. (2007).

Revealing modular structures in biological networks

Mahanta et al. (2012) will help us understand how cells

function. To cope with the ever-increasing volume and

complexity of protein interaction data, many methods

which are based on modelling the PPI data with graphs

have been developed for analysing the structure of PPI

networks.

PPI networks are represented as undirected graphs with

nodes corresponding to proteins and edges representing the

interactions between two proteins, where self-loops and par-

allel edges are not considered, as stated in Adamcsek et al.

(n.d.). PPI networks are important sources of information

related to biological process and complex metabolic

functions of the cell. Cluster analysis is a choice of

methodology for the extraction of functional modules

Mahanta et al. (2014) from protein–protein interaction net-

works. Clustering can be defined as the grouping of objects

based on their sharing of discrete and measurable properties.

In PPI networks, clusters correspond to two types of

modules:

& Protein complex: It is a physical aggregation of several

proteins via molecular interaction with each other at the

same location and time.

& Functional module: It consists of a number of proteins

(and other molecules) that interact with each other to
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control or perform a particular cellular function. Unlike

protein complexes, these proteins do not necessarily

interact at the same time and location.

Mutual information Hoque et al. (2014) measures the cor-

relation between two random variables. In the context of

biological network inference, a higher mutual information

between two genes or gene products indicate a higher depen-

dency Mahanta et al. (2013), and therefore a possible interac-

tion between them. For a given two variables A and B, the

mutual information measures how much knowing one of these

variables reduces our uncertainty about the other. The mutual

information between two gene expression patterns by Cover

and Thomas (2012) is given by the following equation:

M I A;Bð Þ ¼ H Að Þ þ H Bð Þ−H A;Bð Þ ð1Þ

where H(A, B) is the joint entropy of two gene expressions A

and B.

An alternative to this method based on kernel density

estimation (KDE) was suggested by Moon et al. (1995).

The MI between two genes X and Y with continuous expres-

sion values is given by equation 2:

M I X ; Yð Þ ¼ ∫x∫y f x; yð Þlog
f x; yð Þ

f xð Þ f yð Þ

� �

dxdy ð2Þ

where f(x;y) is the joint probability density of the two random

variables, and f(x) and f(y) are the marginal densities. For a

given m data points or conditions in the dataset, the joint and

marginal densities can be estimated by the Gaussian kernel

estimator given by equations 3 and 4:
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where h is the width of the kernels. The MI equation can be

approximated by the sample average as given in equation 5:
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One of the advantages of kernel density estimation over

simple frequency histograms is that only one parameter

(i.e. kernel width, h) must be set, whereas the histogram

requires two parameters, i.e. bin width and origin. But the

traditional kernel estimation method takes high computation

time due to repeated calculations of the kernel distances for

each gene expression while computing the pair-wise MI for

all pairs. To avoid this, we use the modified kernel estima-

tion method described in Qiu et al. (2009) for MI estimation

where the computation time is reduced by changing the order

of the loops.

1.1 Motivation

The main idea was to go beyond pair-wise interactions and

utilize additive features between any nodes. While this in-

creases the network inference complexity over pair-wise inter-

action-based approaches, it achieves much higher accuracy.

Moreover, we focus on reducing wrong edges while extracting

protein complexes from PPI network. To achieve these two

goals, we considered proteins with high mutual information

while neglecting those with lower mutual information.

1.2 Contributions

The following contributions have been made in this study.

& An effective mutual-information-based PPI network con-

struction technique referred to as MIPCE has been intro-

duced which is able to extract protein complexes of high

functional coherence.

& GO-based validation of the protein complexes given by

MIPCE.

& Evaluation of MIPCE in terms of precision, recall and F-

measure and comparison with its several counterparts.

The rest of the article is organized as follows. In section 2

related research is reported. The proposed method is ex-

plained in section 3. The detailed experimental results are

presented in section 4. Finally, concluding remarks and

research directions are given in section 5.

2. Related work

In order to solve the problem of detecting all possible protein

complexes in a PPI network, several computational pro-

posals have been introduced. In this section we discuss some

of the popular methods for protein complex identification.

Cfinder: Adamcsek et al. (2006) provide a software called

CFinder which can detect the K-clique percolation clusters as

functional modules using a Clique Percolation Method. A K-

clique is a clique with K nodes, and two K-cliques are adjacent

if they share common nodes. The final cluster is constructed by

linking all the adjacent K-cliques as a bigger subgraph.

DPClus: Altaf-Ul-Amin et al. (2006) propose a cluster periph-

ery tracking algorithm called DPClus to detect protein com-

plexes by keeping track of the periphery of a detected cluster.

DPclusfirst weighs each edge based on the common neighbours

between its two proteins and further weighs nodes by its weight-

ed degree. To form a protein complex, DPClusfirst chose the
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node with highest weight as the initial cluster and then iterative-

ly augments this cluster by including vertices one by one.

MCL: Satuluri et al. (2010) introduces Markov Clustering

(MCL) which can be applied to detect functional mod-

ules and protein complexes by simulation of random

walks in PPI network. MCL manipulates the weighted

or unweighted adjacency matrix with two operators

called expansion and in inflation. Iterative expansion

and inflation will separate the PPI network into many

segments as protein complexes.

MCODE: It is one of the first computational methods pro-

posed by Bader et al. to detect protein complex based on

protein connectivity values in a PPI network. In MCODE,

Bader and Hogue (2003) first weigh each node based on

their local neighbourhood densities and then select the seed

node with high weights as initial clusters and augments these

clusters by outward traversing from the seed.

Coach: In the algorithm,Wu et al. (2009), the preliminary cores

are first detected from the neighborhood graph of each vertex in

the PPI network. This core-attachment-based method to detect

protein complexes from PPI networks mines the protein-

complex cores from the neighbourhood graphs and then forms

protein complexes by including attachments into cores.

A summary of the different protein complex extrac-

tion algorithms is given in table 1. From the literature

survey, we see that in the case of PPI network predic-

tion, the most popular statistical method is clustering.

Clustering methods are more suitable for the PPI net-

work inference problem as the main emphasis is on the

identification of protein complexes. It is found that cer-

tain important and popular modeling techniques may fail

to model PPI networks. Also, clustering methods based

on mutual information could be used as stated in Zhou

et al. (2003) to extract protein complex.

3. MIPCE: The proposed MI-based PPI complex

extraction method

Definitions given below and various symbolic representa-

tions given in table 2 describe the theoretical foundation of

the proposed method. The algorithm for finding pro-

tein complex from the PPI data is given in Algorithm

1. A flowchart of the proposed method is given in

figure 1.

Definition 1: A protein complex is a set of connected pro-

teins Pi where mi (Pi) € any top k MI values of the PPI

network; and the member proteins of the complex shows

high functional coherence.

Definition 2: Connectivity of a protein pi is defined as the

fraction of connection of pi with other proteins to the max-

imum connection value of a protein.

Definition 3: Score of a node assigns higher weights to

nodes whose immediate neighbors are more interconnected.

Score are assigned to each node with the following steps:

1. Get the immediate neighbors of a node to score.

2. Find the highest k core network.

3. Calculate core density=edges presented in the subgraph/

possible edges.

4. Score of the node=k×core density.

To extract the mutual information (MI) between every

pair of proteins, we construct an MI matrix with the follow-

ing information as shown in figure 2 from PPI data:

(a) Each row represents a protein.

(b) The first column gives the connectivity of proteins.

(c) The second column gives the score of proteins.

This method first constructs the adjacency matrix

from the PPI data. After that it finds the MI between

all the protein pairs for the connected proteins from the

MI matrix using kernel estimation method. Computing h

for each pair of proteins is a time-consuming process.

Therefore, we propose a way to compute h which will

work for all pairs of proteins. The steps can be summa-

rized as follows:

1. Find standard deviation of each protein pi, std(pi) con-

sidering all conditions for i=1,2,3,….

2. h=std(std(pi)).

The method sorts the MI values in descending order to

select the k distinct highest MI seed pairs. Once the seed

Algorithm 1: Protein Complex Extraction

Input :P and k
Output :C

Construct the adjacency matrix;

Find mi for the connected pairs;

Sort the mi values in descending order to find highest mi distinct
protein pairs; Select k distinct pairs from the sorted pairs ;
Each kth pair now represents Ck;
For each pl € P do

If pl not € any of the kth set, Ck then
for each kth set do

find avgmi(l,k) 
End

Find k for which avgmi(l,k) is maximum;
Assign pl to this kth set, Ck;

cnt(k)= cnt(k) + 1; 

l=l+1;

Else

End

End
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pairs are found, we expand these seed pairs to k protein

complexes by adding to them the remaining proteins based

on the average mutual information content of the chosen

protein with proteins in each of the k-th seed pairs. The

protein will belong to that pair with which the average

mutual information is maximum. This continues till all the

proteins of the dataset are assigned to its respective complex.

The following theorem ensures proper formation of core

and peripheral regions in a cluster.

Theorem 1: Seed expansion phase of MIPCE involves

inclusion of those nodes which have high functional coher-

ence.

Proof:Mutual Information (MI) is reasonably immune against

missing data and outliers and also potentially more robust for

differentiating erroneous clustering solutions (Priness et al.

2007). In Butte and Kohane (2000), the authors hypothesize

that an association between two genes indicated by large

amount of mutual information between them would also sig-

nify biological relationship. So, high mutual information be-

tween protein pairs indicates high functional coherence.

Seed pairs are formed from the highest MI values of

protein pairs. MI values of proteins are extracted based on

protein connectivity and score based on highest k core net-

work. Higher connectivity and score ensures higher density,

and so higher MI values have higher functional coherence.

While expanding the seed, a protein gets included in a

protein complex if its average MI value is maximum with

respect to that particular protein complex. Hence, a node

must have higher MI value to get included into the protein

complex along the phase of seed expansion which ensures

high functional coherence.

3.1 Effect of input parameter

To evaluate the effect of the parameter k on the results, we

changed the values of parameter from 3 to 10 with increment 1.

The value of input parameter k was chosen heuristically from

the graph shown in figure 3, where the p-value is minimum. A

low p-value (highest biological significance) indicates that the

proteins belonging to the enriched functional categories are

biologically significant in the corresponding complex.

3.2 Complexity analysis

The time complexity analysis of MIPCE is O(n2), where n is the

number of proteins in the dataset, k is the number of protein

complex. Finding the Mutual Information (MI) matrix is of O

(n2). Next the average MI of each protein with each of the k

Table 1. Comparison of protein complex extraction techniques

Techniques #Input
parameters

Datasets used Gold standards Performance measures

COACH (Wu et al. (2009)) 2 DIP, Krogan Friedel p-value, Coannotation score,
Colocalization score, F
measure, Coverage rate

DPClus Altaf-Ul-Amin et al. (2006) 1 DIP, Krogan MIPS, SGD, Alloy et al. p-value, F measure

MCODE (Bader & Hogue (2003)) 1 Gavin, MIPS, YPD Gavin, MIPS No. of complexes detected,
Sensitivity, Specificity

CFinder (Adamcsek et al. (2006)) 1 N/A N/A N/A

MCL (Satuluri et al. (2010)) 1 Uetz, Ito, Gavin, Ho, Krogan MIPS Sensitivity, PPV, Accuracy

Table 2. Symbols used

Symbol Meaning

P PPI data

A Adjacency matrix

Mi Matrix containing mutual information of
all pairs of proteins in A

(si1,si2) i-th seed pairs

k Number of protein complex

cnt(k) Number of proteins in the k-th complexes

avgmi(l; k) Average mi values of the l-th protein
with all cnt(k) proteins of k-th complex

C Set of protein complexes

Ck k-th protein complex Figure 1. Conceptual framework of our proposed method.
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complex requires k computations, and further k computations

(worst case) are required for finding the maximum out of these

k average values, thus making it of the order of O(n2) + O(nk2).

So, the final complexity ofMIPCE is approximately that of O(n2).

4. Experimental results

We implemented the algorithm in MATLAB and tested it on

three benchmark microarray datasets. The test platform was

a Sun workstation with Intel(R) Xenon(R) 3.33 GHz proces-

sor and 6 GB memory running Windows XP operating

system.

4.1 Dataset used

In this study, we used four well-known datasets, viz. Gavins

dataset (dataset 1) Gavin et al. (2006), DIP dataset (dataset 2)

Xenarios et al. (2002) and Krogan et al. 2006 core (dataset 3)

Krogan et al. (2006), to validate the proposed algorithm.

Among 4,087 different proteins identified with high confi-

dence by mass spectrometry from 2,357 successful purifica-

tions, the Krogan data set (median precision of 0.69)

comprises 7,123 protein–protein interactions involving

2,708 proteins. BioGRID does not contain confidence scores

for all interactions, and confidence scores of interactions

from different data sources may be incompatible with each

other, and so we used all interactions without any confidence

filters and did not add any weight information to this dataset.

In the DIP dataset, a total of 17,201 interactions among

4,934 proteins were considered.

4.2 Cluster accuracy validation

To measure the accuracies of prediction, we calculated pre-

cision, recall and F-measure for different algorithms.

Precision is the ratio of predicted complexes which are true

to the total number of predicted complexes, and Recall is the

ratio of true complexes predicted to the total number of true

complexes. Suppose A is the number of predicted complexes

which are true and B is the number of predicted complexes

which are not true. Mathematically, Precision is defined as

Precision ¼
A

Aþ B
ð6Þ

Again, A is the number of true complexes which are

predicted and C is the number of total complexes which

are not predicted. Mathematically, Recall is defined as

Figure 2. Input for the MI computation.

Figure 3. Tuning of input parameter k.

Table 3. Accuracy comparison using DIP dataset

Methods Precision Recall F-measure

MCODE (Bader and
Hogue 2003)

0.43 0.1 0.17

MCL (Satuluri et al. 2010) 0.18 0.59 0.27

Coach (Wu et al. 2009) 0.38 0.56 0.47

DPClus (Altaf-Ul-Amin
et al. 2006)

0.34 0.27 0.29

Cfinder (Adamcsek et al. 2006) 0.17 0.71 0.27

MIPCE 0.39 0.5 0.44

Table 4. Accuracy comparison using Krogan core dataset

Methods Precision Recall F-measure

MCODE 0.43 0.1 0.17

MCL 0.18 0.59 0.27

COACH 0.38 0.56 0.47

Cfinder 0.34 0.27 0.29

DPClus 0.17 0.71 0.27

MIPCE 0.39 0.5 0.28
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Recall ¼
A

Aþ C
ð7Þ

F-measure is the harmonic mean of Precision and Recall.

F‐measure ¼
2� Precision� Recall

Precisionþ Recall
ð8Þ

The neighbourhood affinity (NA) score Wu et al. (2009)

between a predicted complex p and a real complex b in the

benchmark, N A(p; b), was used to determine whether they

match with each other. If N A(p; b) w, they are considered to

be matching (w is set as 0.20 in most approaches, which was

also used in this study).

To analyse the effectiveness of the algorithm for

protein complex identification purpose, we compared

the results of MIPCE with existing methods in terms

of various evaluation metrics, including Precession,

Recall and F-measure for datasets. The comparison re-

sult is presented in tables 3, 4 and 5 and in figures 4, 6

and 7. As we can see, the proposed method gives

satisfactory result in all measures. However, COACH

shows better F-measure than MIPCE for dataset 2 and

3 because the complex size is much bigger in case of

MIPCE which includes some additional proteins that

belong to some other functional category. The roc curve

of MIPCE for dataset 2 is given in figure 5.

4.3 GO-based validation

Gene ontology (GO) provides description of gene and gene

product attributes in a structured and controlled manner

across all species. To evaluate the functional enrichment of

predicted protein complexes, the p-value of a protein

Table 5. Accuracy comparison using Gavin dataset

Methods Precision Recall F-measure

MCODE 0.73 0.29 0.41

COACH 0.54 0.27 0.36

Cfinder 0.66 0.19 0.29

MCL 0.52 0.33 0.4

MIPCE 0.53 0.41 0.38

Figure 4. Performance comparison of MIPCE with existing

methods for dataset 1.

Figure 5. ROC curve of MIPCE for dataset 2.

Figure 6. Performance comparison of MIPCE with existing

methods for dataset 3.
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complex with a given GO term was used to estimate whether

the proteins in the complex are enriched for the GO term

with a statistically significant probability compared to what

one would expect by chance. The smaller p-value indicates

the predicted protein complexes is not accumulated at ran-

dom and is more biologically significant than the one with a

larger p-value (Mete et al. 2008).

We analysed the protein complexes obtained by MCODE,

COACH, PROCO-MOSS Mukhopadhyay et al. (2012) and

the corresponding MIPCE complexes using Gene Ontology

to compare the effectiveness of these algorithm in terms of

identifying protein complexes. We are considering the p-

value of k number of complexes for which biological signif-

icance is maximum. The most significant annotations which

belong to known complexes are 1.05E−41 (GO:010499),

7.88E−40 (GO:042273), 3.72E−35 (GO:043634), 3.72E

−35 (GO:043633) and 1.18E−34 (GO:000459), which are

greater than MCODE. In case of PROCOMOSS, the signif-

icant annotation are 1.68E−23 (GO:0044238), 4.96E−22

(GO:0006364), 1.61E−26 (GO:0051603), 4.34E−13

(GO:0043413) and 3.46E−28 (GO:0006511). While com-

paring with COACH, the annotation for the real complex

are 2.28E−34 (RNA polymerase II mediator complex),

1.38E−39 (DNA-directed RNA polymerase III complex),

3.46E−28 (SAGA complex) and 5.26E−36 (anaphase-pro-

moting complex). Tables 6, 7, 8 and 9 present some GO

values given by proposed method which are better or equally

good as compared to existing methods. We can conclude

from the above-mentioned tables that MIPCE shows highly

satisfactory results, especially in terms of recall values and

equally good in terms of F-measure.

Figure 7. Performance comparison of MIPCE with existing

methods for dataset 2.

Table 6. Performance comparison of the proposed method with

MCODE in terms of p-value for dataset 3

Gene Ontology ID MIPCE MCode

GO:019941 6.78E−32 2.29E−18

GO:051603 2.23E−30 8.44E−18

GO:000459 1.18E−34 4.64E−22

GO:010499 1.05E−41 5.35E−27

GO:006508 2.46E−28 6.12E−14

GO:006353 6.68E−30 5.78E−17

GO:043634 3.72E−35 1.48E−22

GO:043633 3.72E−35 1.48E−22

GO:031123 3.93E−28 2.12E−15

GO:043241 8.13E−25 1.22E−11

Value of k is chosen 6 for dataset 3. The most significant term of
each of the 6 complex is reported

Table 7. Performance comparison of the proposed method with

MCODE in terms of p-value for dataset 1

GO annotation MIPCE MCode

GO:042273 7.88E−40 3.28E−09

GO:031327 2.87E−19 1.90E−04

GO:045934 4.96E−12 1.31E−04

GO:016481 1.78E−14 6.62E−05

GO:051172 9.46E−18 1.31E−04

GO:042257 4.26E−16 2.61E−06

GO:048519 7.63E−12 2.21E−03

GO:022618 3.53E−17 1.65E−06

GO:000462 4.77E−34 5.56E−05

GO:070925 1.84E−19 2.21E−03

GO:000447 3.53E−18 1.98E−04

GO:030490 2.07E−33 7.90E−05

Value of k is chosen 7 for dataset 1. The most significant term of
each of the 7 complex is reported.

Table 8. Performance comparison of extracted protein complex

with COACH in terms of p-value for dataset 2

GO annotation MIPCE COACH

RNA polymerase II mediator
complex

2.28E−34 6.61 E−23

DNA-directed RNA polymerase
III complex

1.38E−39 5.85 E−30

HOPS complex 4.96E−12 1.66 E−13

COMPASS complex 1.78E−14 1.57E−20

SAGA complex 3.46E−28 5.00 E−24

anaphase-promoting complex 5.26E−36 9.85 E−33

OST complex 5.9E−11 0.43 E−15

Value of k is chosen 6 for dataset 2. The most significant term of
each of the 6 complex is reported.
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5. Conclusion and future work

In this article, a PPI network construction and protein com-

plex extraction technique based on a Mutual Information

was presented. The technique has been established over for

three publicly available benchmark real-life datasets. The

method was found to produce satisfactory results when com-

pared with its counterparts. This work can be extended to

detect functional modules using an integrated approach with

different sources of data. In future, we aim to explore the

possibility of MIPCE in domain–domain interaction network

to extract interesting information (tables 8 and 9).
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