
We present here a novel methodology for predicting new genes in prokaryotic genomes on the basis of inherent
energetics of DNA. Regions of higher thermodynamic stability were identified, which were filtered based on already
known annotations to yield a set of potentially new genes. These were then processed for their compatibility with the
stereo-chemical properties of proteins and tripeptide frequencies of proteins in Swissprot data, which results in a
reliable set of new genes in a genome. Quite surprisingly, the methodology identifies new genes even in well-
annotated genomes. Also, the methodology can handle genomes of any GC-content, size and number of annotated
genes.

[Khandelwal G, Gupta J and Jayaram B 2012 DNA-energetics-based analyses suggest additional genes in prokaryotes. J. Biosci. 37 433–444] DOI
10.1007/s12038-012-9221-7

1. Introduction

Since the sequencing of the first microbial genome (Fleischmann
et al. 1995), the wave of genome sequence data has risen
exponentially, with more than 1761 microbial genomes already
sequenced and several getting re-sequenced (Pagani et al.
2012). In the high-throughput sequencing technology sce-
nario, computational methods are rapidly becoming an inte-
gral part of automated data annotation (Pati et al. 2010). The
most important part of sequence annotation is gene predic-
tion, which refers to the process of detecting functional
stretches of DNA sequences, most commonly, the protein
coding regions on DNA (Fickett 1982). Gene prediction is
the main focus of many annotation methods.

Gene prediction methods use either an ab initio or homol-
ogy approach. Most of the ab initio approaches are based on
training the model parameters on known annotations by
either looking at the disparity in statistics of nucleotides in
different regions of DNA such as the probability of occur-
rence of a stop codon in a coding region as opposed to that in
a random sequence/non-coding region, or by looking at the

content of various regions such as the codon bias, oligomer
frequencies, etc. The homology-based approaches match the
sequence with its homologs in the annotated databases using
alignment methods (Korf et al. 2001). Apart from these,
some hybrid methods have also been developed that utilize
both the above approaches for gene prediction. As compared
to manual curation, these methods are relatively faster but less
accurate (Guigó et al. 2006; Harrow et al. 2006; DeCaprio
et al. 2007), leading to a need for better automated methods.

Most of the gene prediction softwares claim an accuracy
of 90% or more, but their predictions vary as they utilize
different models for their predictions on different systems.
The gene prediction methods are limited to the known
sequences either for training them or for finding a homolog,
making them severely database dependent (Claverie et al.
1997). This is evident from the fact that the new genes are
being discovered in already annotated genomes (Glusman
et al. 2006; Jensen et al. 2006) leading to regular updates of
the initial genomic annotations assigned using different an-
notation softwares, mostly based on statistical models. A
recent study has shown that training-based models are not
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able to determine all the protein coding regions present in a
genome (Pati et al. 2010), which could be due to the lack of
generalization in these models that should detect genes irre-
spective of the training data applied to capture them in the
newly sequenced organisms, especially if the training data is
unavailable for the organism in question. Also, predictions
are fraught with many false-positives and their specificities
are worse than their sensitivities (Yok and Rosen 2011).

Studies in the recent past have focused on improvements
in predictions and on the development of next-generation
prediction servers for better annotations. The newer methods
are characterized by improved annotation/prediction in both
prokaryotes and eukaryotes by either reducing the predicted
number of false-positives (Baren and Brent 2006) or predict-
ing new genes or improving some part of the prediction such
as translational start sites (TSS). A few methodologies also
utilize an extra step over and above their predictions like
frameshift detection (Tech and Meinicke 2006), removal of
overlapping genes, adjustment of translational initiation site
(Stormo et al. 1982; Zhu et al. 2004) and comparison with
closely related genomic sequences (Yu et al. 2007). Some of
the methodologies for improving predictions that have been
incorporated in one or more softwares are the following:
combining comparative genomic approaches with ab initio
results (Frishman et al. 1998), utilizing phylogenetic finger-
prints (Wu et al. 2006), employing protein multiple sequence
alignments (Keller et al. 2011), modelling conserved fea-
tures (Meyer and Durbin 2004), using cDNA (Stanke et al.
2008) or Expressed Sequence Tag (EST) data or by consen-
sus prediction by two or more methods (Yok and Rosen
2011). Several gene predictors like ORPHEUS (Frishman
et al. 1998), AUGUSTUS (Stanke et al. 2004; Keller et al.
2011), Procustes (Gelfand et al. 1996), N-SCAN (Gross and
Brent 2006), GenomeScan (Yeh, et al. 2001), SLAM
(Alexandersson et al. 2003), GeneMapper (Chatterji and
Pachter 2006), GeneWise (Birney and Durbin 2000), MED
(Zhu et al. 2007), GeneComber (Shah et al. 2003), Gene-
Primp (Pati et al. 2010), etc., have incorporated these or
similar methodologies to improve their predictions. A pro-
gram called ‘Combiner’ (Allen et al. 2004) utilizes data
about the gene boundary locations from ab initio methods,
splice-site prediction, protein sequence alignments, EST and
cDNA alignments along with other evidences to predict
complete gene models in eukaryotes.

Overall, the acute database dependence, and the paucity of
experimental information, strongly underscores the need for a
methodology that is truly ab initio and requires no training.
Methods to tackle this problem have been proposed for prokar-
yotes (Audic and Claverie 1998; Besemer and Borodovsky
1999), but the results were not completely convincing
(Mathé et al. 2002). This is feasible only if the intrinsic
properties of DNA and the proteins that they code for are
understood and built-in. Difficulties arising due to compositional
variance of DNA, available gene models, etc., can be overcome

if properties inherent to the DNA molecule itself are brought to
fore in the gene prediction methodologies.

An earlier attempt to predict genes using the physico-
chemical properties of DNA and the conjugate rule com-
bined into a ‘J-vector’ has proven to be quite successful
(Jayaram 1997; Singhal et al. 2008), with sensitivity and
specificity values of 0.87 (86.53%) and 0.64 (63.91%) re-
spectively for 372 prokaryotic genomes. This method is
universally applicable to all prokaryotic genomes and does
not need alterations of input parameters specific to any
organism. Also, a separate study based on the melting tem-
peratures of DNA (Khandelwal and Jayaram 2010) showed
different stabilities for various functional regions of genomic
sequences, notably higher stability for genic regions as com-
pared to the non-genic regions, which was similar to the
previous work done in this area utilizing similar approaches
(Maeda and Ohtsubo 1987; Wada and Suyama 1983, 1984a,
1984b, 1985a, 1986; Huang and Kowalski 2003).

Building on these findings, we started looking for regions
on a genome that possess gene-like characteristics such as
higher stability, a gene-like ‘J-vector’, the right combination
of stereochemical properties as well as the observed tripep-
tide frequencies in the protein products. We indeed found
several regions on completely sequenced and annotated ge-
nome sequences that had gene-like characteristics and also
showed homology with already annotated gene or protein
sequences, but were not annotated in the organism studied.
Encouraged by these initial results, we developed a complete
methodology for predicting new genes in a sequenced ge-
nome, which were missed by the initial annotation softwares.
The methodology is provided in the materials and methods
section and the findings on a few genomes are discussed. It
was already proposed that unidentified genes are yet to be
mined from the intergenic regions (Dhar et al. 2009) and was
interesting to see that even in highly studied and annotated
genomes; numerous potential genes were found, even after
considering the possibility of error in the prediction, espe-
cially with overprediction. Such large numbers hint that
there must still be some regions on a genome that are not
annotated but do function as coding sequences. It is also
possible that these potential genes may represent evolution-
arily transient stages of gene decay or gene gain (Knowles
and McLysaght 2009; Siepel 2009). This suggests that our
knowledge of even the location of genes and other functional
units on genomic DNA is still incomplete, which again
emphasizes the need for the development of alternative and
better methods for genome annotation.

2. Materials and methods

The methodology works on the principle that basic energetic
interactions such as hydrogen bonding between the Watson–
Crick base pairs and stacking between the adjacent base
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pairs contributes to the stability of the DNA molecule. In this
study, the stability of the molecule was established on
the basis of the melting temperature of the system,
derived from the use of the energetic contributions men-
tioned above. The hydrogen bonding and stacking ener-
gy parameters were derived from all-atom molecular
dynamics simulations on all tetranucleotide sequences
(Dixit et al. 2005; Lavery et al. 2009). The energies for all
the 10 unique dinucleotides were determined as a special
case of averaging over trinucleotide data (table 1). Both

hydrogen bonding and stacking energies contributions were
considered together for each dinucleotide in the form of
‘strength parameter’ and denoted as ‘E’ (table 1), as in a
previous study (Khandelwal and Jayaram 2010). The
strength parameter was then used along with the Na+ ion
concentration and DNA concentration of the sequences to
generate a regression equation (equation 1) for predicting the
melting temperature of DNA sequences, on a training set of
123 oligonucleotides for which the experimental melting
temperatures were known.

Tm �Cð Þ ¼ �8:69� Eð Þ þ 6:07� ln Lenð Þ½ � þ 4:97� ln Concð Þ½ � þ 1:11� ln dnað Þ½ �f g � 233:45 ð1Þ

Here, E is the strength parameter, Len is the length of
DNA sequence, Conc is the the Na+ ion concentration and
dna is the oligonucleotide concentration.

The training dataset gives a Pearson Product moment
correlation coefficient of 0.98 between the experimental
and predicted melting temperatures and an average error of
1.38°C. Equation 1 is then used to predict the melting
temperatures of a dataset of 225 oligonucleotides for which
the experimental melting temperatures were known, in order
to check the reliability of the prediction (figure 1). The
predicted melting temperatures of the test dataset yield a
Pearson Product moment correlation coefficient of 0.99
against experiment and the average error of prediction is
1.27°C. It may be noted that the MD-derived strength param-
eters correlate quite well with the experimental melting

temperatures even without any training. The training here
is only to make the predicted melting temperatures quantita-
tive and absolute.

There are other methods for melting temperature prediction,
the most popular one being that of SantaLucia, which is based
on stacking parameters (SantaLucia 1998). The predicted
melting temperatures using SantaLucia’s parameters on the
above test dataset as reported in the literature (Panjkovich
and Melo 2005) show a Pearson Product moment correlation
coefficient of 0.98 and an average error of 2.96°C, which is
double that obtained by the current method.

Other factors such as solvation and ion atmosphere also
contribute to the stability of DNA (Jayaram and Beveridge
1990). It is interesting that this simple method based on
hydrogen bonding and stacking works so well in predicting
melting temperatures of oligonucleotides.

To deal with longer sequences extending to the level of
genomes, the sequence is first broken into overlapping win-
dows of 70 base pairs and the melting temperature of each
window is calculated, generating a continuous array of

Table 1. Energy parameters (in kcal) for dinucleotides derived
from molecular dynamics simulations

Dinucleotide Hydrogen bond Stacking energy
Strength
parameter

AA −6.92 −26.92 −33.84
AC −9.64 −27.87 −37.51
AG −8.78 −26.91 −35.69
AT −7.05 −27.34 −34.38
CA −9.34 −27.23 −36.57
CC −11.84 −26.33 −38.17
CG −11.37 −27.83 −39.20
CT −8.78 −26.91 −35.69
GA −10.12 −26.98 −37.10
GC −12.03 −28.27 −40.30
GG −11.84 −26.33 −38.17
GT −9.64 −27.87 −37.51
TA −7.16 −27.15 −34.31
TC −10.12 −26.98 −37.10
TG −9.34 −27.23 −36.57
TT −6.92 −26.92 −33.84 Figure 1. Correlation between experimental and predicted melting

temperatures of a test dataset consisting of 225 oligonucleotides.
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melting temperatures over the sequence termed as the ‘melt-
ing profile’ of the sequence. For a sequence of ‘N’ bases, a
total of (N−70) data points are obtained forming a profile.
The average melting temperature for a sequence is calculated
as:

Avg Tm �Cð Þ ¼
P N�70ð Þþ1½ �

1 Tm

N � 70ð Þ þ 1½ �
The computed melting temperatures of DNA sequence of

any given length were found to correlate very well with the
experimental melting temperatures of complete genomic
melting data of different organisms (data not shown). The
methodology for the generation of melting profiles is pre-
sented in detail elsewhere (Khandelwal and Jayaram 2010).

2.1 Extraction of thermodynamically more stable regions

The melting temperatures correspond to the stability of the
DNA sequence – higher temperatures indicating higher ther-
modynamic stability of those sequences. This property is
utilized to determine relatively more stable regions in the
genome. Genome sequences along with their annotations are
downloaded from the National Centre for Biotechnology
Information (NCBI, http://www.ncbi.nlm.nih.gov/). Only
the genomes where the sequencing and assembly was com-
plete and had varied GC-content were considered for the
study. The melting profile and the average melting temper-
ature of the sequences were calculated as mentioned above.
The sequences of all the regions depicting higher stability
with respect to the average melting temperature for that
genome were extracted from the genomic sequence. The
minimum length of a sequence to be considered as a poten-
tial gene for extraction was set at 100, and minimum seg-
ment of low stability to separate two potential genic regions
of high stability was fixed at 35 bases. The extracted sequen-
ces were then extended on both the 5′ and 3′ ends in all the
six frames to form a complete Open Reading Frame (ORF),
as this methodology is not based on a codon system and does
not look for an ORF in its initial step. The ones that form an
ORF are retained for further analysis and the rest of them are
discarded. If there is more than one ORF with the same stop
position but with different start positions, then only the
longest ORF is considered for further analysis.

2.2 Comparison with protein sequence databases

The extended sequences are then converted into their
corresponding protein sequences and searched against the
non-redundant database of protein sequences using BLASTP
(Version: 2.2.25+) modules of the stand-alone version of
BLAST (Atshul 1990), downloaded from the ftp site of
NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

LATEST/). The BLAST database was also downloaded from
ftp site of NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/),
updated as of December 2011. The genomes used are also
updated as of December 2011, so as to provide consistency
between the annotation of genomes and the data present in
the databases used for BLAST searches. Sequences having
an E-value of less than 0.01 (Group I) are separated from the
ones which show low or no similarity (Group II) with the
already known protein sequences. Sequences in Group I that
match with ones already present in the query genome are
rejected as they have already been annotated. Sequences that
match with some other organisms are not scrutinized through
any other filter and are marked as ‘new annotations’ for the
query genome sequence.

2.3 Determining protein coding potential of new
sequences

The ORFs of Group II sequences that have extremely low or no
similarity with known sequences after BLASTP analysis are then
evaluated on the basis of their ‘J-vector’ orientation, which
separates gene-like sequences from non-gene-like sequences
using physico-chemical properties of DNA (Dutta et al. 2006).
Sequences that are predicted to be having gene-like features
are then converted to amino acid sequences and screened on
the basis of stereo-chemical properties (linear or branched,
hydrogen bond donors, conformationally flexible, and short
or long) of amino acid side chains in naturally occurring
proteins (Jayaram 2008). An initial version of this filter was
incorporated in an earlier gene prediction software (Chem-
Genome 2.0, http://www.scfbio-iitd.res.in/chemgenome/
chemgenomenew.jsp), which was modified to improve its
accuracy as checked against the latest Swissprot/Uniprot
data (O’Donovan et al. 2002; The Uniprot Consortium
2011). A third filter developed on the basis of standard
deviations in the frequency of occurrence of tripeptides from
Swissprot data (with evidence at the protein and the tran-
script levels) is also used to reduce the number of false-
positives. A threshold value of ≤2.5 was set to discriminate
gene-like sequences from non-gene-like sequences. The
sequences that are obtained after the above methodology
are termed as ‘potential new genes’. The flowchart of the
complete process is presented in figure 2.

The methodology described above has been utilized as an
illustration for detecting potential new genes in 12 different
genomes with varied GC percentages ranging from 22% to
74%. The scientific names of the organisms along with their
NCBI IDs and the percentage GC-content is presented in
table 2.

Further testing was done on Synthetic Mycoplasma
genitalium, Bacillus subtilis and Ecsherichia coli genomes,
downloaded from the NCBI Website along with their
annotations.
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3. Results and discussion

Thermodynamics of DNA plays a vital role in its functionality,
as studies have shown that different regions having different
functionalities show different energetic signatures (Maeda and
Ohtsubo 1987; Wada and Suyama 1983, 1984a, b, 1985a,
1986; Umek and Kowalski 1988; Natale et al. 1993; Lin and
Kowalski 1994; Kanhere and Bansal 2005a). A few inves-
tigators have utilized this fact in the past using one or more
of the energy components together with or without structural
properties of the DNA molecule to predict functional regions
over a sequence (Kanhere and Bansal 2005b; Dutta et al.
2006; Rangannan and Bansal 2007; Singhal et al. 2008;
Abeel et al. 2008; Dineen et al. 2009; Morey et al. 2011).
Previous studies have also documented the effect of various
energy components on the stability of DNA and mutational
stability of DNA sequences (Delcourt and Blake 1991; Hunter
1993; Sugimoto et al. 1996; Owczarzy et al. 1999; Sponer

et al. 2001, 2004; Protozanova et al. 2004; Yakovchuk
et al. 2006).

We utilized the stacking energy between the base pairs
and the hydrogen bonding energy between the Watson–
Crick base pairs as the strength parameter ‘E’ to compute
the energetic contributions towards the stability of DNA.
This was then used to derive a regression equation to predict
the melting temperatures of oligonucleotides. The same
equation was used to predict the melting temperatures of
longer DNA sequences at the level of genomes, and to
develop their melting profiles as shown in figure 3.

Sequences having higher stability with respect to the
average value for that genome are then screened using
BLAST, J-vector, stereo-chemical properties of proteins
and deviations from the Swissprot frequencies of tripeptides.
It may be noticed from figure 3 that there are two regions
that have a higher stability (relative to genomic average Tm)
without any annotation provided to them. When we analysed

Figure 2. Flowchart for predicting new genes using physico-chemical approach.
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these sequences, we found that both these regions exhibit
properties of a gene and were bracketed as potential new
genes with the above-mentioned methodology. The number
of gene-like sequences predicted after each step for all the 12
genomes considered in this study are presented in table 2.

Results in table 2 show that even after incorporating
filters to remove DNA sequences that do not have genic
character, a considerable number of new genes is obtained
in each case. The number of sequences that match with the
annotations of the genome in study are presented in column
8 (match with query genome) of table 2. Each of the pre-
dicted genes forms an ORF, so the loss of start codons, frame
changes and hence error due to inclusion of pseudogenes is
not an issue in the current study. Also, the predicted genes
have passed the filters incorporating the stereo-chemical
properties and tripeptides frequencies, both of which handle
the sequences at the level of proteins. The total number of
gene-like sequences predicted for each genome varies from a
minimum of 1 in case of Candidatus Sulcia muelleri DMIN
to a maximum of 5743 in case of Rhodopseudomonas pal-
ustris TIE-1. It may also be seen from table 2 that the
number of genes predicted in each case is not affected either
by the GC-content of the genomes or by the number of
annotated genes in each case. For example, the genome of
Acaryochloris marinaMBIC11017 (6503724 base pairs) has
a GC-content of 47.3% and the number of annotated genes is
2137 and the predicted number of new genes in this case is
586, while for two other genomes, Prevotella denticola
F0289 (2937589 base pairs, 50.4% GC 2386 annotated genes)
and Acetobacter pasteurianus IFO 3283-01 (2907495 base
pairs, 53.0% GC 2682 annotated genes), the number of new
genes predicted is 1218 and 1123 respectively, which is

approximately double that predicted in the case of Acaryo-
chloris marina MBIC11017 although the GC-content of
these organisms does not vary much.

The size of the genome also has no effect on the number
of new predictions as seen from table 2, where the smallest
genome is of Candidatus Tremblaya princeps, which has a
GC-content of 58.8% and a size of 138927 base pairs. The
total number of new genes predicted in this case is 57, which
is 50 times that predicted for another genome, Candidatus
Sulcia muelleri DMIN (GC-content=22.5%), which is ap-
proximately double (243933 base pairs) of the smallest one
but has only one predicted new gene. The number of sequen-
ces obtained after all the filters for each case is not even
related to the number of sequences obtained in the initial step
of the methodology involving melting temperature discrim-
ination. It may be noticed from table 2 that for Glaciecola
nitratireducens FR1064, the number of sequences obtained
at the first step is 3654 and the final number attained is just
145, while in the case of Acaryochloris marinaMBIC11017,
the number of sequences extracted at the initial step is 2137
and those remaining after the complete methodology is 586,
which is approximately four times that obtained for Glacie-
cola nitratireducens FR1064 . It is also evident from table 2
that there is a considerable reduction of potential new genes
after each filter, demonstrating strongly the need for
physico-chemical filters as considered in this study so as to
keep the number of false-positives in each case to a
minimum.

The genome of Glaciecola nitratireducens FR1064
(4134229 bp) has 145 new predicted genes, while that of
Bacillus subtilis subsp. subtilis str. 168 (4215606) has 519
prediction. Although the size as well as the GC-content (42.3

Figure 3. Melting profile and the annotated and predicted genes in the genome of Candidatus Tremblaya princeps PCIT. The black line
represents the average melting temperature of the genome and arrows indicate the direction of transcription.
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The column illustrating new annotations in table 2 clearly
reveals that there are a number of sequences in each genome
that have not yet been annotated in the query genome al-
though they show significant matches with proteins present
in other species. These genes could have been horizontally
transferred, and so they do not show characteristics similar to
most of the protein coding sequences present in the query
genome and hence are missed by ab initio gene prediction
softwares, which are used to provide annotation of genomes
as present in NCBI.

3.1 A test case of Synthetic Mycoplasma genitalium JCVI-
1.0 (Synthia)

The first synthetic genome constructed by Venter and cow-
orkers (Gibson et al. 2010), where the genome is completely
annotated, was also adapted to determine the accuracy of the
predictions made by this methodology. It was observed that
the number of new genes predicted in this case was just 5,
while the number of annotated genes for this organism is
483. The details of the prediction for Synthia are given in
table 3. The number of annotated genes that lie in the higher
stability regions of Synthia is 265.

When we compare this with the number of predicted
potential genes, which in case of Synthia would be false-
positives as the genome has been synthetically constructed
and the functionality of each region is known, the error in
prediction turns out to be 0.19, which is extremely low and
the reliability of prediction is as high as 0.98. This shows
that only 2% of the total genes predicted are false-positives,
implying that the accuracy of the new gene prediction meth-
odology presented is high.

The new annotations lie in both the overlapping (21
sequences) and the intergenic regions (9 sequences), while
the new predictions are all present in the overlapping
regions. It is further observed that the melting temperatures
and hence the stability of new genes occurring in intergenic
regions are marginally higher than those occurring in the
overlapping regions in case of new annotations and are
similar to those noted for the new genes. T
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and 43.5 respectively) of both of them are almost similar, the
number of predictions in the latter is thrice that of the former,
highlighting the lack of correlation of the GC-content and
the size of genome to the number of new predictions.

It can be noticed from table 2 that Rhodopseudomonas
palustris TIE-1 has the maximum number of predicted genes
(5743), although it is not the largest genome in terms of base
pairs (Acaryochloris marina MBIC11017 6503724 base
pairs) or nor does it have the highest GC-content (Isopter-
icola variabilis 225 chromosome, 73.9% GC) among all the
genomes considered in the current study, which reiterates the
independence of prediction on the size or the GC-content of
the genome.



There are a number of sequences that match with proteins
from other genomes but are not annotated in Synthia and add
up to the error in new annotations as these might not be
getting expressed. This error in new annotation in case of
Synthia turns out to be 10%, which is calculated on the basis
of highly stable ORF sequences matching with the annota-
tions provided in NCBI.

3.2 Analysis on Bacillus subtilis and Escherichia coli
genomes

When a similar analysis was done on two model
genomes, Bacillus subtilis and Escherichia coli, the results
were astounding as these genomes are highly studied and the
annotations are supposed to be near complete. Several po-
tential new genes were identified in these two cases as
shown in table 4. The number of potential new genes pre-
dicted in Escherichia coli and Bacillus subtilis genomes are
856 and 519 respectively. Even if we consider the error in
prediction (2% of the highly stable annotated genes as esti-
mated from the completely annotated genome of Synthia),
the number of potential new genes remaining would be 803
in case of Escherichia coli and 460 for Bacillus subtilis.
Additionally, there are 1102 and 272 new annotations in
Escherichia coli and Bacillus subtilis respectively, which
are enormous in number even if one were to provide allow-
ance for possible errors in new annotations.

It is extremely likely that all the potential genes and new
annotations detected by this methodology are not true genes
due to the lack of promoter or promoter-like sequences,
absence of ribosomal binding sites and other features that
prevent their expression. But, even if all the odds are taken
into consideration, there would still be substantial number of
sequences that could code for proteins. Additional filters will
help resolve these issues between potentially protein coding
regions vis-à-vis protein coding regions.

4. Conclusion

In a nutshell, this study clearly suggests that the com-
plete potential of the physico-chemical properties of
DNA has not yet been tapped, which is particularly
relevant as a number of DNA sequences especially of
the eukaryotic genomes are not fully annotated till date.
More sophisticated methods need to be developed for
gene prediction even for prokaryotes. We are learning to
look at DNA from a different perspective other than just
reading and comparing either the sequence characters or
statistics based on them. There is considerable optimism
that all the issues of gene prediction would be answered
and methodologies that are universally applicable for all
the genomes will be evolved. T
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