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Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is
countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided
into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity
(ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response.
Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum
of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the
plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to
heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection
through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms
of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen
interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular
immunity.

[Muthamilarasan M and Prasad M 2013 Plant innate immunity: An updated insight into defense mechanism. J. Biosci. 38 433–449] DOI
10.1007/s12038-013-9302-2

1. Introduction

Phyto-pathogenesis is a global problem, posing a serious
threat to food security. Phytopathogens are broadly divided
into those that kill the host and feed on the nutritive materials
(necrotrophs), those that require a living host to continue
their life cycle (biotrophs) and those which require a living
host initially, but kill at later stage of infection (hemibio-
trophs) (Hammond-Kossack and Jones 2000). Bacteria and
fungi adopt either a biotrophic or necrotrophic mode of
infection while viruses are ideal biotrophs although viral
infection can consequently result in host cell death (Dangl
and Jones 2001). Among the 7100 classified bacterial spe-
cies, roughly 150 species cause diseases to plants
(Buonaurio 2008), about 8000 species of fungi and fungal-
like organisms are phytopathogens (Ellis et al. 2008) and
there are 73 genera and 49 families of plant pathogenic
viruses (Zaitlin and Palukaitis 2000).

Since plant innate immunity is capable of recognizing
potential invading pathogens and mount successful defences

using sophisticated mechanisms, all the pathogens which
invade the host could not cause disease, although disease
outbreak is likely only when the pathogens are able to evade
recognition or suppress host defense mechanism or both
(Hammond-Kossack and Jones 2000). Interactions of patho-
gens with plants can either be incompatible or compatible.
The former occurs when the pathogen encounters a non-host
plant (non-host resistance) or a resistant host plant (cultivar-
specific resistance), while the latter occurs when the patho-
gen infects susceptible host plants resulting in the develop-
ment of disease symptoms (Heath 2000).

Although recent studies on the plant–pathogen interac-
tions and integrated defense response has (1) helped in
elucidating the signalling mechanisms by which the plant
cell cope with a stress situation, (2) provided many sustain-
able practical solutions for the control of diseases in agricul-
tural crops and (3) lead to the discovery of how the
organisms from different kingdoms communicate with one
another, a majority of the mechanism underlying in defense
response still remains elusive.
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Although the topic is broad, with abundance of published
research and reviews (Dangl and Jones 2001; Cohn et al.
2001; Chisholm et al. 2006; Jones and Dangl 2006; Dodds
and Rathjen 2010), this review summarizes the recent reports
and precise findings on the defense strategies employed by
the plant to tackle pathogenesis and offers an integral under-
standing of plant molecular immunity.

2. Pathogen entry and infection sites

Microbial entry into the host tissue is a vital step in causing
infection. The plant interior should be invaded by the patho-
gens to establish their virulence. This is achieved either by
direct penetration of the plant surface or else by entry
through physical injuries or natural openings such as stoma-
ta. Although pathogens can specifically colonize leaves,
roots, fruits or particular cell types such as root epidermal
or phloem cells of the vasculature, their entry into the host
often takes place at a distant site (Lefert and Robatzek 2006).

Bacteria move towards the host by aerotaxis and chemo-
taxis (Chet et al. 1973; Raymundo and Ries 1980) and enter
into the plant through trichomes (Layne 1967), lenticels (Fox
et al. 1971), stomata (Getz et al. 1983; Melotto et al. 2006),
hydathodes (Mew et al. 1984), lateral root and wounds
(Huang 1986), and once inside the plant system, bacteria
inhabit in the apoplast (Jones and Dangl 2006).
Phytopathogenic fungi use modified hyphae as infection
structures, dedicated for the invasion of plant tissues. The
fungi adhere to the cuticle and direct the growth of a germ
tube on the plant surface followed by the formation of
appressoria. The appressoria develops a higher turgor pres-
sure to support the penetration process (Howard et al. 1991).
A penetration peg arises from a pore in the middle of the
appressorial base (Mendgen et al. 1996). Supported by
enzymes that soften the host cell wall, the hypha enters the
leaf epidermal cell and gets differentiated into bulbous and
lobed infectious hypae, which grow intra- and intercellularly
(Nakao et al. 2011). A few biotrophic fungi such as
Cladosporium fulvum do not form haustoria but instead
grow exclusively in apoplast, subsisting on leaked nutrients
(Thomma et al. 2005).

Viral entry is only possible through physical injuries
induced either by environmental factors or by vectors.
Once inside the cell, the virus mobilizes locally and system-
atically through intracellular (symplastic) movement through
the plasmodesmata, which may occur in either virion or non-
virion form. Movement proteins (MPs) and other virus-
encoded factors assist virus movement inside the plant sys-
tem in a coordinated and regulated manner, by acting togeth-
er with the host components (Niehl and Heinlein 2010).
Vector-mediated viral infection is facilitated by sap-sucking
species of arthropods, which can deliver virus particles di-
rectly into the vasculature and thus rapidly disseminating the

virus throughout the plant (Hammond-Kossack and Jones
2000).

3. Plant defense mechanisms

Entry of pathogens and the subsequent activation of induc-
ible defense responses or disease symptom development is
primarily prevented by performed barriers on the plant sur-
face such as wax layers, rigid cell walls, cuticular lipids
(Reina-Pinto and Yephremov 2009), antimicrobial enzymes
(Habib and Fazili 2007) or secondary metabolites (Ahuja et al.
2012; Bednarek 2012). Pathogens which overcome these de-
fensive layers (as discussed in the previous section) are sys-
tematically encountered and defense response is elicited by
two interconnected mechanisms, namely, microbial (or patho-
gen)-associated molecular patterns (MAMP/PAMP)-triggered
immunity (MTI/PTI) and effector-triggered immunity (ETI).
Since the term PAMPs was misleading as this line of defense
does not distinguish between mutualistic and parasitic symbi-
osis, Staal and Dixelius (2007) reinstated the term PAMPs
with MAMPs (MTI), which will be followed throughout this
review. An overall schematic representation of the plant de-
fense mechanisms was given in figure 1.

3.1 Microbial-associated molecular patterns
(MAMP)-triggered immunity (MTI)

Precisely, MTI (formerly called basal or horizontal immuni-
ty) involves the recognition of conserved, indispensable
microbial elicitors called microbial-associated molecular pat-
terns (MAMPs) by a class of plasma-membrane-bound ex-
tracellular receptors called pattern recognition receptors
(PRRs) (Dodds and Rathjen 2010; Beck et al. 2012) and
the activation of these PRRs results in active defense
responses (Hammond-Kosack and Jones 1996), which ulti-
mately contribute to halt infection before the microbe gains a
hold in the plant.

3.1.1 MAMPs/DAMPs:MAMPs are essential structures or
components that are conserved throughout the whole
classes of pathogens (Felix et al. 1993). This includes
oligogalacturonides (Galletti et al. 2008), ergosterol
(Granado et al. 1995), bacterial flagellin (Felix et al.
1999), Pep-13 (Brunner et al. 2002), xylanase (Belien
et al. 2006), cold-shock protein (Felix and Boller 2003)
and lipopolysaccharides (LPS) (Dow et al. 2000).
Recognition of particular MAMPs and subsequent elici-
tation of immune responses are confined to plant species
belonging to a single family (Felix and Boller 2003;
Ron and Avni 2004). For instance, EF-Tu recognition
is reported only in the Brassicaceae family (Kunze et al.
2004). Conversely, other MAMPs including chitin, LPS
and flagellin trigger immune responses in various host
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species, even if there is some degree of specificity and
perception efficacy for a plant family or species (Zipfel
et al. 2006).

Many plant pathogens produce lytic enzymes to infringe the
structural barriers of plant tissues. The products such as cell
wall fragments (Darvill and Albersheim 1984), cutin mono-
mers (Kauss et al. 1999) and peptides (Boller 2005; Huffaker
et al. 2006), which are generated as a consequence, can func-
tion as endogenous elicitors called damage-associated molec-
ular patterns (DAMPs). These DAMPs characteristically
emerge in the apoplast and serve as danger signals to induce
innate immunity similar to MAMPs (Henry et al. 2012).

3.1.2 Pattern recognition receptors: Plant receptors perceiving
MAMPs/DAMPs can be divided into surface and intracellular
receptors. The latter function exclusively in ETI and are
therefore detailed in the next section (ETI). The surface
receptors called PRRs are known to detect both MAMPs and
effectors. The PRR family includes receptor-like kinases (RLK)
and receptor-like proteins (RLP). RLK resides in plasma mem-
brane and comprises of a putative extracellular ligand-binding
domain, a single transmembrane domain (Shiu and Bleecker
2001), and an intracellular serine/threonine kinase domain.
Plant RLKs are structurally related to animal receptor-tyrosine

kinases (RTKs) (Shiu and Bleecker 2001). Similarly, RLP
consists of an extracellular domain and a membrane-spanning
domain. As they lack an intracellular activation domain, and
consequently, they require interaction with adaptor molecules
for signal transduction (Zipfel 2008). RLPs are structurally
reminiscent of the toll-like receptors (TLR) that mediate
MAMP recognition in animals (Kopp and Medzhitov 2003).

3.1.3 MAMP recognition: Although various MAMPs and
their corresponding PRRs have been reported, only a
few are well characterized (table 1). Some of the best
exemplified MAMP-PRR recognitions are Flg22:FLS2,
EF-Tu:EFR and Ax21:Xa21. FLS2 directly interacts with
flg22, a 22-amino-acid peptide derived from the amino
terminus of flagellin (Gómez-Gómez and Boller 2000;
Chinchilla et al. 2006), EFR specially perceives the elf18
peptide, the first 18 amino acid sequence of the N-terminus
of EF-Tu (Kunze et al. 2004), and Xa21 recognizes Ax21, a
sulfated 17-amino acid peptide derived from the amino termi-
nus of Xanthomonas oryzae pv. oryzae (Xoo) type I secreted
protein (Lee et al. 2009).

Lysin motif receptor kinases (LysM-RKs) are a kind of
RLKs with extracellular LysM and intracellular Ser/Thr
kinase domain. These LysM-RKs play a critical role in

Figure 1. Schematic representation of all the four modes of plant immunity: (a) MAMP-triggered immunity (MTI); (b) effector-triggered
immunity (ETI); (c) systemic acquired resistance (SAR); (d) gene silencing. ETI illustration includes the events involved in cell-
autonomous immune system based on membrane fusion for attacking intercellular bacteria and inducing local necrosis (hypersensitive
response-programmed cell death).
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perception of fungal cell wall component, chitin. A repre-
sentative example is chitin elicitor receptor kinase (CERK1)
of Arabidopsis with three extracellular LysMs (Miya et al.
2007). The AtCERK1 directly binds with the chitin oligo-
saccharide elicitor (Iizasa et al. 2010; Petutschnig et al.
2010) and gets activated through chitin-induced dimerization
(Liu et al. 2012b). An Arabidopsis CERK1 homolog,
OsCERK1, is also reported to be essential for chitin signal-
ling in rice (Shimizu et al. 2010). Recently, two homologous
LysM-RKs, namely LYP4 and LYP6, functional in sensing
both fungal chitin and bacterial peptidoglycan (PGN), were
reported in rice (Liu et al. 2012a).

Plant PRRs can also recognize DAMPs in an approach
similar to MAMPs and activate the defense signalling cas-
cade. Arabidopsis PEP receptor 1 (PEPR1) was the earliest
receptor for DAMPs perception reported, which belongs to
the LRR-RLK family. AtPEPR1 can specifically recognize
Arabidopsis Pep1, a 23-amino-acid peptide derived from the
C-terminus of a pathogen/wound-induced gene product,
PROPEP1, and activate the downstream signalling cascade
(Krol et al. 2010).

3.1.4 Signal transduction: MAMPs-induced rapid hetero-
merization of PRRs is the earliest event in activating the
MTI signalling downstream. Being functional kinases,

phosphorylation events in PRRs are regarded as
important regulatory mechanisms in MTI signalling. In
Flg22:FLS2 interaction, the kinase domain of FLS2 is
rapidly phosphorylated by stimulation with flg22 peptide
(Gómez-Gómez et al. 2001) and the phosphorylated
FLS2 instantaneously dimerizes with brassinosteroid
intensitive 1 (BRI1)-associated kinase (BAK1) and
Botrytis-induced kinase 1 (BIK1) (Chinchilla et al.
2007; Heese et al. 2007; Schulze et al. 2010). The
rapid FLS2-BAK1 association (in less than 2 min) pro-
poses the existence of BAK1 in a preformed complex at
the membrane, weakly associated with FLS2. Mutual
transphosphorylation of the kinase domains of BIK1
and FLS2/BAK1 (Lu et al. 2010; Schulze et al. 2010)
results in conformational changes and ultimately phos-
phorylated BIK1 is released to activate signalling com-
ponent downstream (Laluk et al. 2011; Wang 2012;
Belkhadir et al. 2012).

In Arabidopsis, the discharged BIK1 activates two simulta-
neous MAPK cascades downstream, MKK4/MKK5-MPK3/
MPK6 and MEKK1/MKK1/MKK2-MPK4 (Asai et al. 2002;
Meszaros et al. 2006; Suarez-Rodriguez et al. 2007; Gao et al.
2008), leading to the activation of WRKY family of transcrip-
tion factors (Pandey and Somssich 2009). WRKYs are of
approximately 60 amino acids in length, with a conserved

Table 1. MAMPs/DAMPs and their corresponding PRRs

Source MAMPs/DAMPs Epitope PRR PRR Type References

Bacteria Flagellin flg22 FLS2 LRR-RLK Gómez-Gómez et al. 2001

Cold-shock proteins RNP-1 motif unidentified unidentified Felix and Boller 2003

Xoo derived unidentified Xa26 LRR-RLK Sun et al. 2004

Ef-Tu elf8 EFR LRR-RLK Zipfel et al. 2006

Peptidoglycan hairpin HrpZ unidentified unidentified Erbs et al. 2008

Ax21 axYs22 Xa21 LRR-RLK Lee et al. 2009

lipopolysaccharides unidentified unidentified unidentified Erbs and Newman 2011

Peptidoglycan PGN LYM1 & LYM3 LysM-RLP Willmann et al. 2011

Fungi Ergosterol unidentified unidentified unidentified Granado et al. 1995

Cerebrosides sphingoid base unidentified unidentified Umemura et al. 2002

Xylanase TKLGE pentapeptide LeEIX2 LRR-RLP Ron and Avni 2004

Necrosis-inducing
proteins (NLP)

unidentified unidentified unidentified Mattinen et al. 2004

Chitin chitin oligosaccharides CERK1 LysM-RLK Shimizu et al. 2010

β-glucan β-heptaglucan GEBP unidentified Kishimoto et al. 2011

Oomycetes β-glucan hepta-β-glucoside GnGBP unidentified Klarzynski et al. 2000

Lipid-transfer proteins (elicitins) unidentified unidentified unidentified Osman et al. 2001

Transglutaminase Pep13 unidentified unidentified Brunner et al. 2002

Cellulose-binding elicitor
lectin (CBEL)

unidentified unidentified unidentified Gaulin et al. 2006

DAMPs Prosystemin systemin SR160 LRR-RLK Scheer and Ryan 2002

PEPR1 Pep1 PEPR1 LRR-RLK Krol et al. 2010

Homoglacturonan oligogalacturonides WAK1 EGF-RLK Brutus et al. 2010
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region of WRKYGQK along with a unique zinc-finger pattern
of Cys and His residues (Rushton et al. 1996). Being a DNA
binding domain, these WRKYs interacts with the W-box
(TTGACC/T) motif present in promoters of defense-
associated genes (Navarro et al. 2004) and activates the ex-
pression of early defense-related genes (Ishihama and
Yoshioka 2012).

3.1.5 Defense response: The initial defense response elicited
by plant cell cultures in response to MAMPs is the
alkalinization of the growth medium. Occurring 0.5 to
2 min after elicitation, this event relies on drastic changes
in fluxes of H+, K+, Cl2 and Ca2+ ions across the plasma
membrane (Jabs et al. 1997; Garcia-Brugger et al. 2006).
Elevation of cytoplasmic Ca2+ levels is a critical step in MTI
response and is mediated by accumulation of Ca2+ in the
thylakoid lumen of chloroplasts followed by increased Ca2+

influx in the cytoplasm (Nomura et al. 2012). This was ac-
complished by activation of a plasma membrane Ca2+-con-
ducting channel through PRR phosphorylation, G-protein
molecular switch and the activation of cyclic nucleotide gated
channels (Ali et al. 2007; Qi et al. 2010). Changes in [Ca2+]cyt
is perceived by calcium-binding proteins such as calmodulin,
calcium-dependent protein kinases, and calcineurin B-like
proteins (Reddy and Reddy 2004). Ca2+ elevation in cytosol
plays a pivotal role inmediating other plant immune processes,
including control of reactive oxygen species (ROS), salicylic
acid (SA) production and stomatal closure (Chiasson et al.
2005; Kotchoni and Gachomo 2006; Takabatake et al. 2007;
Nomura et al. 2008; Ogasawara et al. 2008; Wang et al. 2009;
Du et al. 2009). Recently, calcium-dependent protein kinases
(CDPKs), acting as Ca2+ sensor protein kinases, were reported
to be major mediators of the early MTI immune signalling
(Boudsocq et al. 2010).

The production of reactive nitrogen intermediates (RNIs)
and ROS at the cell surface, known as the nitrosative burst
and oxidative burst respectively, is one of the earliest events
detectable attributing to plant defense. The ROS synthesis
pathway has been deciphered but the sources of RNI remain
elusive. Yun et al. (2011) reported a covalent attachment of
the nitric oxide (NO) moiety to a protein cysteine thiol to
form an S-nitrosothiol (SNO), a redox-based post-
translational modification, which proceeds through a cascade
of biochemical pathways to produce RNI. During higher
concentrations of S-nitrosothiols, the NO directs a negative
feedback loop mediated by S-nitrosylation of the NADPH
oxidase (at Cys 890), thus restricting the HR by inhibiting
the synthesis of ROS. The cys 890 was reported to be
evolutionarily conserved and exclusively S-nitrosylated in
both human and Drosophila NADPH oxidase, signifying
that this system may govern immune responses in both
plants and animals (Yun et al. 2011). ROS are potentially
toxic analogous of reduced oxygen forms, such as the

superoxide anion and hydrogen peroxide. They are consid-
ered to exert antimicrobial action through in direct micro-
bicidal actions, strengthening of the cell wall through
oxidative cross linking of glycoproteins, induction of intra-
cellular signalling pathway such as the synthesis of SA and
activation of MAPK cascade, or activation of SAR associat-
ed with systemic propagation of the oxidative burst (Lamb
and Dixon 1997; Nuhse et al. 2007).

The accumulation of callose, a plant β-1,3-glucan poly-
mer synthesized between the cell wall and the plasma mem-
brane to limit the penetration of pathogens, is a conventional
indicator of MTI (Bestwick et al. 1995; Brown et al. 1998).
The rapid MAPK cascade triggered by Flg22 recognition
stimulates the generation of RBOHD-dependent ROS, which
subsequently promote deposition of PMR4-dependent cal-
lose (Zhang et al. 2007). The report on regulation of Flg22-
induced callose synthesis by glucosinolate metabolites adds
a novel layer to signalling pathways controlling MTI re-
sponse (Clay et al. 2009). The signalling and biochemical
cascade taking place during callose synthesis varies in ac-
cordance to type and property the MAMPs. It was also
reported that multiple signalling pathways regulates callose
deposition rather than one conserved downstream pathway
(Luna et al. 2011).

MTI also includes closure of stomata in response to
bacterial pathogen (Melotto et al. 2006). The mechanism
involves the elevation of free cytosolic Ca2+(Ca2+i) via a
CAS signalling pathway. A high extracellular calcium
(Ca2+o) level induces H2O2 and NO accumulation in guard
cells, which further triggers Ca2+i transients and finally
results in stomatal closure (Zhang et al. 2008; Wang et al.
2012). The decrease in photosynthesis in response to infec-
tion is another defense strategy employed by plants to dodge
the pathogens (Bolton 2009). Göhre et al. (2012) demon-
strated that activation of defense by MAMPs leads to a rapid
decrease in non-photochemical quenching (NPQ), thus lim-
iting carbon source availability for the pathogen.

MTI also involves the biosynthesis of salicylic acid (SA),
jasmonic acid (JA) and ethylene (ET) (Mishina and Zeier
2007; Tsuda et al. 2008), which are indispensable for both
local and systemic acquired resistances (Durrant and Dong
2004). This response showed great similarity to R-gene-
mediated defense (ETI) (Navarro et al. 2004), substantiating
the fact that MTI and ETI extensively share downstream
signalling machinery mediated by an integrated signalling
network (Tsuda and Katagiri 2010; Göhre et al. 2012).

3.2 Effector-triggered immunity (formerly called
R-gene-based or vertical immunity)

Successful pathogens have evolved strategies to challenge
the MTI and consequently promote pathogenesis by inject-
ing a battery of effector proteins across the plant cell wall
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into the cytoplasm through the type III secretion system
(TTSS) (Cornelis and van Gijsegem 2000; Grant et al.
2006; Deslandes and Rivas 2012). A virulent bacterium
delivers about 15–30 type III secreted effectors (TTSEs) into
host cells, which contribute pathogen virulence by (1) acting
as transcription factors that directly activate transcription in
host cells, (2) affecting histone packing and chromatin con-
figuration and/or (3) directly targeting host transcription
factor activity and ultimately promoting the release of
nutrients required for the survival of pathogen (Feng and
Zhou 2012). These effectors were identified originally not by
their promotion of virulence but rather by their ‘avirulence’
activity (Collmer et al. 2000). Moreover, they are extremely
diverse with little amino acid sequence similarity among
them (White et al . 2000). Typical examples are
Pseudomonas syringae TTSEs AvrPto, AvrPtoB, HopF2
and HopAI1, which suppress the FLS2-mediated MTI by
directly targeting different sites in Flg22:FLS2 signalling
cascade (Zhang et al. 2007; Rosebrock et al. 2007; Xiang
et al. 2008; Göhre et al. 2008; Wang et al. 2010a).

The effectors (Avr proteins) are recognized in a highly
specific fashion by the products of host disease resistance (R)
genes. R genes have been shown to control the outcome of
plant-pathogen interactions in a great diversity of hosts
against an extensive list of pathogens (Martin et al. 2003).

3.2.1 Resistance proteins: Like most of the PRRs belong to
the RLK family, a majority of R proteins belongs to the
intracellular nucleotide-binding leucine-rich repeat (NB-
LRR) protein family (Jones and Dangl 2006), which have
striking similarities with animal NOD-like receptor or
CATERPILLER proteins (Inohara and Nunez 2003;
Rairdan and Moffett 2007). Plant NB-LRRs contain a C-
terminal LRR domain, a varying N-terminal effector domain,
and a central NB domain. The latter regulates the conformation
and signalling activity of these proteins (Takken et al. 2006).
Based on the N-terminal architecture, the NB-LRRs are divid-
ed into two subclasses: coiled-coil (CC) motif and toll/inter-
leukin 1 receptor domain (TIR) (Eitas and Dangl 2010).

A second major class of R proteins belong to the extracel-
lular LRR (eLRR) proteins group, which was classified into
three subclasses according to their domain structures (Fritz-
Laylin et al. 2005). These subclasses comprise RLP (receptor-
like proteins; extracellular LRR and transmembrane [TM]
domain), RLK (extracellular LRR, TM domain, and cytoplas-
mic kinase) and PGIP (polygalacturonase inhibiting protein;
cell wall LRR) (Wang et al. 2010b). Comprehensive data of
effector molecules, their sources, targets, corresponding R-
proteins and R-protein structure is tabulated in table 2.

3.2.2 Effector recognition and signalling:NB-LRRs recognize
effectors by either of the two modes: (1) direct physical
interaction between the receptor and effector or (2) indirect

interaction mediated by accessory-proteins that the immune
receptor associates with and scrutinizes for effector-induced
modifications. These indirect recognition-mediating accessory
proteins may either be genuine virulence targets of the effector
(the guard model) or decoy proteins that the plant has evolved to
mimic its respective effector targets (the decoy model) (Dangl
and Jones 2001; Hoorn and Kamoun 2008; Dodds and Rathjen
2010).

In the absence of effectors, NB-LRRs maintain an ADP-
binding inactive state through intra-molecular interactions
between their different domains and/or extra-molecular in-
teraction with other host protein(s). During direct interaction,
the effectors induce primary conformational changes of NB-
LRRs, which is prone to ADP/ATP exchange. Nucleotide
exchange then triggers a second conformational change that
enables the NB-LRRs’ N-terminus (TIR, CC) to interact
with and activate downstream targets (Takken and
Tameling 2009).

Indirect recognition of effectors by NB-LRRs was tacit on
examining the role of conserved plant protein RIN4.
Arabidopsis RIN4 is targeted by multiple bacterial effectors
(AvrRpt2, AvrRpm1, AvrB and HopF2) and is monitored
for effector-induced modification by two NB-LRRs (RPS2
and RPM1) (Leister et al. 1996; Mackey et al. 2002; Kim et
al. 2005). AvrRpm1 and AvrB induce phosphorylation of
RIN4; and AvrRpt2, being a cysteine protease, cleaves RIN4
and induces RIN4 degradation. The phosphorylation and
proteolysis of RIN4 then respectively activate RPM1- and
RPS2-mediated ETI (Mackey et al. 2003; Axtell and
Staskawicz 2003; Wilton et al. 2010). The sites of RIN4
binding with and modified by AvrRpt2, AvrRpm1 and AvrB
overlap in a short C-terminal nitrate-induced domain, includ-
ing amino acids 142–176. Recently, it was reported that the
phosphorylation of RIN4 at a position of threonine 166 is
necessary for AvrB-triggered RPM1 activation (Chung et al.
2011; Liu et al. 2011a).

Various reports demonstrate that the activated NB-
LRRs exert their activities in the nucleus (Burch-Smith
et al. 2007; Shen et al. 2007). The CC-NB-LRR MLA10
(barley) and TIR-NB-LRRs RRS1-R (Arabidopsis), N
(tobacco), RPS4 (Arabidopsis) and SNC1 (Arabidopsis)
need nuclear localization and accumulation for complete
activation of immunity (Deslandes et al. 2003;
Wirthmueller et al. 2007; Shen et al. 2007; Burch-Smith
et al. 2007; Cheng et al. 2009). The involvement of NB-
LRRs in directly regulating the defense gene expression
is evidenced by the presence of a WRKY DNA-binding
domain in RRS1-R along with MLA10 and N with
WRKY and SPL transcription factors, respectively
(Caplan et al. 2008). These findings suggest that NB-
LRR signalling might not employ many components,
but rather take place immediately in the nucleus
(Altenbach and Robatzek 2007; Cheng et al. 2009).
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3.2.3 Defense responses: The downstream ETI response
events partially overlap with MTI response, including
activation of downstream MAPK cascade and activation
of WRKY transcription factors. This subsequently
induces rapid transcriptional activation of a string of
pathogenesis-related (PR) genes in and around the
infected cell for the biosynthesis of salicylic acid
(SA), jasmonic acid (JA), ethylene (ET), cell wall
strengthening, lignifications, production of various anti-
microbial compounds in endoplasmic reticulum and se-
cretion into vacuoles (Iwai et al. 2006; Nomura et al.
2012; Schäfer and Eichmann 2012). Salicylic acid thus
accumulated in the infected areas binds to the receptor

NPR3 (NONEXPRESSOR OF PR GENES3) with low
affinity and mediates the degradation of cell-death sup-
pressor NPR1 (Fu et al. 2012), thus leading to the
development of hypersensitive response (HR) (Pennell
and Lamb 1997; Hayward et al. 2009). The HR is a
form of programmed cell death (PCD) characterized by
cytoplasmic shrinkage, chromatin condensation, mito-
chondrial swelling, vacuolization and chloroplast disruption
(Coll et al. 2011).

Two main classes of PCD were described by van Doorn
(2011), namely autolytic-PCD and non-autolytic PCD.
Autolytic-PCD involves a rapid cytoplasm clearance after
tonoplast rupture due to the release of hydrolases from the

Table 2. Effector molecules, their sources, targets, corresponding R-proteins and R-protein structure

Pathogen Effector Target R-protein
R-protein
structure References

Blumeria graminis Avr10 unidentified MLA10 CC-NB-LRR Ridout et al. 2006

Cladosporium fulvum Avr2 RCR3 unidentified unidentified Rooney et al. 2005

Cladosporium fulvum Avr4 Chitinase unidentified unidentified van den Burg et al. 2006

Hyaloperonospora
parasitica

ATR13 unidentified RPP13 CC-NB-LRR Allen et al. 2004

Hyaloperonospora
parasitica

ATR1 unidentified RPP1 TIR-NB-LRR Rehmany et al. 2005

Magnaporthe grisea AvrPi-ta unidentified Pi-ta CC-NB-LRR Jia et al. 2000

Melampsora lini AvrL567 unidentified L5/L6/L7 TIR-NB-LRR Dodds et al. 2006

Phytophthora infestans Avr3a CMPG1 unidentified unidentified Bos et al. 2010

Potato virus X Coat protein unidentified Rx CC-NB-LRR Rairdan and Moffett 2007

Pseudomonas syringae AvrPtoB FLS2, BAK1,
FEN, CERK1

Prf CC-NB-LRR Göhre et al. 2008

Pseudomonas syringae AvrPphB PBS1 RPS5 CC-NB-LRR Zhang et al. 2010

Pseudomonas syringae AvrRpt2 RIN4 RPS2 CC-NB-LRR Coaker et al. 2005

Pseudomonas syringae AvrRpm1 RIN4 RPM1 CC-NB-LRR Liu et al. 2011a

Pseudomonas syringae AvrB RIN4 RPG1-B/TAO1 TIR-NB-LRR Eitas et al. 2008; Liu et al.
2011a

Pseudomonas syringae AvrRps4 unidentified RPS4 TIR-NB-LRR Hinsch and Staskawicz 1996

Pseudomonas syringae HopAI-1 MPK3, MPK6 unidentified unidentified Zhang et al. 2007

Pseudomonas syringae HopU1 GRP7 unidentified unidentified Jeong et al. 2011

Pseudomonas syringae HopM1 AtMIN7 unidentified unidentified Nomura et al. 2006

Pseudomonas syringae HopAO1 Downstream of
PTI signalling

unidentified unidentified Underwood et al. 2007

Pseudomonas syringae HopO1–1 Chloroplast protein unidentified unidentified Fu et al. 2007

Pseudomonas syringae HopO1–2 Chloroplast protein unidentified unidentified Fu et al. 2007

Pseudomonas syringae HopU1 AtGrp7, AtGrp8 unidentified unidentified Fu et al. 2007

Ralstonia solanacearum PopP2 unidentified RRS1-R TIR-NB-LRR Deslandes et al. 2003

Tobacco mosaic virus P50 unidentified N/NRG1 TIR-NB-LRR Burch-Smith et al. 2007

Xanthomonas campestris AvrBs2 unidentified Bs2 NB-LRR Mudgett et al. 2000

Xanthomonas campestris AvrAC BIK1, RIPK unidentified unidentified Feng et al. 2012

Xanthomonas campestris AvrXv4 Cytoplasmic target unidentified unidentified Roden et al. 2004

Xanthomonas campestris AvrBs3/PthA UPA-box unidentified unidentified Kay et al. 2007

Xanthomonas oryzae AvrRxo1 unidentified Rxo1 TIR-NB-LRR Zhao et al. 2004
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vacuole, which degrades the cytoplasm and brings about a
localized cell death. This autolytic-PCD is associated with
increased caspase-like activities (van Doorn 2011). Caspases
are a family of cysteine proteases that cleave their substrates
after an aspartic acid residue activates other caspases and
degradative enzymes or proteins involved in necrosis. In
Arabidposis, two metacaspases of type I, namely AtMC1
and AtMC2, were reported to control PCD antagonistically
(Coll et al. 2010). Non-autolytic PCD involves the absence
of a rapid clearance of the cytoplasm even in the persistence
of increased permeability of tonoplast. This increased per-
meability or even rupture of tonoplast does not result in
considerable discharge of hydrolases, which instantaneously
clear the remaining cytoplasm. The PCD mechanism, as
described by Hatsugai et al. (2009) was non-autolytic
PCD, in which the plasma membrane fuses with the mem-
branes of a large central vacuole mediated by proteasome
subunit, resulting in the release of vacuolar antibacterial
proteins in the apoplast. The extracellular fluid that was
discharged had both antibacterial activity and cell-death-
inducing activity, and thus promotes local necrosis and ulti-
mately obstructing the pathogen growth.

3.3 Systemic acquired resistance

A systemic defense response in the distal plant parts is
activated by the defense mechanism elicited at the infection
spot to guard the unharmed tissues against succeeding inva-
sion by the pathogen (Durrant and Dong 2004). This long-
lasting and broad-spectrum induced disease resistance is
referred to as systemic acquired resistance (SAR) (Durrant
and Dong 2004), which requires endogenous accumulation
of SA, resulting in transcriptional reprogramming of a bat-
tery of genes encoding PR proteins (van Loon et al. 2005;
Park et al. 2007). The SA produced in the infected site as
methyl-SA (MeSA) moves cell to cell via plasmodesmata or
through the phloem to the rest of the plant (Kiefer and
Slusarenko 2003; Park et al. 2007). Shulaev et al. (1997)
suggested that airborne (volatile) MeSA may also participate
in long-distance signalling during SAR in tobacco. Once
inside the cell, SA binds to the high-affinity receptor NPR4
instead of binding to low-affinity NPR3 and averts the
degradation of NPR1. This favours cell survival and expres-
sion of systemic immunity-related genes (Fu et al. 2012).
NPR1 has also been reported to participate in cross talk
between SA- and JA-dependent defense pathways, thus fa-
cilitating plants to generate suitable immune response,
depending on the nature of the pathogen and the stage of
infection (Spoel et al. 2003; Koornneef and Pieterse 2008;
Luna et al. 2012).

Although methyl-SA was believed to be the long-distance
signal in SAR because of its presence reported in the phloem
sap and exudates collected from SAR-induced cucumber and

tobacco leaves respectively, other studies using cucumber
(Rasmussen et al. 1991) and grafting experiments with
transgenic tobacco, Arabidopsis with reduced levels of
methyl-SA strongly suggest that SA is not the mobile signal
(Vernooij et al. 1994; Attaran et al. 2009). This led to the
discovery of glycerolipids (Chaturvedi et al. 2008), azeleic
acid (Jung et al. 2009) and glycerol-3-phosphate (Chanda et
al. 2011) as signalling molecules. As a plausible explana-
tion, Liu et al. (2011b) elucidated the participation of at least
two mobile signals, namely MeSA, and a complex formed
between the lipid transfer protein DIR1 and glycerolipid or
lipid derivatives in controlling SAR. Role of MeSA in SAR
was light-regulated, where the presence of MeSA and its
metabolizing enzymes were reported in SAR elicited during
late in the day. Conversely, absence of MeSA was reported in
SAR induced in the morning. These findings revealed the
multitude of transiently expressed signalling networks mediat-
ing the onset of SAR, which were divergent corresponding to
the environmental conditions.

The genes activated downstream of SA are classified into
two classes, namely, immediate-early genes and genes in-
duced later. The immediate-early genes were provoked with-
in 30 min of SA treatment (Horvath et al. 1998), whereas the
genes induced later include the SA-marker gene PR-1 (Lebel
et al. 1998). Gene expression profiling experiments have
illustrated the multifaceted patterns of regulation for a string
defense-related genes which are induced or repressed rela-
tively early or late after SA treatment and pathogen infection
(Bartsch et al. 2006; Blanco et al. 2009).

3.4 RNAi-mediated defense against viruses

Plants can circumvent viral infection by specifically degrading
viral RNA following a preliminary period of infection. This is
achieved through RNA interference (RNAi) resulting in gene
silencing. Plants exhibit two distinct gene silencing phenomena,
namely transcriptional gene silencing (TGS) and post-
transcriptional gene silencing (PTGS) (Al-Kaff et al. 1998; Lu
et al. 2003; Padmanabhan et al. 2009; Sahu et al. 2012a), which
uses small regulating RNAs (sRNAs) to specifically target and
inactivate invading nucleic acids (Sharma et al. 2012).

3.4.1 Post-transcriptional gene silencing: The first step of
PTGS is initiation in which dsRNA is synthesized from the
viral genome either by the RNA-dependent RNA polymer-
ase (RDR) of RNA viruses or by host RNA polymerase II in
case of DNA viruses. The dsRNA serves as the substrate for
Dicer (DCL), an endoribonuclease (RNase) enzyme, which
generates a pool of siRNA (~21–24 nt) by recognizing the
ends of dsRNA with its PAZ (Piwi/Argonaute/Zwille) do-
main and then cleaves the dsRNA with RNase III domains
(Berstein et al. 2001). The processed siRNAs are carried to
the effector component called RNA-induced silencing
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complex (RISC). RISC is a ribonucleoprotein complex with
an active component termed Argonaute (AGO) proteins,
which cleave the target viral mRNA strand complementary
to their bound siRNA in the middle of siRNA–mRNA du-
plex. AGO proteins comprise two homology domains,
namely, the PAZ and Piwi domain. Piwi domain possesses
the RNaseH activity, which cleaves the target single stranded
RNA (Baulcombe 2004; Lindbo and Dougherty 2005) initi-
ated by the elimination of 3′ poly A tail followed by degra-
dation involving major cellular 5′–3′ exonuclease-like
Xrn1p (Orban and Izaurralde 2005). Thus, the invading viral
RNAs or the transcripts of viral DNA are eliminated through
PTGS (Sharma et al. 2012). In our recent study, we
evidenced a higher accumulation of 21 and 24 nt siRNA
corresponding to replication associated proteins gene (Rep)
region of the Tomato leaf curl New Delhi virus (ToLCNDV)
and is responsible for resistance against the virus (Sahu et al.
2010; 2012a), which substantiates the existence of PTGS
phenomena in tomato cultivars.

3.4.2 Transcriptional gene silencing:DNA cytosine methylation
at carbon 5 of the pyrimidine ring [5-methylcytosine (5-meC)]
is a prime epigenetic event in the defense response towards
viruses (Lister et al. 2008). During RNA-directed DNA meth-
ylation (RdDM), the production of 24-nt heterochromatic
siRNA involves Pol IV, a specialized polymerase evolved
from Pol II which generates single-stranded transcripts from
the viral genome (Huang et al. 2009). These ssRNA are
converted into dsRNA by RDR2 and subsequently diced by
DCL3 to generate 24-nt siRNA. These siRNAs are incorpo-
rated into AGO4-containing RNA-induced transcriptional si-
lencing (RITS) complex and act as a guiding strand for
heterochromatin formation and methylation. The AGO4
imparts chromatin modification either by cytosine methylation
or by histone methylation. In plants, it has been reported that
the viral genome is targeted for methylation through 24-nt
siRNAs during infection. Various reports highlighted the ex-
istence of TGS, mediated by the methylation in the intergenic
region of Mungbean yellow mosaic India virus (Yadav and
Chattopadhyay 2011) and ToLCNDV (Sahu et al.
unpublished).

The discovery of dsRNA being the inducer of RNA silenc-
ing in plants has led to the development of a more robust and
effective inverted-repeat transgene system for engineering vi-
rus resistance in plants (Lu et al. 2003; Burch-Smith et al.
2006; Godge et al. 2007; Yamagishi and Yoshikawa 2010; Ma
et al. 2012; Sahu et al. 2012b). Moreover, it is interesting to
note that the RNA silencing signals spread from cell to cell
through plasmodesmata and over long distances via the phlo-
em (Ruiz-Medrano et al. 2004), similar to SAR.

3.4.3 Viral counterparts of silencing suppression: Although
RNA silencing has evolved to be a potential antiviral defense

strategy, most of the plant viruses encode at least one
suppressor protein to circumvent the defense mechanism.
Thus, viruses intrude with the host silencing machinery,
resulting in increased viral replication and/or repression of
systematic silencing (Raja et al. 2010). These viral
suppressors (VSRs) interfere with either single or multiple
steps in silencing pathway to enhance virus replication,
eventually restraining the production of sRNA. For
instance, the V2 protein of Tomato yellow leaf curl virus
inhibits the generation of dsRNA by binding to SGS3
(cofactor of RDR6). This ultimately distracts the siRNA
production and increases the susceptibility of tomato plant
(Glick et al. 2008). Cucumber mosaic virus protein 2b binds
with the AGO1 and blocks its cleaving activity (Goto et al.
2007). Tobacco mosaic virus VSRs HcPro and P122-kDa
replicase inhibits HEN1-mediated methylation and initiates
the degradation of siRNA (Lozsa et al. 2008). VSR binding
to the dsRNA/siRNA is also an important mechanism of
suppression. Cymbidium ringspot tombusvirus produces
P19 silencing suppressor, which targets the 21- to 25-nt
dsRNAs and eventually deteriorates the PTGS effector com-
plexes. Flock house virus B2 protein has an affinity toward
both siRNAs and longer dsRNAs, thus inhibiting the siRNA
production by shielding dsRNA from cleavage by DCL
(Chao et al. 2005). Plants utilize TGS mediated by RdDM
to defend DNA viruses, but these viruses possess inhibitor
proteins that suppress TGS. Cauliflower mosaic virus P6
protein binds to nuclear protein DRB4 (double-stranded
RNA binding protein), which is essential for the functioning
of DCL4 and inactivates it, thus suppressing TGS (Haas et
al. 2008). Moreover, recent reports have revealed that the
impact of VSRs on endogenous pathways is more complex
and profound than had been estimated, and hence intense
research is required for understanding the replication, sub-
cellular localization and regulation of the expressions of viral
genes, including VSRs (Burgyán and Havelda 2011).

4. Trans-generational immune memory

In the past decade, numerous findings suggested the phe-
nomena of trans-generational immune memory in plants,
where the environmental stresses challenged by a generation,
can lead to effective adaptations to those stresses in the next
generation. This is achieved by memorizing the acquired
immune potential in a form and is disseminated through
mitotic and meiotic divisions, even during the nonexistence
of stress, thus equipping the progenies with an acquired
immune power. Epigenetic changes in genetic material, such
as modifications in DNA methylation patterns, chromatin
remodelling and histone modification, can heritably and
reversibly modify the expression of genes and have an
impact on plant immunity (Molinier et al. 2006; Jaskiewicz
et al. 2011). In addition, the role of small interfering RNAs
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(siRNAs) in transmitting the immune memory to subsequent
generation was also reported (Chitwood and Timmermans
2010).

Slaughter et al. (2012) compared the reactions involved in
trans-generational memory of Arabidopsis that had been
either primed with β-amino-butyric acid (BABA) or with
an avirulent isolate of the bacteria Pseudomonas syringae
pv tomato (PstavrRpt2). In the progenies of primed plants,
they found an immediate and increased accumulation of
transcripts of genes participating in SA signalling pathway
along with an enhanced disease resistance upon challenging
with pathogenic P. syringae. These trans-generationally
primed progenies were exposed to an additional priming
treatment, where their descendants were found to exhibit a
much stronger primed phenotype (Slaughter et al. 2012).
This suggested the ability of plants to inherit a sensitization
for the priming event.

Luna et al. (2012) reported the prevalence of trans-
generational SAR over one stress-free generation, indicating
an epigenetic basis of memory in Arabidposis under disease
pressure by Pseudomonas syringae pv tomato DC3000
(PstDC3000). They also discovered that the P1 progeny
from the NPR1 mutants seldom developed trans-
generational defense phenotypes, thus substantiated a critical
role for NPR1 in expression of trans-generational SAR.
Their study proposed that transmittance of trans-
generational SAR is accomplished by hypomethylated genes
which perform in direct priming of SA-dependent defenses
in the subsequent generations (Luna et al. 2012).

5. The undeciphered modules in immunity

Amidst the captivating discoveries, the field still retains
many enduring challenges and mysteries, including identifi-
cation of avr genes of haustoria-forming fungal pathogens,
immune mechanisms of roots, molecular mechanisms by
which nuclear effectors from different microbes impose their
transcriptional signature in host cells and its successful plant
colonization, production of ROS/RNI members and their
role in regulation of cellular activity and gene expressions
through fine-tuning of the signalling processes. These con-
cealments will undoubtedly make the field of plant innate
immunity a hottest in research, in the future.

6. Conclusions

Plants have evolved innate immune systems that recognize
the presence of pathogens and initiate effective defense
responses, whereas successful pathogens have evolved ef-
fector proteins that can suppress host immune responses.
Furthermore, effectors can themselves act as elicitors and
can be disabled by the host. The studies on plant–pathogen

interactions had described several interesting information
such as unique immune strategies adopted by plants against
highly pathogenic strains, R-protein-mediated surveillance
and memory of immunity in SAR. Considerable progresses
have been made in understanding the role and mechanism of
RNA silencing, substantiating the fact that RNA silencing
operates as an innate antiviral defense in higher plants. The
development of powerful RNAi in vitro assays, the isolation
and further characterization of RNA silencing mutants, and
the investigation of viral-encoded silencing suppressors pro-
vide an exciting and fascinating research ground for the
future. Obviously, a better understanding of plant–pathogen
interactions and the molecular details of how plants are able
to heritably protect their offspring against potential enemies
in their environment without making changes in their DNA
sequence will pave the way for the improvement of disease
resistance in economically important crops, thereby ensuring
food security, an issue of global importance.
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