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Stem cell research holds a promise to treat and prevent age-related degenerative changes in humans. Literature is
replete with studies showing that stem cell function declines with aging, especially in highly proliferative tissues/
organs. Among others, telomerase and telomere damage is one of the intrinsic physical instigators that drive age-
related degenerative changes. In this review we provide brief overview of telomerase-deficient aging affects in diverse
stem cells populations. Furthermore, potential disease phenotypes associated with telomerase dysregulation in a
specific stem cell population is also discussed in this review. Additionally, the role of telomerase in stem cell driven
cancer is also briefly touched upon.
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1. Introduction

Stem cells are pluripotent or multi-potent cells, capable of
self-renewal and multi-lineage differentiation potential
(Zhang et al. 2012). A plethora of studies has demonstrated
the identification of multi-potent adult stem/progenitor cells
in nearly all body tissues/organs (Chen et al. 2012). For
instance, bone marrow serves as a pool for several stem/
progenitor cell populations, including mesenchymal stem/
stromal cells, hematopoietic stem cells and endothelial pro-
genitor cells (Ballas et al. 2002; Chao and Hirschi 2010).
Tissue/organ-resident stem cells possess two unique proper-
ties, that is, self-renewal, to maintain their pool, and differen-
tiation, to provide more specialized cells to cater tissue/organ
functional and regenerative demands. These unique properties
make them indispensable during embryonic development for
tissue formation and during adult life to ensure tissue repair
and regeneration to maintain tissue/organ homeostasis
(Weissman 2000; Rando 2006; Rossi et al. 2008).

Tissue homeostasis is exceptionally maintained by a strict
balance between cell loss and cell replacement during the
course of tissue/organ life (Weissman 2000; Rando 2006).
However, with aging and degenerative diseases, this balance

declines progressively resulting in reduced supply of new
cells to compensate the lost/dead cells, thus compromising
tissue integrity and function along with diminished regener-
ation capacity upon damage (Artegiani and Calegari 2012).
Disequilibrium coupled with overall decline in stem/progen-
itor functions could be due to number of cell intrinsic and
extrinsic factors such as DNA damage (Gao et al. 2001; von
et al. 2001), telomere shortening (Beausejour 2011), oxida-
tive stress (Balaban et al. 2005), and secretion of growth
factors, mortifying enzymes (Krtolica and Campisi 2003)
and inflammatory cytokines (Saeed et al. 2011) that not only
compromise stem/progenitor functions but also enhance
their aging. We have recently shown that most of these intrin-
sic and extrinsic factors were overtly present in telomerase-
deficient aging mice having compromised stem cell functions
along with alterations in cell extrinsic micro-environment
(Saeed et al. 2011).

Therefore, this review will focus on telomerase-dependent
telomere shortening and its affect on stem/progenitor functions
in different cellular compartments, which could provide a
rationale for diverse disease and degenerative phenotypes with
advanced aging in various telomerase-deficient mouse models
or a condition associated with telomerase deficiency.
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2. Telomerase and telomeres

By the end of 20th century,telomerase was discovered by
Greider et al. (Greider and Blackburn 1985)in the extracts of
the protozoan Tetrahymena thermophila. Telomeres are
chromosomal ends and nucleoproteins that cap the end
of all the eukaryotic chromosomes, thus playing an essential
role in the maintenance and integrity of the chromosome as
well as cell viability. Telomeres are G-rich simple repeat
sequences (TTAGGG) that are synthesized by a special
reverse transcriptase called Telomerase (Blackburn and
Chiou 1981; Blackburn and Gall 1978). This enzyme re-
quires a template to act which is the RNA component of
telomerase, i.e. TERC (Blackburn and Gall 1978; Blackburn
1984). Telomerase is inactive in most somatic cells but
active in germ cells, stem cells and actively dividing cells
(Kassem et al. 2004). Telomerase deficient mice (Terc−/−)
have been instrumental in delineating the impact of telomere
shortening in context of whole organism (Blasco 2005).
Disease states that appear in Terc−/− reiterate the disease
states, with more or less same etiology, in humans, charac-
terized by short telomere in the cells as a result of excessive
proliferation (Lee et al. 1998; Vulliamy et al. 2002; Ju et al.
2007). However, expression of telomerase surpassing endog-
enous levels has been reported in 80% of human cancers
(Satyanarayana et al. 2004). Seemingly, intricate balance of
telomerase expression is pre-requisite for maintaining
healthy trail that neither diverges to aging or to cancer by
maintaining steady stem cell functions. Thus, the role of
telomerase in diverse stem cell populations, including cancer
stem cells, will be discussed briefly in this review.

3. Telomeres, telomerase and stem cells

In fact, several lines of evidence suggest that stem cells are
required for unrelenting supply of mature and functionally
proficient stem cells for normal tissue turnover and tissue
regeneration (Bianco et al. 2001; Fibbe 2002; Stenderup
et al. 2003; Endo et al. 2004; Abdallah and Kassem 2008;
Abdallah and Kassem 2009). In this regard, telomerase defi-
ciency in mice (Terc−/−) has been shown to affect the mainte-
nance and regeneration of tissues and organs undergoing
extensive proliferation, such as liver, intestine, testis, ovaries
and spleen (Blasco et al. 1997; Lee et al. 1998; Herrera et al.
1999; Rudolph et al. 1999), the effects that are reminiscent of
pre-mature aging. Furthermore, stem cell populations having
telomerase deficiency are inclined to lack the capacity to
regenerate or compensate the intense demands of tissues/
organs, during the course of aging or progression of degener-
ative diseases (Lee et al. 1998; Herrera et al. 1999; Rudolph
et al. 1999; Ju et al. 2007; Pignolo et al. 2008). Telomerase
activity is usually repressed after stem cell differentiation
(Sharma et al. 1995; Armstrong et al. 2000; Forsyth et al.

2002). There is a considerable agreement that most normal
somatic cells in human exhibit undetectable telomerase activ-
ity; however, a low level of telomerase activity has been found
in adult stem cells from skin, gut and the hematopoietic system
(Fehrer and Lepperdinger 2005). The low level or absence of
telomerase activity leads to telomere shortening, impaired cell
proliferation, that ultimately leads to permanent cell cycle
arrest a phenomenon termed as replicative senescence
(Simonsen et al. 2002). Surprisingly, tissues that were positive
and negative for telomerase activity, when tested for telome-
rase (mTERT) mRNA expression, showed more or less the
similar mTERT expression profile, indicating that tissues lack-
ing telomerase activity are also telomerase competent but do
not have activity, possible explanation could be the alternative
splicing of the mTERT gene (Martin-Rivera et al. 1998).
Moreover, telomerase activity is stringently regulated during
development and adult age with assorted tissue specificity (Ju
and Rudolph 2006). The following is a short description of the
role of telomerase in different stem cell populations.

3.1 Telomerase and hematopoietic stem cells (HSCs)

Studies have shown that HSCs exhibit telomerase activity
and undergo telomere shortening with advancing age in
humans (Vaziri et al. 1994; Chiu et al. 1996; Morrison
et al. 1996). Similarly, telomere lengths of adult blood
leukocytes and adult bone-marrow derived HSCs were found
to be shorter than the germ-line counterparts of the same
donor and HSCs derived from fetal liver and cord blood,
respectively (Vaziri et al. 1993; Cooke and Smith 1986). The
effect of telomerase deficiency on hematopoiesis is further
strengthened by the identification of human diseases associ-
ated with mutations in telomerase and its vital components,
such as dyskeratosis congenita, Fanconi anemia and aplastic
anemia (Vulliamy et al. 2002; Vulliamy et al. 2004). Similarly,
telomerase -eficient mice have been shown to have extra-
medullary hematopoiesis in the spleen and liver, confirming
previous reports vis-à-vis defects in hematopoietic system (Lee
et al. 1998; Herrera et al. 1999; Rudolph et al. 1999; Ju et al.
2007). Despite detectable telomerase activity in HSCs, their
progeny and peripheral blood lymphocytes (Hiyama et al.
1995; Morrison et al. 1996) exhibit telomere attrition with
progressive aging, suggesting that this autogenous activity is
inadequate to prevent telomeric loss in HSCs with advanced
aging. These results signify the importance of telomerase in
HSCs renewal and subsequent differentiation.

3.2 Telomerase effect on T and B lymphocytes

T and B cells, during clonal expansion, experience extreme
proliferative stress in order to acquire their desire phenotype
and functional competence. This has prompted many re-
searchers to study telomerase and telomere dynamics in
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these cell populations. Studies have shown that telomere
shortening occurs in T and B cells with advancing age in
humans (Weng et al. 1995; Iwama et al. 1998; Son et al.
2000). This erosion of telomeres occurs at a rate of
50 bp/year in human CD4+ and CD8+ cells (Rufer et al.
1999). Potential explanation of this erosion could be the
recurrent activation of T cells or oxidative damage during
aging (dda di et al. 2003). Additionally, proliferative stress,
being the primary stimulus for this attrition, was then observed
by comparing telomere lengths of CD4+ and CD8+memory T
cells. Memory CD4+ and CD8+ T cells showed shorter telo-
meres, in comparison to naive T cells (Weng et al. 1996;
Plunkett et al. 2005). This was further strengthened by the
observation that the telomere shortening occurs in chronic
diseases with consistent T cell activation such as HIV infection
(Effros et al. 1996), rheumatoid arthritis (Wagner et al.
2004), psoriasis and atopic dermatitis (Wu et al. 2000).
This shows that antigenic challenge resulted in enhanced
clonal expansion and exhaustion of replicative capacity
that resulted in the shortening of telomeres. Similarly,
telomerase activity has been observed during in vitro
stimulation of T cells obtained from young and old donors
(Son et al. 2000).

Similar to T cells, telomere length variations have been
observed in B cell populations. Telomerase activity measure-
ments in naive andmemory B cells showed that there is little or
no activity in these cell types, but high levels of telomerase
activity in the B cell germinal centre was observed (Hodes et
al. 2002). Studies on mice regarding B cell responses showed
that, in response to a stimulation, B cells undergo telomere
elongation, which is telomerase dependent (Herrera et al.
2000). Moreover, recent evidence of reduced T and B
lymphopoiesis due to telomerase deficiency came from the
studies on telomerase-deficient aging mice, so far the best
model for aging studies (Song et al. 2010). However, it is
pertinent to note that telomere elongation of immune cells is
telomerase dependent.

3.3 Telomerase and epidermal stem cells

Telomerase-deficient mouse has also been employed in under-
standing the biological outcome of telomere shortening on
epidermal stem cells. Telomere shortening results in marked
reduction in the capacity of hair follicle stem cells to regenerate
the skin and hair, owing to defective mobilization of stem cells
out of their niche (Flores et al. 2005). Besides, these mice also
exhibit premature aging skin-phenotype such as decreased
wound healing, graying and loss of hairs (Lee et al. 1998;
Herrera et al. 1999; Rudolph et al. 1999) and are resistant to
skin carcinogenesis (Gonzalez-Suarez et al. 2000). On the
other hand, telomerase over-expressing studies in epidermal
stem cells (K5-mTert mice) showed increase proliferation of
keratinocytes, hair growth and skin hyperplasia (Flores et al.

2005). Interestingly, another study using conditional knock-in
technique targeting epidermal stem cells (ESC) showed
telomerase-dependent switching of ESC from telogen phase
(quiescent resting phase) to anagen phase of rapidly dividing
cells. Moreover, these effects of telomerase enzyme were
independent of its RNA component (Terc), and thus indepen-
dent of its activity, rendering it a non-canonical function of
telomerase enzyme (Sarin et al. 2005). These results indicate
telomerase-dependent and telomerase-independent roles in
stem cells compartment; nevertheless, in stem cell compart-
ment, distinct stem cell populations have varying responses to
telomerase inflection. However, non-canonical roles of telo-
merase in other stem cells such as BMSC, HSCs have been
poorly studied.

3.4 Telomerase and epithelial stem cells

Studies on telomerase-deficient mice models have demon-
strated that the profound effects of telomerase deficiency
were mainly observed in tissues/organs having higher load
of cell turnover (Lee et al. 1998; Herrera et al. 1999;
Rudolph et al. 1999). One such tissue compartment, with
high cell turnover, is intestinal epithelia having high prolif-
erative and regenerative demands. Epithelial stem cells of
intestinal crypts of both mouse and human have been shown
to have telomerase activity, while its deficiency results in
atrophy of intestinal crypts in mouse (Espejel et al. 2004;
Hao et al. 2005). Similarly, telomerase activity has also been
observed in other epithelial compartments such as endome-
trium and in the apical region of dental epithelium
(Jurgensen et al. 1996; Harada et al. 2002). Furthermore,
studies on humans have shown that telomerase expression is
reduced in ulcerative colitis and telomerase activity nega-
tively correlates with the inflammation (Usselmann et al.
2001). These studies on epithelial stem cell clearly classify
telomerase as an important factor for maintaining the integ-
rity of stem cells in tissues/organs, undergoing continual
restoration.

3.5 Telomerase and cancer stem cells

Studies on human aging and cancer, in connection with
telomerase, revealed that telomerase evolved not only to
make humans decrepit but also to prevent humans from
cancer. Direct evidence of stem cell association with cancer
came from the studies on hematopoietic malignancies, such
as leukemia (Lapidot et al. 1994). Later, studies directly
implicated telomerase RNA (TERC) and TERT mutations
in myelodysplasia (MDS) and acute myeloid leukemia
(AML) (Kirwan et al. 2009). Similarly, inactivation of telo-
merase has been shown to affect the growth of myeloid
leukemia cells (Roth et al. 2003). This means that the
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proliferative control has purposefully been evolved to pre-
vent the invasion, unrelenting proliferation of cells, and
damage to the adjoining tissues. Telomere erosion occurs
in most human organs and tissues with aging (Djojosubroto
et al. 2003). Unlike the presumed notion that telomerase
repression and telomere shortening suppresses cancer, it
was observed that the risk of cancer increases with telomere
shortening amid aging and during chronic diseases
(Djojosubroto et al. 2003). Yet, studies have shown that
telomerase is required for telomere stabilization in cancer-
initiating cells (Wright and Shay 1992). This concept was
further supported by the observation that 80% of human
cancers showed re-activation of telomerase enzyme activity
(Satyanarayana et al. 2004). Moreover, recent experimental
data from many studies showed that the telomere lengths of
cancer cells are shorter than the non-transformed surround-
ing cells (Plentz et al. 2003, 2004). Yet, interestingly, studies
on telomerase-deficient mice (Terc) have shown that telo-
mere shortening act through a complex modus operandi, i.e.
enhancing the earliest events of tumor initiation, while con-
currently inhibiting the progression and development of
advanced macroscopic tumours (Greenberg et al. 1999;
Gonzalez-Suarez et al. 2000; Rudolph et al. 2001). Chromo-
somal instability is a hallmark of cancer in humans, and
proof of this concept was obtained from studies on
telomerase-deficient mice showing enhanced chromosomal
instability (Lengauer et al. 1998; Artandi et al. 2000;
Rudolph et al. 2001). From the above-mentioned studies it
is quite obvious that cancer cells ought to maintain their
telomeres for extensive proliferation and this can be achieved
either by re-activation of telomerase (Counter et al. 1994) or by
another mechanism termed as alternate lengthening of telo-
meres (ALT) utilizing homologous recombination process
(Counter et al. 1994; Stewart 2005).

3.6 Telomerase and neural stem cells

Telomerase has been shown to play an indispensable role in
the maintenance of neural stem cells (NSCs), while its defi-
ciency results in the exhaustion of NSCs pool, leading to
compromised olfactory bulb neurogenesis (Ferron et al.
2004). Telomerase expression in neural progenitors start to
decline upon differentiation into neurons (Ferron et al.
2009), and correspondingly, neural stem cells loose telome-
rase activity upon differentiation into astroyctes (Miura et al.
2001). Interestingly, telomerase over-expression in neural
cell lines inhibits neural differentiation (Richardson et al.
2007), suggesting that a fine balance in telomerase activity
and telomere length is stringently regulated in neural stem
cell compartment compared to other adult stem cell compart-
ment such as BMSCs. This fact was further demonstrated by
a study on telomerase deficient aging mice – despite reduced
adult neurogenesis and short-term memory loss, progression

of Alzheimer-disease-associated amyloid pathology was de-
layed in these mice, possibly owing to telomere-dependent
effects on micro-glia activation (Rolyan et al. 2011), and
chiefly due to impaired IGF-1 signalling (Freude et al. 2009;
Killick et al. 2009). More recently, an elegant study by
Jaskeiloff et al. showed that in vivo telomerase reactivation
reversed neuro-degeneration in aged telomerase-deficient
mice with restoration of Sox2+ neural progenitors, DCX+

newborn neurons and Olig2+ oligo-dendrocyte populations
(Jaskelioff et al. 2011). These studies also suggest that
telomere length and telomerase activity in different stem cell
compartments are cell autonomous relying more on intrinsic
features of stem cells rather than tissue/organ micro-
environment.

3.7 Telomerase and bone marrow stromal stem cells
(BMSCs)

One of the major biological outcomes of telomerase deficiency
and telomeres attrition in BMSC is cellular senescence
(Hayflick and Moorhead 1961). Emerging evidence in the
literature suggests that senescence occurs via different path-
ways but primarily due to telomere dysfunction and DNA
damage, entailing p53 and p16/Rb signalling pathways in
response to oncogenes, chromatin re-arrangements and stress-
es (Campisi 2005). It is also assumed that accumulation of
senescent cells not only results in defective regeneration but
they also secrete factors such as degenerative enzymes, inflam-
matory cytokines and growth factors that enhance senescence
and tumorigenesis (Knapowski et al. 2002; Krtolica and
Campisi 2003). A positive co-relation has been demonstrated
between proliferative capacity of human BMSCs and telomere
length, both in culture and with donor age (Sharpless and
DePinho 2004). Similarly, cells obtained from adult donors
showed telomere attrition at the rate of 17 bp per year; more-
over, telomere length of 10 kb in human BMSCs have been
shown to be a critical point, at which cells stop to divide
(Baxter et al. 2004). BMSCs lack telomerase activity
(Simonsen et al. 2002) and exhibit telomere shortening that
ultimately resulted in replicative senescence phenotype in
long-term culture (Stenderup et al. 2003). In highly sensitive
assays no telomerase activity has been found in asynchronous
hBMSCs during ex vivo culturing (Zimmermann et al. 2003),
but when cells were synchronized to S phase during ex vivo
culturing, positive telomerase activity was detected (Zhao
et al. 2008). Morphologically, BMSCs undergoing senes-
cence, due to telomere shortening, are large in size with loss
of spindle-shaped morphology, as observed by comparative
analysis of BMSC obtained from young and old donors (Dimri
et al. 1995; Baxter et al. 2004). Additionally, γ-H2AX foci, the
earliest events in DNA damage response, were more apparent
in telomerase-deficient BMSCs compared to control BMSCs
(Saeed et al. 2011). Age-related decline in telomere length is
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observed in osteoblasts and chondrocytes (Martin and
Buckwalter 2001; Yudoh et al. 2001). Interestingly, telomeres
lengths of chondrocytes and ostoeblasts were found to
be shorter in comparison to BMSCs from which they
were derived (Parsch et al. 2002; Schieker et al. 2004).
Besides, adult proliferative chondrocytes, pre-adipocytes,
ostoeblasts precursors and fetal osteoblasts showed telo-
merase activity in vitro (Darimont et al. 2002, 2003;
Montjovent et al. 2004; Parsch et al. 2004).

Furthermore, telomerase deficiency has been shown to
compromise the differentiation of BMSCs into adipocytes,
chondrocytes and osteoblasts during in vitro differentiation
assays (Liu et al. 2004; Saeed et al. 2011). Also, BMSC
cultures established from elderly donors exhibited impaired
cell proliferation, accumulation of senescent cells and shorter
replicative lifespan in vitro (Abdallah et al. 2006). Conversely,
‘re-telomerization’ of BMSC through over-expression of
hTERT leads to elongation of telomeres of BMSC and extends
their in vitro lifespan. In addition, telomerized cells maintain
their ‘stemness’ characteristics and their bone forming abilities
are enhanced based on in vitro and in vivo criteria (Simonsen
et al. 2002). These data suggest an important role of telomerase
enzyme in the maintenance of apposite stem cell functions.

4. Conclusion and future prospects

These above-mentioned studies clearly implicate telomerase-
dependent telomere damage as a key player in perpetrating
age-associated decline in the functional capacities of an
organ/tissue and disease progression related to stem cell
functions (figure 1) (Sharpless and DePinho 2007; Sahin

and DePinho 2010). It is beyond doubt that maintenance of
telomere lengths by telomerase is important for stem cell
functions and tissue homeostasis while its dysregulation re-
sults in two major shifts, that is, aging and cancer. There can
be three plausible propositions regarding the functional de-
cline in different stem cell compartments with aging and
malignant transformations: (a) Degree of telomere shorten-
ing/length determines the nature of cell intrinsic alterations
favouring aberrant stem cell functions, which further leads to
either pro-apoptotic or pro-malignant signals down the road.
(b) Telomere shortening can result in conformational
changes in the chromatin, i.e. from heterochromatin (inac-
tive) to euchromatin (active) – altering gene expression pro-
files that in turn amends tissue/organ milieu favouring either
functional decline with aging or cancer. (c) Combination of
cell intrinsic and extrinsic alterations supporting either pro-
apoptotic or malignant signals establishes the final outcome.
However, assuming that aging and cancer is a stem cell
phenomenon, its still unresolved that at what point, during
the course of degenerative aging, stem cells decide to trans-
form and what level of cell intrinsic and extrinsic alterations
associated with telomere shortening and telomerase activity
determines the transformational course, which, therefore,
begs further investigations.

Furthermore, endogenous telomerase inflection in diverse
stem cell compartments, to maintain tissue/organ homeosta-
sis, seems different and needs to be determined by gain and
loss of function studies at tissue/organ level. These studies
would not only provide valuable information regarding com-
partment specific telomerase regulation but also help devis-
ing drug-based strategies for maintaining telomerase
competent tissue/organ environment with advanced aging.

Figure 1. A summary of diverse biological effects of telomerase deficiency on tissue/organ resident stem cell populations.
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