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Etoposide, a semi-synthetic derivative of podophyllotoxin, is one of the most active and useful antineoplastic agent
used routinely in firstline combination chemotherapy of testicular cancer, small-cell lung cancer and non-Hodgkin’s
lymphoma. Etoposide displays narrow therapeutic index, erratic pharmacokinetics and dose individualization that
needs to be achieved for overcoming inter- and intra-patient variability (25—-80%), so as to maintain proper drug
exposure within a therapeutic range. Etoposide posses high plasma protein binding (97%) and is degraded via
complex metabolic pathways. The main pharmacokinetic determinants of etoposide are still not completely defined
in order to optimize the pharmaco-therapeutic parameters including dose, therapeutic schedule and route of admin-
istration. Much research has been done to determine drug—drug and herb—drug interactions for improving the
bioavailability of etoposide. The present article gives insight on pharmaceutical and pharmacological attempts made
from time to time to overcome the erratic inter- and intra-patient variability for improving the bioavailability of
etoposide.
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1. Introduction

Synthesized in 1963, etoposide (figure 1) is a semi-synthetic
derivative of podophyllotoxin isolated from the dried roots
and rhizomes of species of the genus Podophyllin. The first
clinical trial of etoposide was reported in 1971 and approved
for use in the Unites States of America in 1983. Etoposide
inhibits DNA topoisomerase II, thereby inhibiting DNA
synthesis at the pre-mitotic stage. Etoposide is also used in
combination with other chemotherapeutic agents for the
treatment of refractory testicular tumours, small-cell lung
cancer, lymphoma, non-lymphocytic leukemia and glioblas-
toma multiforme (http://www.drugbank.ca/drugs/DB00773).
Being a chiral drug, its trans-isomer is pharmacologically
active. An ataxia telangiectasia mutated (ATM)-dependent
activation of AMPK (AMP-activated protein kinase),
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activated p53 pathway and caspase have been suggested to
play a role in etoposide-induced DNA damage (Fu et al.
2008; Rudolf et al. 2009).

Numerous studies and several reviews have reported the
pharmacokinetics of etoposide (supplementary table 1).
However, the main pharmacokinetic determinants of this
drug are still not completely defined in order to optimize
the pharmaco-therapeutic parameters of etoposide including
dose, therapeutic schedule and route of administration.
Etoposide displays erratic pharmacokinetics with large
inter- and intra-individual variations of area under curve
(AUC) values and steady state concentrations, along with
variability in clearance and systemic exposure. Dose indi-
vidualization has to be achieved in order to maintain proper
drug exposure with in therapeutic range. There is evidence
that bioavailability decreases with doses probably due to a
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Figure 1. 4’-Demethylepipodophyllotoxin 9-(4,6-O-(R)-ethyli-
dene-B-D-glucopyranoside.

concentration-dependent reduction in the solubility of
etoposide in the stomach and small intestine (Lavit et al.
1995; Ciccolini et al. 2002; Lacayo et al. 2002; Hartmann
and Lipp 2006; Lagas et al. 2010).

The present review deals with various pharmaceutical and
pharmacological strategies that have been attempted in re-
cent times to overcome the poor/variable bioavailability of
etoposide.

2. Pharmaceutical approaches

An etoposide phosphate has been developed as a water-
soluble pro-drug for clinical use. In patients with established
solid tumours, the bioequivalence of etoposide phosphate to
etoposide has been demonstrated. However, variable conver-
sions of etoposide phosphate to etoposide within the intesti-
nal lumen after oral administration remained a major cause
for high inter-patient pharmacokinetic variability. Variability
in absorption of etoposide is considered to play an important
role in its instability in gastric or intestinal solutions (Shah et al.
1989; Hande et al. 1999); however, some earlier approaches
using drugs that influenced the rate of gastric emptying while
modulating the time of drug absorption did not significantly
alter the etoposide AUC or bioavailability (Joel et al. 1995).
Attempts to enhance the aqueous solubility and dissolution rate
of etoposide were made by preparing various polymorphs of
etoposide by crystallizing it from organic solvents (Shah et al.
1999).

2.1  Microemulsions

Several drug-targeting vehicles such as phospholipid-based
microemulsions and cholesterol-rich microemulsions of
etoposide have been found to be robust, safe and suitable
for patient use (Pinheiro et al. 2006; Jain et al. 2010).
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2.2 Micelles

Amphiphilic poly(2-oxazoline)s micelles have been devel-
oped as a promising high-capacity delivery platform;
etoposide solubilized in defined polymeric micelles were
found to achieve high total loading capacities (Han et al.
2012). Fatty acid chain length grafted to etoposide delivery
has been another approach; etoposide showed high solubility
in methoxy polyethylene glycol (MPEG) micelles
(Varshosaz et al. 2012). Diblock copolymers of MPEG-b-
poly(e-caprolactone) of six different molecular weights were
used for fabrication of etoposide-loaded micelles by nano-
precipitation technique. Compared with plain etoposide, the-
se micellar formulations have shown enhanced permeability
and retention effect in Ehrlich ascites tumour-bearing Balb/C
mice. Similarly, Tyr-Ile-Gly-Ser-Arg-conjugated etoposide-
loaded micelles were shown to enhance cytotoxicity and
cellular uptake with significant reduction in colony formation
and cell migration activities compared with non-conjugated
micelles in overexpressed tumour cells (Ukawala et al. 2012).
Other miceller formulations included MPEG polepsilon
caprolactone and were found efficient as drug delivery vehicles
for pancreatic cancer therapy (Mohanty et al. 2010). An
etoposide-loaded linear PEGylated as well as PEG-b-poly(D,L
lactic acid) offered a promising alternative for combination drug
therapy without formulation related side-effects (Shin ez al.
2009). Etoposide encapsulated in the micelles formed from
poly(epsilon-caprolactone)-poly(ethylene glycol) and poly(L-
lactide), poly(ethylene glycol) exhibited high etoposide loading
capacity and were found suitable as a potential drug delivery
carrier (Wang et al. 2008).

Enhancement of etoposide uptake by tumour via sub-
cutaneous injection through etoposide-loaded polysorbate
20 micelles resulted in significantly higher tumour up-
take and prolonged tumour retention due to relatively
high brain concentrations compared with etoposide
(Reddy et al. 2006b). Micelles containing poly(N-
vinylpyrrolidone)-block-poly(D,L-lactide) were also found
to be efficient solubilizers of teniposide and etoposide
(Le et al. 2004).

2.3 Nanoparticles

High residence of nanoparticles, compared with etoposide,
was suggested to be advantageous as drug carriers for
etoposide in enhancing the bioavailability and reducing the
etoposide associated toxicity (Snehalatha et al. 2008).
Etoposide loaded into strontium carbonate nanoparticles, a
novel biodegradable nanosystem, possessed both high loading
capacity and efficient encapsulation, and were more potent in
antitumour activity as compared with free etoposide (Qian et
al. 2012). Use of poly(lactide-co-glycolide)(PLGA) and
PLGA/P188-blended nano-encapsulations over pre-existing



Bioavailability enhancement of etoposide 141

etoposide formulation induced improved cytotoxic activity,
showing a promising perspective for parenteral delivery of
etoposide (Callewaert et al. 2012). Recently, PLGA-PEG
nanocarriers have been considered to be a better administration
schedule in multiple drug delivery in cancer chemotherapy
(Saadati et al. 2013).

In a recent study colloidal formulations based on
poly(butyl cyanoacrylate) nanoparticles of etoposide using
two different non-ionic colloidal stabilizers (pluronic F68
and polysorbate 80) exhibited the highest cytotoxicity
towards adenocarcinoma human epithelial (A549) cells
(Yordanov et al. 2012). Etoposide and rubusoside (RUB)
nanoparticles completely reconstituable in water and
remained stable for at least 24 h. RUB has been shown to
effectively solubilize and stabilize etoposide (Zhang et al.
2012). Etoposide-loaded nanoparticles were also prepared
using PLGA, PLGA-MPEG block copolymer and PLGA-
Pluronic copolymer. PLGA-based nanoparticles showed
higher cell uptake and cytotoxicity compared with that of
the free drug (Yadav et al. 2011). Etoposide-loaded and
folic-acid-attached polymer poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate (PHBHHX) nanoparticles were more
effective on HeLa cells than etoposide-loaded PHBHHX
nanoparticles without folic acid (Kilicay et al. 2011).
Etoposide nanostructured lipid carrier formulation remark-
ably improved the oral bioavailability of etoposide phos-
phate (Zhang et al. 2011). Intravenous administration of
etoposide-loaded poly(lactic-co-glycolic acid) (PLGA)
nanoparticles of sizes 105 nm and 160 nm in mice and rats
were present in the blood up to 24 h at higher levels than that
of pure drug (Yadav and Sawant 2010).

A sustained release formulation of etoposide-loaded bio-
degradable nanoparticles, has been developed to replace the
conventional therapy of continuous intravenous administra-
tion. Studies showed that the etoposide-loaded PLGA nano-
particles sustained the release up to 72 h (Yadav and Sawant
2010). Functional nanomaterials that included gold, silver
nanoparticles and single wall carbon nanotubes were deliv-
ered to the two cell lines, MLO-Y4 osteocytic cells and
HeLa cervical cancer cells, in combination with etoposide,
showed higher efficacy. Etoposide loaded with tripalmitin,
glycerol monostearate and glycerol distearate nanoparticles
showed greater and prolonged apoptotic induction proper-
ties, resulting in the higher increase in survival time of
tumour-bearing mice compared with free etoposide (Reddy
et al. 2006a). Pharmacokinetic data of etoposide incorporat-
ed tripalmitin nanoparticles radiolabelled with Technetium-
99m revealed high blood concentrations and prolonged
blood residence time. In another study, etoposide lipid
nanocapsules showed higher efficiency than the drug solu-
tion in glioma cell lines (Lamprecht and Benoit 2006).
Etoposide loaded nanoparticles with glyceride lipids charac-
terized and evaluated for in vitro steric stability and drug
release characteristics (Reddy and Murthy 2005). Recently

an HPLC method with fluorescence detection was developed
and fully validated for determination and pharmacokinetic
study of etoposide-loaded nanoparticles in dog plasma after
intravenous administration (Yang et al. 2012).

2.4 Liposomes

Encapsulation of etoposide in lipid nanospheres (LN) im-
proved the anticancer activity, and further inclusion of poly-
ethylene glycol-distearoylphosphatidyl ethanolamine
(DSPE-PEG) increased the circulation time and stability of
LN. Folate-targeted etoposide-encapsulated lipid nano-
spheres showed higher tissue distribution of the drug in the
kidney of normal mice compared with that of non-targeted
etoposide or a commercial formulation. Etoposide lipid
nanocapsules showed 4- to 40-fold higher efficiency than
the drug solution (Patlolla and Vobalaboina 2008). Pulmo-
nary liposomal delivery of etoposide showed better particle
fraction and drug content over the period of 6 months
(Parmar et al. 2011).

Liposomal etoposide were found to enhance the cytotox-
icity when used alone or in combination with p53 tumour
suppressor gene in non-small-cell lung cancer cell lines.
These formulations when developed as dry powder inhalers
showed significant in vitro lung deposition pattern and dem-
onstrated new strategy to treat resistant lung cancer
(Jinturkar et al. 2012). Liposomal etoposide have shown an
improved pharmacokinetic profile: 60% increase in AUC
with a 35% decrease in clearance, resulting in 70% increase
in the mean residence time of the drug (Sistla e al. 2009).
Liposomized etoposide and tuftsin-bearing liposomized
etoposide formulations were found to reduce tumour volume
and tumour growth, and was considered a promising treat-
ment strategy for various forms of cancers, including fibro
sarcoma (Khan ef al. 2007). Similar anti-metastatic activity
of etoposide liposomes was also observed against pulmonary
tumour nodule formation in murine experimental B16F10
melanoma model (Sant ef al. 2003). Encapsulated etoposide
in cationic liposomes significantly delayed tumour growth
and were found to increase the area under the concentration
vs time curve and half-life (Sengupta et al. 2000).

3. Pharmacological approach

Equally noteworthy developments are documented for natural
compounds from medicinal plants which have been evaluated
in order to explore bioavailability enhancement of etoposide.
Application of P-glycoprotein (P-gp)/CYP3A4 dual role in-
hibitors in improving per oral drug delivery have gained spe-
cial interest. P-gp expressed in the apical membranes of the
epithelial cells of the intestine is known to reduce the oral
bioavailability of a wide range of drugs, including etoposide.
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Etoposide is degraded via complex metabolic pathways.
CYP3A4 is a principal isoform involved in the 3’-demethyla-
tion of etoposide, with the suggestion that CYP1A2 and 2E1
are the minor isoforms involved in the etoposide metabolism
(Takashi ef al. 1998). Therefore, the possibility of improving
the bioavailability of etoposide by combining this anti-cancer
agent with several pharmacologically active substances, espe-
cially P-gp/CYP3A inhibitors, has been explored in recent
times. Several known P-gp inhibitors have been shown to
increase the bioavailability of etoposide by reducing its efflux
from target sites. Eudesmin a (bicyclic lignin) and diphyllin
(arylnaphthalene lignin) isolated from H. perforatum Kar et
Kir, ( Rutaceae) reversed P-gp mediated multidrug resistance
(MDR) in MDRI1 transfected Madin-Darby canine kidney
(MDCK-MDR1) and doxorubicin-resistant human breast car-
cinoma cells (MCF7/Dox) (Lim et al. 2007). Quercetin, a
flavonoid with P-gp modulating activity, has been reported to
increase etoposide absorption in everted sacs of rat jejunum or
ileum (Lo and Huang 1999). A similar effect was also noticed
with quinidine, an anti-arrhythmic agent in the rat everted gut
sacs; its intravenous perfusion increased the serum level of
etoposide in a dose-dependent manner (Leu and Huang 1995).

Ketoconazole increased the area under the plasma con-
centration—time curve (AUC) of oral etoposide by a median
of 20%. Ketoconazole reduced the apparent clearance of oral
etoposide, did not alter its toxicity profile and did not reduce
inter-patient pharmacokinetic variability (Wei et al. 2007).
Ketoconazole increased systemic exposure of etoposide due
to inhibition of hepatic CYP3A4 (Zee et al. 2012). Curcumin
was found to increase the oral bioavailability (AUC and
Chax) of etoposide, possible due to inhibition of the P-gp
efflux pump in the small intestine and possibly by reduced
first-pass metabolism in the small intestine by inhibition of
CYP3A activity in rats. N-octyl-O-sulfate chitosan (NOSC)
and verapamil enhanced the transport of etoposide from
apical side to basolateral side in Caco-2 cell monolayers.
Moreover, both these agents decreased the transport of
etoposide from basolateral side to apical side, by inhibiting
P-gp (Mo et al. 2011). Orally administered morin (an inhib-
itor of CYP isozyme and P-gp) significantly increased the
AUC, C,,x and the absolute bioavailability of orally admin-
istered etoposide (Li et al. 2007). Kaempferol also enhanced
the AUC of intravenously administered etoposide due to
inhibition of cytochrome P450 CYP3A and P-gp (Li ef al.
2009). Quercetin, a P-gp and CYP3A inhibitor, altered the
pharmacokinetic parameters of etoposide in the orally treated
group, but not in the intravenous treated group. Quercetin
significantly increased the AUC and absolute bioavailability
of orally administered etoposide and decreased the total
body clearance (CL) of oral etoposide mainly due to inhibi-
tion of P-gp-mediated efflux and CYP3A catalysed metabo-
lism in the intestine (Li and Choi 2009). Potentiation effect
of wogonin, a flavone in the roots of Scutellaria baicalensis,
was observed to potentiate the anticancer action of etoposide
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due to P-gp inhibition and accumulation of this agent in
etoposide-induced apoptosis in tumour cells (Lee et al.
2009; Enomoto et al. 2011). A piperine analogue, namely,
4-ethyl 5-(3,4-methylenedioxyphenyl)-2E, 4E-pentadienoic
acid piperidide (PA-1), was shown to cause 2.32-fold en-
hancement of the absolute bioavailability of co-dosed
etoposide in mice (Sachin et al. 2010). Enhancement in the
oral bioavailability of etoposide by PA-1 could possibly be
due to its ability to modify P-gp/CYP 3A4-mediated drug
disposition mechanisms (Najar ef al. 2011).

4. Conclusion

Several pharmacokinetic and biopharmaceutical aspects have
been suggested to play a major role in the poor/variable oral
bioavailability of etoposide, such as its poor dissolution char-
acteristics, rapid elimination via P-glycoprotein. In the last two
decades many novel approaches have been explored in order to
overcome these limitations, which have been discussed.
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