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1. Introduction

Enhancers are sequences of DNA that can stimulate the rate
of transcription initiation at large distances from the pro-
moters, in 5’ or 3’ positions relative to the gene, and in one
or another orientation. Enhancers are now part and parcel of
the description of transcription in metazoans. Enhancers are
formed by the modular association of short DNA sequences
corresponding to the binding sites of different transcription
factors.

Enhancers participate in the developmental control of
gene expression, and the localization and description of the
putative five hundred thousand (or more) enhancers present
in the human genome are a major issue in genomics. The
evolutionary role of enhancer modification is also under
scrutiny.

This continuous interest in enhancers for the last thirty
years or more should not mask the fact that their existence
and characteristics have always been puzzling for molecular
biologists, and that the vision of enhancers has constantly
evolved.

2. The discovery of enhancers

In December 1981, Walter Schaffner and his group intro-
duced the term ‘enhancer’ to designate a 72 bp repeat close
to the origin of replication of the SV40 virus which stimu-
lates transcription initiation of the rabbit B-globin gene
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(Banerji et al. 1981). They described and generalized the
characteristics of this enhancer — action at distance, in either
orientation and upstream or downstream of the gene — and
proposed some mechanistic explanations for its action: en-
hancers might change the superhelical density of DNA, bind
to the nuclear matrix, or provide entry sites for RNA poly-
merase II.

This article had been preceded by a series of observations
on different organisms (sea urchins, yeast, the SV40 simian
virus) revealing that, in eukaryotes, sequences localized far
upstream of the transcription initiation site are required for a
full transcription rate — often in parallel with the puzzling
observation that the promoter sequences (sequences imme-
diately upstream of the transcription initiation site) did not
appear themselves to be indispensable (Grosschedl and
Birnstiel 1980; Benoist and Chambon 1980; Gruss et al.
1981; Struhl 1981).

What was new in the article by Schaffner and colleagues
was the demonstration that the SV40 enhancer was active on
a heterologous promoter, the introduction of the term, and a
precise description of the three characteristics that define an
enhancer. Similar observations were made in parallel by the
same group on the enhancer of the polyoma virus (de Villiers
and Schaffner 1981). Simultaneously, Pierre Chambon’s
group published similar results obtained with the SV40
enhancer, although they observed a dependence of the en-
hancing effect on the distance between the promoter and the
enhancer. The latter observation was in agreement with the
hypothesis that Chambon favoured — that enhancers are the
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site of entry of RNA polymerase II, an enzyme which he
studied in parallel (Moreau et al. 1981).

Many publications over the next two years confirmed these
early observations (for a review, see Khoury and Gruss 1983).
The existence of enhancers was demonstrated in other viruses,
but they could be also upstream or downstream of cellular
genes, one of the first and best examples being the enhancers
present in the immunoglobulin genes coding for the light and
heavy chains of antibodies (Gillies et al. 1983; Banerji ef al.
1983; Queen and Baltimore 1983; Neuberger 1983). Evidence
for the existence of enhancers was also obtained in the case of
the globin genes, but the diversity of the genes and of their
regulation made the observations more complex. The role of
these cellular enhancers was confirmed by the creation of
transgenic mice (Grosschedl et al. 1984). These studies re-
vealed that the enhancing effect was cell-dependent (de
Villiers et al. 1982; Spandidos and Wilkie 1983). The speci-
ficity of viral enhancers for cells and organisms could explain
the host specificity of these viruses. The term ‘enhancer’ was
limited to metazoans. It was not adopted for yeast, and the
acronym UAS for ‘upstream activating sequences’ was pre-
ferred, since these sequences did not seem to be active in the 3’
position (Struhl 1982).

3. The context of the discovery

The fact that transcriptional regulation was different and
more complex in eukaryotes than in prokaryotes was not a
surprise, coming only four years after the totally unexpected
discovery that eukaryotic RNAs were spliced following
transcription!

The discovery of enhancers would not have been possible
without the development of genetic engineering techniques
in previous decades: use of restriction enzymes, construction
of chimeric molecules containing an enhancer from one
species, a promoter from another, and eventually a reporter
gene from a third one to make the assay of the transcriptional
activity more sensitive. Also essential was the possibility of
modifying these DNA sequences (by in vitro mutagenesis),
and of reintroducing these constructions in cells by transfec-
tion (or microinjection in the case of Xenopus oocytes), in
organisms by transgenesis, or in the rapidly developed
in vitro transcription systems.

That the first enhancer was discovered in a virus was no
accident. Viruses were considered as the gateway to the
study of eukaryotes, as bacteriophages had been thirty years
before in the study of bacteria.

The impact of the discovery of enhancers, whose exis-
tence was at odds with what was known of the regulation of
transcription in prokaryotes, was strengthened by the imme-
diate explanation that it provided for the oncogenic potential
of some retroviruses (Hayward ef al. 1981), exactly at the
same time when oncogenes were discovered (Bishop 1981).
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The transforming power of these viruses was puzzling since
they did not harbour oncogenes of cellular origin as most
transforming retroviruses were shown to do. It was initially
proposed that they could provide efficient promoters, by
insertion in the genome of their long terminal repeats, to
the cellular genes situated close to the site of integration. The
replacement in the previous sentence of ‘promoters’ by
‘enhancers’ obviated the requirement for very precise inte-
gration of the retrovirus, and also explained why the inser-
tion could occur downstream of the proto-oncogene.

The early explanatory models also relied deeply on the
scientific context in which enhancers were discovered. The
study of prokaryotic and eukaryotic RNA polymerases was
intense, and the possibility of RNA polymerase sliding along
DNA to the precise site of transcriptional initiation, instead
of reaching it by diffusion in three dimensions, had recently
been proposed and demonstrated in the case of E. coli
(Winter et al. 1981). The same was true for the role of the
nuclear matrix in transcription, and for the structure of the
nucleus, within which there were potentially transcriptional
factories. Interest in the structure of chromatin had been
renewed by the studies of Harold Weintraub and Mark
Groudine (1976) and by the subsequent discovery of
nuclease-hypersensitive sites (Varshavsky er al. 1978; Scott
and Wigmore 1978; Wu et al. 1979) correlated with the
absence of nucleosomes on DNA: the 72 bp repeat of the
SV40 enhancer was a site of hypersensitivity to nucleases,
and was shown by electron microscopy to be devoid of
nucleosomes (Saragosti et al. 1980). The role of
superhelicity in DNA — induced in eukaryotes by the binding
of nucleosomes — was actively sought, while enzymes mod-
ifying it were purified and characterized (Champoux 1978).

4. From a structural regulatory element to an ensemble
of binding sites for transcription factors

In the first two years after their discovery, enhancers were
seen as structural elements, and the explanation for their
functions was sought at the level of chromatin organization
and localization in the cell nucleus.

Looking for proteins that bind to enhancers was not
immediately considered important. The paucity of appropri-
ate techniques to purify the protein factors that interact with
enhancer sequences did not fully explain this lack of interest.

One example is quite illustrative: the polyoma enhancer
was shown to be inactive in mouse embryonal carcinoma cells,
but mutations were characterized that made the enhancer ac-
tive, permitting the replication of the virus in these cells
(Vasseur et al. 1980; Katinka et al. 1980). A retrospective
interpretation is that mutations created sites for factors present
in embryonal carcinoma cells, or relieved the binding of in-
hibitory factors. But at the time, sequence comparisons and
general explanations were sufficient objectives for this work.
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This vision progressively changed as rapidly accumulat-
ing evidence showed that the enhancing effect differed from
one cell type to another: the simplest explanation was that
this cell specificity resulted from the presence (or absence) of
cell factors that bind to the enhancer sequences and are
responsible for the enhancing effect (Laimins et al. 1982;
Weiher et al. 1983). In parallel, the study of genes whose
expression was stimulated by external signals such as the
addition of steroid hormones or heat shock showed that the
activation was associated with the presence of short specific
DNA sequences located at variable distances from the site of
transcriptional initiation, with which specific transcription
factors interacted (Chandler ef al. 1983).

In the following years, with the rapid development of
in vitro transcription systems, many of these transcription
factors were isolated, their precise binding sites character-
ized in vitro and ex vivo by footprinting experiments, and
their role in the enhancing effect demonstrated.

At the end of the 1980s, a new picture of enhancers had
emerged. These sequences of variable length (from 50 bp to
more than 1000 bp), and situated at distances from the
transcription initiation site that could be considerable, are
formed by the modular association of short (less than 10 bp)
sequences specific for different transcription factors. The
same sequences are also found in the promoters (Maniatis
et al. 1987; Miiller et al. 1988).

This new vision did not do away with the previous inter-
pretations of the enhancing effect: it did not exclude that
enhancers might contribute to the structural organization of
chromatin, to the binding of RNA polymerases, or to the
localization of the transcribed genes in a specific part of the
nucleus. But the favoured model was that enhancers and
promoters were put in close proximity by the formation of
a DNA loop, and co-activated transcription. The activating
effect of enhancers was the direct consequence of an increase
in the local concentration of transcription factors at the
transcriptional initiation site. It was demonstrated in E. coli
that binding of a multimeric repressor at two different oper-
ator sites could generate a DNA loop. This evidence was
recurrently used to support the formation of loops between
enhancers and promoters in eukaryotes, although the loops
described in prokaryotes had characteristics — small, depen-
dence on the pitch of the DNA helix — that were not obvious
for the loops formed between enhancers and promoters.

5. Enhancers: Twenty-five years later

Twenty-five years have passed, and the description of the
structure and function of enhancers has not dramatically
changed during this time (Blackwood and Kadonaga 1998;
Pennacchio et al. 2013).

The notion of enhancers might have disappeared, or at
least lost its importance. If what matters is simply a high
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concentration of different transcription factors close to the
transcription initiation site, the fact that these factors are
bound to DNA sequences that are close to (in the sequence)
or at huge distances from the promoter might have appeared
as secondary.

Such was not the case. The first reason is that many
researchers have not abandoned the idea that there is some-
thing special about enhancers, that there are additional rea-
sons for their existence. The recent discovery of enhancer
RNAs, long non-coding RNAs transcribed from enhancers,
supports this interpretation (Orom and Shiekhattar 2013).

Another reason is that enhancers have found a new life in
developmental biology (Levine ef al. 2014). Enhancers were
shown to control the tissue in which a gene is activated
during development, but also the stage at which the gene is
switched on (Garabedian et al. 1986). Not only have these
observations been fully confirmed, but, after the rise of Evo-
Devo, enhancers are now considered as the privileged sites
of mutation responsible for morphogenetic transformations
(Carroll 2008; Levine 2010).

In parallel, the growing interest in epigenetics, and the
need to complement the information provided by the Human
Genome Project, have led to the development of new
programmes such as ENCODE, for the identification of
‘functional’ sequences, and in particular regulatory se-
quences, within ‘junk’ DNA. Conserved sequences located
outside of the coding regions have been discovered, and a
large fraction of them correspond to enhancer sequences
(Pennacchio et al. 2006). The use of the technique of chro-
mosome conformation capture has provided evidence for the
occurrence of loops between enhancers and promoters
(Sanyal et al. 2012). The topology of mammalian develop-
mental enhancers is the subject of active study (De Laat and
Duboule 2013). In addition, mutations in enhancers have
been associated with the development of diseases (Kleinjan
and Lettice 2008; Sakabe et al. 2012).

6. Conclusion

The scientific context in which enhancers were initially
described explains the different types of mechanisms that
were proposed to justify their existence — such as their role in
the structural organization of chromatin. Most of all, en-
hancers were the reflection of the sudden discovery of the
huge differences existing between metazoans and other or-
ganisms, as exemplified by the discovery of splicing, and
their existence retrospectively explained the difficulties en-
countered in the study of transcription in metazoans in pre-
vious years.

Between 1981 and 1983, enhancers were considered as
‘transcriptional regulatory signals’ and ‘activating se-
quences’. These expressions referred to the experiments that
revealed their role. But an enhancer is not per se a ‘signal’ or
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an ‘activating sequence’. Molecular biology mostly
remained one-dimensional.

The subsequent advent of transcription factors changed
the vision of enhancers, but generated other difficulties.
Since these factors can bind to promoters as well as to
enhancers, and since the distance between enhancers and
promoters is highly variable, but can be reduced to zero,
the physiological significance of enhancers faded, and the
use of the term became purely empirical — based on the
distance of the regulatory sequences from the transcription
initiation site.

Many of current research programmes such as the acri-
moniously debated ENCODE (Graur et al. 2013) are pre-
cisely that — empirical — which in part explains the
importance now accorded to the search for enhancers.

The rationale for their existence has progressively (but not
fully) shifted from a mechanistic to an evolutionary one.
Most enhancers have been conserved during evolution,
which means that their presence gives a positive selective
value. But the way in which chromatin landscape restricts
enhancers to correct targets is yet to be fully understood.
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