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The origin of premating reproductive isolation continues to help elucidate the process of speciation and is the central
event in the evolution of biological species. Therefore, during the process of species formation the diverging
populations must acquire some means of reproductive isolation so that the genes from one gene pool are prevented
from dispersing freely into a foreign gene pool. In the genus Drosophila, the phenomenon of behavioural reproductive
isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been
extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been
observed and the pattern and degree of isolation within and between the species have often been used to elucidate the
phylogenetic relationships. The present review documents an overview of speciation mediated through behavioural
incompatibility in different species groups of Drosophila with particular reference to the models proposed on the basis
of one-sided ethological isolation to predict the direction of evolution. This study is crucial for understanding the
mechanism of speciation through behavioural incompatibility and also for an understanding of speciation genetics in
future prospects.
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1. Introduction

In the origin and maintenance of races and species, isolation
is an indispensable factor, and its role and importance has
been recognized for a long time. Without isolation, evolution
is impossible (Dobzhansky 1951). The role of isolation in
evolution was stressed by Wagner in 1889 and in a modern
form by Jordon in 1905. Races and species differ from each
other in many genes and gene combinations. If these genet-
ically distinct populations interbreed, these systems will
breakdown and the differences between them will be
swamped. The gene pool of every species is discretely iso-
lated from that of any other (Dobzhansky 1970; Mayr 1970).
Dobzhansky (1937) coined the term ‘isolating mechanisms’
for genetically conditioned barriers that prevent gene flow
between Mendelian populations. These mechanisms are
characterized as premating, postmating-prezygotic and post-
zygotic barriers (Coyne and Orr 2004). Behavioural isolation
(also called as ethological or sexual isolation) is included in
the category of premating barriers that include all differences
which lead to the lack of cross-attraction between opposite
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sexes of different species, preventing them from initiating
courtship or copulation (Coyne and Orr 2004). The origin of
sexual isolation is the central event in the evolution of
biological species and plays a key role in maintaining bio-
logical diversity. It is common in nature and plays a central
role in maintaining genetic and phenotypic differences be-
tween sibling species (Dobzhansky 1937; Mayr 1963; Coyne
and Orr 2004).

Species differences in characters involved in behavioural
isolation are candidates for factors that cause speciation.
Studying incipient sexual isolation and speciation is an im-
portant pursuit in evolutionary biology. Since Darwin’s pub-
lication of The Origin of Species in 1859, the study of
speciation has generated much enthusiasm and passion-
ate debate. Interest in this subject continues to grow, as
evidence by an exponential rise in citations of speciation
studies over the last three decades (Sobel et al 2009).
During the process of speciation the diverging populations
must acquire some means of isolation so that the genes from
one gene pool are prevented from dispersing freely into a
foreign gene pool.
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Speciation may often require the evolution of different
forms of reproductive isolation (Mayr 1963; Lowry et al.
2008) in which the strength of each barrier varies in light of
its relative contribution to total isolation. The coherence
between speciation and reproductive isolation remains a
successful legacy from this period, although increasingly
more emphasis is currently being placed on populational
aspects of the speciation process (Howard and Berlocher
1998; Sobel et al. 2009). Premating reproductive isolation
is an early-acting isolating mechanism that arises due to
behavioural incompatibility and has more potential to im-
pede gene flow because barriers that act later can only stop
the gene flow that remains after earlier barriers. Premating
isolation is a potential cause of rapid speciation particularly
in sympatric populations (Coyne and Orr 1989). Sexual or
ethological isolation is a premating barrier to gene ex-
change in which the opposite sexes of different popula-
tions fail to mate due to behavioural incompatibility.
Sexual isolation may also evolve due to direct selection
on actual mate preference rather than selection on ecolog-
ical per se (Servedio 2001).

In many taxa, individual species show species-specific
stereotypical sexual behaviours before mating (Ewing
1983; Choe and Crespi 1997). This view is supported by
meta-analysis revealing that selection on traits involved in
mating is on average two times stronger than selection acting
on traits that influence survival and fecundity (Kingsolver
and Pfennig 2007; Hoskin and Higgie 2010). The evolution-
ary forces that can cause behavioural isolation are those that
alter mating signals and preferences, including direct selec-
tion both on signalling traits that increase attractiveness and
on preference traits that improve mate acquisition (for a
review, see Panhuis et al. 2001; Coyne and Orr 2004). The
present review documents an overview of speciation medi-
ated through premating barriers in different species of Dro-
sophila with particular reference to the models proposed on
the basis of one-sided ethological isolation to predict the
direction of evolution.

2. Reproductive isolation and speciation

Studies of reproductive isolation continue to help elucidate
the process of speciation. Species differences in characters
involved in reproductive isolation are candidates for factors
that cause speciation. The Marie Curie speciation network
(2012) presented different mechanisms and genetic basis of
speciation and the relationship between speciation and di-
versity. Mate choice underlying sexual isolation depends on
mating signals and associated preferences for the signals
referred to as ‘mating traits’ and any divergence of mating
traits among populations may initiate sexual isolation
(Endler 1989; Andersson 1994; Coyne and Orr 2004).
Heisler et al. (1987) defined ‘mate choice’ as the pattern of
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mating which arises because of these mating preferences.
Paterson (1980) proposed that every species possesses its
own distinct specific mate recognition system that controls
the exchange of sensory information sent and received by
both sexual partners during courtship. The differentiation of
the mate recognition system is one of the major steps that
leads to speciation in animals, but little is understood about
the evolution of mate recognition systems, because of its
complexity (Ishii et al. 2001). Divergence in mating prefer-
ences among populations is considered as important source
of reproductive isolation. Mating preferences may diverge
between populations as a result of genetic drift or because of
divergent natural selection between environments (Schluter
2001; Rundle et al. 2005). Behavioural traits that are in-
volved in a wide range of mating cues and preferences fall
under the generalized category of sex traits. Such characters,
often species- or genus-specific, can be quite divergent be-
tween species. Mate recognition systems consist of second-
ary sexual characteristics in one sex (usually males)
associated with a preference for the trait(s) in the other sex
(usually females) (Servedio and Saetre 2003). These systems
have been considered as important species attributes that act
as cohesive forces (Paterson 1980). Paterson (1978) argued
that the evolution of a specific mate recognition system,
composed of multiple ‘coadapted stages’, is essential to
intersexual signalling and is likely to be maintained by
strong stabilizing selection. In Drosophila, the diversity of
the mating behaviour in various species and basic similarity
between some species emphasize that mating behaviour has
gone through evolutionary changes. Ruedi and Hughes
(2008) studied variation in mating behaviour of D. mela-
nogaster and emphasized the genetics of courtship behaviour
and various mechanisms underlying sexual selection. This
helps to understand the evolution of the genus. Variation of
different signals by which two sexes exchange and their
predominance during mating can contribute to the appear-
ance of the premating isolation (Butlin and Ritchie 1994). If
behavioural divergence results in reduced gene flow, then
increasing genetic differentiation among populations may
help preserve incipient reproductive isolation, and if selec-
tion is strong enough, reproductive isolation can persist in
sympatry despite low levels of interpopulational gene flow
(Feder 1998; Gomulkiewicz et al. 1999; Berlocher and Feder
2002; Massie and Markow 2005). Species may overlap with
a mosaic of species across its geographic range. Species
interactions causing selection on mating traits play an im-
portant role in generating species divergence. Hoskin and
Higgie (2010) said that reproductive character displacement
among populations may be generated by a variety of species
interactions beyond reinforcement and these interactions are
responsible for mating trait divergence and speciation. Se-
lection against hybrids between closely related taxa results in
enhanced premating isolation (i.e. reinforcement) between
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the taxa in the areas of overlap (Dobzhansky 1951; Servedio
and Noor 2003). Reinforcing selection operates on the mate
recognition system of a species through selection on prefer-
ences and display traits. It is as an important component of
speciation that is strengthened by natural selection and also
strengthens prezygotic isolation between closely related taxa
(Dobzhansky 1940; Noor 1995; Servedio and Noor 2003;
Coyne and Orr 2004). Yukilevich (2012) emphasized the
role of reinforcement due to enhanced prezygotic isolation
among sympatric species, and the findings suggest that rein-
forcement plays a key role in Drosophila speciation. Diver-
gence of such mating signals and recognition systems can
lead to speciation (Coyne and Orr 2004). Therefore, identi-
fying species-specific characters involved in sexual behav-
iour is important in the study of sexual isolation and,
ultimately, speciation. Takahashi and Ting (2004) studied
the genetic basis of sexual isolation in D. melanogaster and
emphasized on evolution and maintenance of behavioural
polymorphism in nature. It was suggested that speciation
would be harder to achieve in general if reproductive isola-
tion is based on a large number of loci that may potentially
generate many intermediate phenotypes (Takahashi and Ting
2004). The phenomenon of sexual isolation has been exten-
sively studied and found to be widespread (Ehrman and
Parsons 1980; Henderson and Lambert 1982; Speith and
Ringo 1983; Dodd 1989; Hollocher et al. 1997a; Gleason
and Ritchie 1998; Carracedo ef al. 2000; Korol et al. 2000;
Ishii et al. 2001; Ting et al. 2001; Haerty et al. 2005; Etges
et al. 2006; Castrezana and Markow 2008; Etges and Tripodi
2008; Huttunen et al. 2008; Schug et al. 2008; Yukilevich
and True 2008; Jennings and Etges 2010; Singh 2010a).

Since the speciation process takes many generations, it
has to be studied by comparison of many snapshots of
divergent and partially isolated population pairs. These pop-
ulations will eventually evolve into completely isolated spe-
cies nevertheless, they may be used to determine the genetic
architecture of reproductive isolation and to dissect the con-
tributions of different traits to the overall reduction of gene
flow. The process of speciation that begins with genomically
localized barriers to gene exchange is associated with loci for
local adaptation and this barrier then spreads until reproduc-
tive isolation influences the whole genome (Butlin 2010).
However, in some species groups, the phenomenon of re-
productive isolation has given rise to different races or
subspecies that has been discussed.

2.1 Drosophila melanogaster species group

Earlier studies suggested that D. melanogaster mates ran-
domly across its range (Henderson and Lambert 1982), but
recent evidences indicate that some African populations in
and near Zimbabwe (‘Z-type’) have evolved incipient sexual
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isolation from ‘cosmopolitan’ (‘M-type’) populations
(Wu et al. 1995; Hollocher et al. 1997a; Greenberg et al.
2003). Females from both Zimbabwe and cosmopolitan
strains tend to mate preferentially with their own ‘Z-type’ or
‘M-type’ males, respectively, with some Zimbabwe strains
showing very strong mating preferences (Wu et al. 1995;
Hollocher et al. 1997b). There is substantial divergence in
nuclear genes (Begun and Aquadro 1993), microsatellite loci
(Kauer et al. 2002; Kauer and Schlotterer 2004), chromo-
somal inversions (Aulard ef al. 2002) and various phenotyp-
ic traits including body size, pigmentation, cuticular
hydrocarbon composition and wing beat frequency, that are
all known to be under genetic control (Colegrave et al. 2000;
Rouault et al. 2001; Takahashi et al. 2001). This system
suggests that the evolution of reproductive isolation in re-
cently widespread and human commensal species is possible.
This species also segregates for mating preferences in
other parts of the world, such as the case of ‘microhabitat’
sexual isolation in the West African Brazzaville populations
(Capy et al. 2000; Haerty et al. 2005). Evidence for non-
random mating in D. melanogaster laboratory populations
derived from closely adjacent ecologically contrasting
slopes of Evolution Canyon was found (Korol et al.
2000; Singh et al. 2005). It was suggested that the inter-
slope microclimatic differentiation causes strong differential
selection for stress tolerance, which in turn promote behav-
ioural adaptations facilitating reduced gene exchange. More-
over, it has recently been discovered that Carribean and West
African populations mate randomly with each other, but
show partial sexual isolation against US cosmopolitan flies
and against Zimbabwe flies (Yukilevich and True 2008).
Sexual isolation among three sibling species, D. mela-
nogaster, D. simulans and D. mauritiana, was studied
(Carracedo et al. 2000). D. melanogaster and D. simulans
are cosmopolitan species largely associated with human
habitats, whereas D. mauritiana is only found in the Island
of Mauritius (Tsacas and David 1974). Phylogenetic studies
based on banding pattern homology of polytene chromo-
somes, DNA sequence and hybrid sterility showed that
D. simulans and D. mauritiana are more closely related to
each other than to D. melanogaster (Lemeunier and
Ashburner 1976; Cariou 1987; Kliman and Hey 1993). Sex-
ual isolation among the three species was studied and asym-
metrical mating preferences were observed. D. mauritiana
males mate with both D. melanogaster and D. simulans
females, and females of D. mauritiana discriminate strongly
against males of these two species, and D. simulans males
mate with D. melanogaster females but the reciprocal cross
is difficult. (Watanabe and Kawanishi 1979; Carracedo and
Casares 1985; Coyne 1989). Carracedo et al. (2000) sug-
gested that species accumulate prezygotic isolation genes
during allopatric speciation and genetic systems involved
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in sexual isolation are species-pair specific, i.e. species use
different cues to discriminate against other species.

D. santomea and D. yakuba, two sister species of the
melanogaster species group, show substantial reproductive
isolation, hybrid male sterility, habitat isolation based on
temperature tolerance and preference and some forms of
postmating-prezygotic isolation (for references, see Matute
and Coyne 2009). Matute and Coyne (2009) described sev-
eral new intrinsic barriers that do not depend on species’
ecology, i.e. faster depletion of sperm, reduced egg number
and reduced egg hatchability in interspecific as compared to
intraspecific matings, which suggests that these species di-
verged recently and are separated by different isolating bar-
riers that act both before and after mating. Molecular data
suggest that D. yakuba and D. santomea began diverging
about 400,000 years ago (Llopart et al. 2005a). It is likely
that D. santomea evolved from a common ancestor with
D. yakuba that colonized the island at that time, and that
the present contact between D. santomea and D. yakuba
reflects a secondary colonization by D. yakuba from the
African mainland, possibly during the last 500 years when
Portuguese colonists converted coastal rainforest into plan-
tation (Llopart et al. 2005b).

2.2 Drosophila obscura species group

Species of the D. obscura group are inhabitants of temperate
forests throughout the Holarctic region and temperate-like
habitats in the Afrotropical, Neotropical and Oriental
regions. Reproductive isolation between D. sinobscura and
D. hubeiensis, two allopatric species of the D. obscura
group, was studied and asymmetrical mating preferences
were observed (Watabe and Aoki 2000). The D. pseudoobs-
cura species subgroup comprises two D. pseudoobscura
(D. ps.) subspecies (D. ps. pseudoobscura and D. ps. bogo-
tana) and two closely related species (D. persimilis and
D. miranda). The D. pseudoobscura subspecies are geo-
graphically isolated, share chromosomal arrangements and
represent the earliest stages of species divergence (Ayala and
Dobzhansky 1974). Both D. pseudoobscura subspecies dif-
fer from D. persimilis by fixed chromosomal inversion fre-
quencies on three of their major chromosomal arms and F,
hybrid males from crosses between these species are sterile
(though females are fertile). In contrast, D. miranda is an
outgroup species that cannot produce any fertile hybrids with
D. pseudoobscura or D. persimilis (Dobzhansky 1937). The
relationship of D. ps. pseudoobscura, D. ps. bogotana,
D. persimilis and D. miranda are well established by DNA
sequences, chromosomal inversions and reproductive iso-
lation (Dobzhansky and Powell 1975; Powell 1997). Nu-
cleotide divergence between the hybridizing species
D. ps. pseudoobscura and D. persimilis is high within and
near the three chromosomal inversions (Machado et al
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2007a; Noor et al. 2007), which are linked to factors con-
ferring hybrid sterility, mating discrimination and other bar-
riers to gene flow (Noor et al. 2001; Brown et al. 2004).
Kulathinal e al. (2009) studied genetics of speciation in
D. ps. pseudoobscura and D. persimilis and suggested that
autosomal gene exchange between these species occurred
since the split of the subspecies, likely within the last
200,000 years. Kulathinal et al. (2009) concluded that chro-
mosomal rearrangements have been vital to the ongoing
persistence of these species despite recent hybridization.

2.3 Drosophila repleta species group

D. mojavensis and D. arizonae, two cactophilic members of
the mulleri complex of the repleta species group, show
strong, yet incomplete, pre- and postzygotic isolation in the
laboratory (Reed and Markow 2004). Although no evidence
for hybridization between D. mojavensis and D. arizonae
has been found in nature (Counterman and Noor 2006;
Machado et al. 2007b), hybrids can be formed in the labo-
ratory with incomplete postzygotic isolation. Furthermore,
hybrid males with D. arizonae mothers are sterile whereas
those with D. mojavensis mothers differ in sterility depend-
ing on the origin of the D. mojavensis used in the cross (Ruiz
et al. 1990; Reed and Markow 2004). Jennings and Etges
(2010) studied premating sexual isolation between D. moja-
vensis and D. arizonae and showed that experimental designs
(chamber size, host plant presence and rearing substrates)
had significant effects on levels of premating isolation be-
tween these two species. Cytological evidence suggests that
D. mojavensis originated in Baja California and was derived
from an ancestral population of D. arizonae-like ancestor on
the mainland (Ruiz ef al. 1990). These derived mainland
populations of D. mojavensis, therefore, subsequently colo-
nized southern California, northwestern Mexico and Arizona
from Baja California by switching host plants. D. mojavensis
is considered to be in the initial stages of divergence, as there
is significant reproductive isolation between populations
(Zouros and D’Entremont 1980; Etges 1992). Populations
of D. mojavensis were examined using a variety of molecular
markers (allozymes, mitochondrial DNA and nuclear
DNA including microsatellites) to study population ge-
netic structure and incipient speciation in this species
(Hoccutt 2000; Ross and Markow 2006; Machado et al.
2007b; Reed et al. 2007). Based on analyses of allozyme
data and previously published data on behavioural, ecolog-
ical, morphological and reproductive differences, Hoccutt
(2000) suggested the existence of four subspecies of
D. mojavensis, i.e. D. m. mojavensis , D. m. baja, D. m.
sonorensis and D. m. wrigleyi. Support for the subspecies
assignments proposed by Hoccutt (2000) has been provided
by several molecular studies that examined variation in
mtDNA (Reed ef al. 2007), nuclear DNA (Ross and Markow
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2006), multiple nuclear loci (Machado et al. 2007b) and the
glutathione S-transferase D1 (Gst DI) gene (Matzkin 2008)
in a number of populations of D. mojavensis sampled from
each of the four main geographic areas.

2.4 Drosophila willistoni species group

D. paulistorum is one of the six sibling species that consti-
tute the D. willistoni group which comprises D. willistoni,
D. equinoxialis, D. tropicalis, D. insularis, D. pavlovskiana
and D. paulistorum. D. paulistorum complex is a cluster of
species in statu nascendi, a borderline case of incomplete
speciation (Dobzhansky and Spassky 1959) that comprises
six races or subspecies, i.e. Centro-American, Amazonian,
Andrean-South Brazilian, Orinocan, Guianan and Transi-
tional. The genetic basis of reproductive isolation has been
shown in D. paulistorum and genetic factors are distributed
all over the chromosomes (Ehrman 1961). However, varia-
tion in degree of sexual isolation within D. paulistorum is
considered as a classical example of character displacement
(Ehrman 1965). Gleason and Ritchie (1998) studied repro-
ductive isolation in D. willistoni species complex and found
that both types of isolation (premating and postmating) in-
crease with genetic distance and postmating isolation is more
strongly correlated with genetic divergence. Song diver-
gence is not correlated with genetic divergence but evolve
more quickly within this species group, probably as a result
of sexual selection.

2.5 Drosophila ananassae subgroup

D. ananassae belongs to the ananassae species complex of
the ananassae subgroup of the melanogaster species group.
It is a cosmopolitan and domestic species. It occupies a
unique status among the Drosophila species due to certain
peculiarities in its genetic behaviour. The most unusual
feature of this species is spontaneous male meiotic recombi-
nation in appreciable frequency (Singh 2010b). It possesses
high degree of inversion polymorphism, but only three para-
centric inversions, namely, subterminal alpha (2L), terminal
delta (3L) and basal eta (3R), are found to be coextensive
with the species (Singh 1996).

In D. ananassae, mate discrimination varies considerably
throughout the species range, being higher among the pop-
ulations outside the ancestral Indonesian range and the high-
est in South Pacific. Results suggest that colonization and
genetic differentiation affect the evolutionary origin of mate
discrimination (Schug et al. 2008). Pair-wise Fgr values
showed that Indian populations of D. ananassae exhibit
strong genetic differentiation, display population sub-
structuring and exist as semi-isolated populations (Singh
and Singh 2010). In D. ananassae, the degree of sexual
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isolation is stronger in isofemale lines than in natural pop-
ulations and may involve genetic bottlenecks (Singh and
Chatterjee 1985). It has been demonstrated that there is
instability of mate recognition system in D. ananassae
(Singh and Chatterjee 1985; Nanda and Singh 201 1a, b, c).

Sexual isolation, maintained by strong mating preferences
has been reported in the light and dark forms of D. ananas-
sae in laboratory stocks (Futch 1966). These forms were
found to be sibling species (D. ananassae and D. pallidosa)
of the ananassae complex which show strong sexual
isolation (Futch 1973; Doi et al. 2001; Sawamura et al.
2006; Vishalakshi and Singh 2006). In spite of their
sympatric distribution, postmating reproductive barriers
such as hybrid sterility or hybrid inviability do not
exist between them (Futch 1966; Bock and Wheeler 1972).
Analyses of Y-chromosomal and mitochondrial haplotypes,
shared chromosomal arrangements, premating isolation
and hybrid male sterility suggested that these taxa repre-
sented a recent evolutionary radiation and experienced
substantial gene flow that explained the existence of
D. parapallidosa (Matsuda et al. 2009). New taxa that are
closely related to D. ananassae in the ananassae species
cluster have been identified whose species affiliations
are unclear. These strains, viz. D. parapallidosa,
D. pallidosa-like, D. pallidosa-like Wau and D. papuensis-
like, are similar to D. ananassae and D. pallidosa, but they
are partially reproductively isolated from these species and
have distinct chromosome arrangements.

The bipectinata species complex is a group of four mor-
phologically similar species, namely, D. bipectinata,
D. parabipectinata, D. malerkotliana and D. pseudoananas-
sae. The latter two species have two allopatric subspecies:
D. m. malerkotliana and D. m. pallid, and D. p. nigrens and
D. p. pseudoananassae. Kopp and Frank (2005) described
two allopatric subspecies of D. bipectinata, namely, Pacific
and Asian, that show a continuum of reproductive isolation.
Crosses between strains of the same subspecies produce
fully fertile offspring and each subspecies harbours extensive
variation for the degree of reproductive isolation from the
other subspecies. The two subspecies show little or no evi-
dence of genetic differentiation at three chromosomal loci,
suggesting that they diverged very recently or continue to
experience significant level of gene flow. However, Matsuda
et al. (2005) have reported three subspecies of D. bipecti-
nata, namely, bipectinata (from Southeast Asia), szentivani
and pacificiae (South Pacific Ocean), which are reproduc-
tively isolated from each other and produce sterile F; males.
Singh et al. (1981) tested sexual isolation among three
species of the bipectinata complex. The results reveal that
there is preferential mating between D. bipectinata and
D. malerkotliana in both directions. The females of both
the species show sexual discrimination against males of
other species. Thus, neither of the two species can be
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considered as ancestral or as derived. However, there is
a difference in the degree of sexual isolation in recipro-
cal crosses. Similar results were found in crosses be-
tween D. parabipectinata and D. malerkotliana.
D. bipectinata and D. parabipectinata when subjected to
sexual isolation test show strong sexual isolation owing to
preferential mating in one direction only, suggesting that
D. bipectinata has given rise to D. parabipectinata (Singh
et al. 1981). Intraspecific sexual isolation was examined
among wild strains of D. bipectinata, D. malerkotliana,
D. parabipectinata and D. pseudoananassae, and the results
provide evidence for incipient sexual isolation within
D. bipectinata, D. malerkotliana and D. parabipectinata due
to genetic divergence (Singh and Chatterjee 1991, 1992).

2.6 Hawaiian Drosophila planitibia subgroup

The Hawaiian Drosophila represents 20% of the species in
the genus Drosophila, despite the fact that the Hawaiian
Islands have such a small land area (Carson 1982). This
fly diversity resulted from immigration from older to
younger islands, with each new species forming allopatrical-
ly in habitat similar to that occupied by the ancestral
species (Carson 1982). The three best studied members of
the genus in Hawaii, D. planitibia, D. silvestris and
D. heteroneura, inhabit cloud forests on the flanks of volca-
noes on Maui (D. planitibia) and Hawaii (D. silvestris and
D. heteroneura). Kaneshiro (1976, 1980) studied sexual
isolation by using male-choice technique among four recent-
ly evolved species, i.e. D. planitibia, D. silvestris, D. heter-
oneura and D. differens of the planitibia group, and
proposed that behavioural isolation is often asymmetrical,
with females of the ancestral species being unlikely to mate
with males of the derived species. Their results also sug-
gested that sexual selection could lead to speciation after
founder event. Ahearn et al. (1974) studied sexual isolation
among three species of Drosophila i.e. D. heteroneura,
D. silvestris and D. planitibia. D. heteroneura and
D. silvestris are sympatric species while D. planitibia is
allopatric species. Ethological isolation was found between
the sympatric species and not between the allopatric ones.
However, D. planitibia females discriminated against
D. heteroneura males. Male hybrids are sterile in allopatric
crosses but fertile in sympatric ones. These investigators
concluded that premating isolation between closely related
species originated as an ad hoc product of natural selection
while postmating isolation is an incidental result of genetic
divergence. Boake (2005) reviewed different models that are
relevant in understanding of sexual selection and speciation
in Hawaiian Drosophila.
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2.7 Drosophila virilis species group

D. virilis species group represents an important species
group for studying the genetics of reproductive isolation
(Patterson and Stone 1952). This group is divided into two
subgroups: virilis and montana. The virilis subgroup consists
of five closely related taxa: D. virilis, D. lummei, D. nova-
mexicana, D. americana americana and D. americana tex-
ana. Hilton and Hey (1996) studied DNA sequence variation
at the period locus in the D. virilis species group. Their
results suggested that there was no evidence of divergence
between D. a. americana and D. a. texana and also sug-
gested that D. novamexicana consists of two distinct groups
(Nova-A and Nova-B) each with low population size and no
gene flow between them, suggesting that two groups could
have arisen independently, and these characteristics sug-
gested that D. novamexicana arose once and then split into
two groups. Sweigart (2010) studied phenotypic and genetic
basis of postmating-prezygotic isolation between two closely
related species of Drosophila, i.e. D. virilis and D. america-
na. Results showed that there is strong barrier to interspecific
fertilization, resulting in 99% reduction in progeny produc-
tion and genetic interaction among maternal and paternal
alleles at few loci that prevents the fertilization of D. virilis
females by D. americana males. It was also suggested that
male—female coevolution within D. americana may have
driven postmating-prezygotic isolation between species. Pat-
terson et al. (1942) described reproductive isolation due to
gamete mortality in reciprocal crosses between D. virilis and
D. americana. In later studies, these investigators discovered
that very few eggs from interspecific crosses become fertil-
ized and speculated that sperm become ‘immobilized in the
reproductive tract of the alien female’ (Patterson and Stone
1952). Consistent with the evolution of these interspecific
barriers, male and female reproductive tract proteins have
been shown to evolve rapidly in the D. virilis species group
(Civetta and Singh 1995; Haerty ef al. 2007). Nickel (2007)
analysed the male courtship behaviour of closely related
species of the virilis phylad when paired with conspecific
or heterospecific females and found that Drosophila virilis
males do not prefer to mate with closely related heterospe-
cific females and members of the D. virilis group show
variation in the female cuticular hydrocarbon profiles that
causes males of the virilis phylad in species recognition.
Sagga and Civetta (2010) studied male—female interactions
and postmating-prezygotic isolation and found that D. virilis
females from different geographic locations mate with
D. novamexicana males in which egg laying is normal, but
fertilization rates are severely reduced, despite normal rates of
sperm transfer. This reduction in fertilization is probably due to
lower retention of heterospecific sperm in female storage organs
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1-2 days after copulation. A recent study has shown that when
D. novamexicana females are exposed to D. virilis males for
up to 2 weeks, only 14% of females produce progeny.
Moreover, D. virilis males are able to recognize heterospe-
cific females at the first stage of courtship (tapping), indicat-
ing strong premating isolation (Nickel and Civetta 2009).
For the reciprocal cross between D. virilis females and
D. novamexicana males, there is evidence of strong postzy-
gotic isolation with 7% hybrid male fertility (Orr and Coyne
1989). D. virilis females mated with D. lummei males pro-
duce 95% fertile hybrid males, but 47% of the hybridizations
die before becoming pupae, and 25% fail to emerge from
their case (Lumme and Heikkinen 1990).

In the D. virilis group of species, interpulse interval does
not play an important role in species recognition or in female
choice (Hoikkala and Lumme 1987). Song simulation stud-
ies have shown that in D. virilis, females are able to recog-
nise some species-specific characters in male song, and that
there is variation among females in their preferences
(Isoherranen et al. 1999). Hoikkala and Lumme (1987) have
also shown that the species specificity of the courtship song
in several species of the D. virilis group is mainly caused by
X-chromosomal genes.

Several species of the D. virilis phylad show strong pre-
mating isolation (Stalker 1942; Coyne and Orr 1989). It was
suggested that levels of premating isolation among members
of the phylad could be a direct consequence of gradual
divergence or reinforcement after speciation. Other pairs of
closely related species show quantitative and/or qualitative
differences in CHC blend and associated premating isolation
(Doi et al. 1996).

D. montana is an excellent model system for studying the
early stages of speciation. Jennings et al. (2011) studied
pre- and postmating barriers between flies from European
(Finnish) and North American (Canadian) populations
of D. montana. The results suggested that there is evidence
for reproductive isolation in allopatric populations of
D. montana populations and emphasized the importance of
experimental design in the study of premating isolation
between recently diverged taxa. Postmating barriers may be
due to postcopulatory-prezygotic mechanisms and D. mon-
tana populations seem to be evolving through multiple bar-
riers to gene flow in allopatry (Jennings et al. 2011).
Saarikettu et al. (2005) showed that male song (especially
the interpulse interval) plays an impotant role in sexual
isolation between sympatric species: D. montana and
D. lummei. Liimatainen and Hoikkala (1998) also showed
that song plays an important role in species recognition, and
results suggested that hybrids cannot be produced between
D. montana females and D. lummei males in the laboratory
because of high discrimination exercised by the females
(Hoikkala 1988).

365

2.8 Drosophila nasuta-albomicans complex

D. nasuta-albomicans complex belongs to the nasuta sub-
group of the immigrans species group. The nasuta subgroup
represents an interesting cluster of morphologically nearly
identical members with different degrees of reproductive
isolation (Ranganath 2002). D. nasuta and D. albomicans
are representative examples of evolutionary diversification
within this subgroup, and despite striking divergence in their
karyotypes, neither morphological divergence nor reproduc-
tive isolation between the two species have been achieved
(Ranganath 2002). Ramachandra and Ranganath (1987,
1994) studied sexual isolation between D. n. nasuta and
D. n. albomicans and also among the parental races and
newly evolved cytoraces. Their results have shown behavioural
asymmetry which has been discussed in the light of different
models to predict the evolutionary sequence. Bachtrog (2006)
studied speciation history of the D. nasuta complex and
reported nucleotide variability for five X-linked and two
mtDNA loci in eight taxa from nasuta with deeper sampling
from D. albomicans and its sister species D. nasuta. The
results suggested that phylogenetic relationship among these
species varies among different genomic regions and levels of
genetic differentiation, suggesting that this species group
diversified only about 1 million year ago and D. albomicans
share nucleotide polymorphism with few fixed differences
(for references, see Bachtrog 2006).

3. Origin of sexual isolation

The evolution of reproductive isolation involves studying
the process before it has reached completion. Natural
populations that occupy different environments may
show divergence in traits involved in assortative mating (Noor
1995; Tregenza et al. 2000; Tregenza 2002; Nosil et al.
2002, 2007). These examples have helped to elucidate the
geographical, ecological and historical context of early
stages of speciation. Recent evidences suggest that in-
cipient sexual isolation may occur multiple times in
various parts of the species range, especially among
geographically widespread species (Rundle er al. 2000;
Nosil et al. 2002; Tregenza 2002; Boughman ef al. 2005). It
thus becomes important to understand the similarities and
differences between multiple cases of sexual isolation within
species, i.e. how much genetic and phenotypic differentiations
accompany each case of incipient sexual isolation and what is
the genetic and phenotypic basis of assortative mating in each
case (Panhuis et al. 2001; Hendry 2001; Boughman et al.
2005; Nosil ef al. 2005; Hendry et al. 2007; Jennings et al.
2011). If multiple cases of sexual isolation showing unique
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genetic and phenotypic bases, it would indicate that species
segregate different types of variation associated with assor-
tative mating in nature. On the other hand, if different cases
of sexual isolation share common phenotypes and occupy
similar environments, it would imply that there might be
adaptive constraints on the conditions and the type of vari-
ation underlying these processes (Schluter and Nagel 1995;
Rundle and Schluter 2004). Sexual isolation at initial stages
of evolutionary divergence may be important in sympatric
species formations (Coyne and Orr 2004; Dieckmann and
Doebeli 1999; Michel et al. 2010) about which different
mechanisms were proposed (Kondrashov and Kondrashov
1999; Gavrilets and Waxman 2002). Premating isolation is a
potential cause of rapid speciation, particularly in sympatric
populations (Coyne and Orr 1989). To explain how the
reproductive isolating mechanisms originate between popu-
lations, different theories have been proposed. The evolution
of premating isolation caused by divergent mating signals
and preferences is an important component of speciation in
many taxa (Coyne and Orr 2004). To explain how the
reproductive isolating mechanisms originate between popu-
lations, different theories have been proposed. According to
Muller (1942), reproductive barriers appear as a side effect
of genetic divergence because populations adapted to differ-
ent environments acquire genetic differences that lead to
reproductive isolation. Dobzhansky (1940) gave more im-
portance to natural selection acting on appropriate genetic
variation when the allopatric populations that have an incip-
ient isolation become sympatric. Carson (1971) emphasized
the role of genetic drift through founder effect in the origin
of reproductive isolation which serve as a barrier to gene
flow. Carson’s ‘flush-crash’ speciation theory (1975) has
been supported by the work of Powell (1978), who observed
strong assortative mating developed between cage popula-
tions of D. pseudoobscura that were passed through succes-
sive bottlenecks in population size.

Experimental tests of founder-flush theory have found
significant levels of premating isolation in bottlenecked pop-
ulations of D. pseudoobscura (Powell 1978; Galiana et al.
1993), D. mercatorum (Templeton 1981a), D. simulans
(Ringo et al. 1986) and D. ananassae (Nanda and Singh
2011c), whereas Rundle et al. (1998) have found no signif-
icant cases of reproductive isolation in a bottlenecked pop-
ulation of D. melanogaster. Dodd and Powell (1985) have
found that only 1 of 11 cases of prezygotic isolation was
significant even after § years. Similarly, Moya et al. (1995)
and Meffert et al. (1999) have reported the loss of assortative
mating in bottlenecked populations through time.

Although natural selection may often play an important
role in the initiation of divergence in mate recognition
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between speciating populations (Turelli et al. 2001; Nosil
et al. 2007), sexual selection is likely to contribute to the
generation of further divergence in many instances (Schluter
2001). Although there have been many attempts to deter-
mine if divergent natural selection results in the evolution of
mate recognition and subsequently sexual isolation (Rice
and Hostert 1993), there is little experimental evidence for
how sexual selection, particularly the interaction between
natural and sexual selection, affects the evolution of mate
recognition. Servedio and Saetre (2003) found linkage be-
tween genes affecting postzygotic and prezygotic isolation
leading to a positive feedback loop in which both are
strengthened. These investigators also found that genes caus-
ing hybrid incompatibility would hitchhike along with those
improving premating isolation, leading to stronger hybrid
incompatibility and there may be coevolution of postzygotic
and prezygotic barriers that would be enhanced by the sex
linkage of genes affecting mate recognition and hybrid via-
bility (Servedio and Saetre 2003). The evolutionary process
of ‘reinforcement’, often suggested as an important compo-
nent of speciation, involves the strengthening of prezygotic
isolation between closely related taxa by natural selection in
response to maladaptive hybridization (Noor 1995; Servedio
and Noor 2003; Coyne and Orr 2004).

4. Genetics of premating isolation

What type of genetic changes bring about speciation is one
of the most basic questions in biology. By applying genomic
techniques to the analysis of laboratory crosses and natural
populations has helped to determine the genetic basis of
barriers to gene flow that create new species. Although
new methodologies have not changed the concept of speci-
ation, they have accelerated the pace of data collection by
facilitating the compilation of case studies, advances in
genetic techniques concerning the relative frequency and
the importance of different processes that cause speciation
(see review by Noor and Feder 20006).

The genetic architecture underlying reproductively isolat-
ing traits may have substantial impact on the likelihood and
pace of speciation (see review by Arbuthnott 2009). Repro-
ductive isolation, responsible for speciation, is likely to
involve complex, coevolved, polygenic traits [leading to a
‘type I’ genetic architecture in the terminology of Templeton
(1981a, b), i.e. numerous genes of small effect]. Most em-
pirical studies of reproductive isolation, especially of sexual
isolation, have found polygenic effects (Hollocher et al.
1997b; Ritchie and Philips 1998; Ting et al. 2001); however,
a few large effect genes have been identified for both post-
mating (Barbash er al. 2003; Presgraves et al. 2003) and
premating isolation (Greenberg et al. 2003). Recent models
have suggested that divergence among populations and con-
sequent speciation may be more likely when traits are
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controlled by few loci (Arnegard and Kondrashov 2004;
Gavrilets and Vose 2007; Hayashi et al. 2007), and that
speciation may also occur more rapidly under such genetic
architecture (Gavrilets and Vose 2007).

Identification of genes involved in reproductive isolation
are important to investigate links between stages of specia-
tion process. Qvarnstrom and Bailey (2009) reviewed the
role of sex-linked genes at different stages of speciation and
concluded that sex-linked genes coding for sexual isolation
traits causes hybrid sterility. Ecological divergence often
coupled with evolution of sexual isolation to avoid the
homogenizing effect of gene exchange mainly occurs in
sympatric populations or when populations come into sec-
ondary contact before they have become completely repro-
ductively isolated. The genetic basis of mate recognition was
studied by Civetta and Cantor (2003) between D. simulans
and D. sechellia and their results suggested that majority of
quantitative trait loci (QTL) responsible for both male mat-
ing behaviour and pheromone concentration are located on
the third chromosome. One QTL found on the third chromo-
some showed variation in time needed to start courtship and
copulation as well as time spent courting (Civetta and Cantor
2003). Moehring et al. (2006) mapped QTL contributing to
sexual isolation between the sibling species D. santomea and
D. yakuba and found three QTL affecting discrimination of
D. santomea females against D. yakuba males.

In D. ananassae, heterosis was found to be associated
with alpha inversion and male mating ability as heterokar-
yotypic males were superior in mating activity than homo-
karyotypic ones. Thus, inversion polymorphism may have a
partial behavioural basis and males are more subject to intra-
sexual selection than females (Singh and Chatterjee 1986,
1988). Inversions may facilitate the accumulation of alleles
that contribute to reproductive isolation between populations
connected by gene flow. This is particularly true for
Bateson-Dobzhansky-Muller (BDM) incompatibilities, as
otherwise the ancestral, compatible genotypes would be
favoured (Noor ef al. 2001). Analytical models of parapatric
speciation confirm that BDM incompatibilities are more
likely to accumulate at species boundaries in the presence
of inversions than in the presence of genetic barriers that do
not reduce recombination (Navarro and Barton 2003).
Behavioural isolation has been found between two karyo-
typically different homozygous strains of D. ananassae de-
rived from same geographic location, which shows that
chromosome arrangements may affect mate recognition sys-
tem in D. ananassae (Nanda and Singh 2010b). These inver-
sions may promote sympatric or parapatric speciation by
creating associations between alleles under divergent natural
selection and those that cause assortative mating (Trickett
and Butlin 1994; Butlin 2005). Also, if the inversion (or
incompatibilities associated with it) causes some degree of
postzygotic isolation, then selection may favour alleles that
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increase the strength of prezygotic reproductive barriers (i.e.
reinforcement), but only where populations are in contact
(Servedio and Noor 2003; Butlin 2005).

Doi et al. (2001) mapped genes contributing to the female
discrimination behaviour and showed significant effects of
second and third chromosomes in D.ananassae and D. pal-
lidosa that leads to sexual isolation. Yamada et al. (2002a, b),
in their extensive studies of sexual isolation between two
sibling and sympatric species D. ananassae and D. pallid-
osa, recorded and analysed male courtship songs and ob-
served species specificity in the courtship song parameters
that was the basis of sexual isolation between these two
species. It was suggested that these parameters play a role
in mate recognition and enforces sexual isolation. Multiple
regression analysis by using interspecific mosaic genome
lines of D. ananassae and D. pallidosa indicated highly
significant effects on 2L for female mating willingness with
D. ananassae males and on XL, 2L and 3R for that with
D. pallidosa males (Sawamura et al. 2008).

Gleason ef al. (2005) mapped genes affecting cuticular
hydrocarbons that differ between D. simulans and D. sechel-
lia leading to sexual isolation. Etges et al. (2007) studied
genetic basis of incipient speciation among diverging pop-
ulations of D. mojavensis and suggested that the genetic
basis of traits that are directly associated with host use and
fitness and those determining mate choice cause genetic
divergence and reproductive isolation among geographically
isolated populations of D. mojavensis

5. Asymmetry in behavioural isolation

It is often observed that when two closely related taxa exhibit
premating isolation, the pattern is not symmetrical. The
degree of sexual isolation and the mode of mating preference
are often used to indicate the phylogenetic relationship be-
tween the species and also their evolutionary sequence
(Singh 1997). Some studies have indicated that there is no
correlation between asymmetrical mate choice and polarity
of mating behaviour (Wassermen and Koepfer 1980; Markow
1981; Moodie 1982; Koepfer 1991), except that Kaneshiro
(1976) and Watanabe and Kawanishi (1979) proposed the
opposite. One states that ancestral females prefer to mate
with conspecific males (Kaneshiro 1976), and the other
proposes that derived females prefer to mate with conspecific
males (Watanabe and Kawanishi 1979). These two hy-
potheses may refer to different sets of Drosophila species.
Kaneshiro (1976) observed asymmetrical mate choice in
Hawaiian Drosophila, with the polarity of mating behaviour
being inferred according to the ages of the islands. Since the
islands were isolated by the ocean, speciation was promoted
by the existence of this geographical barrier. Kaneshiro
concluded that ancestral females prefer conspecific males,
but derived females do not. Interestingly, Watanabe and
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Kawanishi (1979) found that in species evolved with over-
lapping ranges, derived females prefer conspecific males, but
ancestral females do not. The speciation mechanism of spe-
cies with an effective geographical barrier might differ from
that of species lacking such a barrier. The former might have
involved losing some courtship elements through genetic
drift or adaptation to a different environment (Kaneshiro
1976), which explains the rejection of a derived male by an
ancestral female. In the latter case, without an effective
geographical barrier, if derived females reject original males,
then the derived population might have a higher chance of
differentiating from the original population. This might be
related to Watanabe and Kawanishi’s model. These derived
males may have evolved new male performances instead of
having lost some courtship elements.

However, Markow (1981) suggested that the relationships
proposed in these models are not general concomitant of the
evolutionary process. The relationship may depend on eco-
logical and evolutionary history of a group. As evolutionary
events may occur differently in different groups, a general-
ized model predicting the evolutionary sequence cannot be
proposed (Markow 1981).

6. Conclusion

Reproductive isolating mechanisms are essential in the pro-
cess of cladogenesis. Reproductive isolation, the reduction
of gene flow between populations due to intrinsic features of
organisms, plays a primary role in maintaining biological
diversity. One of the major goals of speciation research is to
identify the relative contributions of relevant isolating bar-
riers between recently diverged species. This requires esti-
mating the strength of all potential barriers, evaluating the
time course for the evolution of barrier strengths and deter-
mining how each barrier contributes to the total isolation. In
terms of the order of appearance in the life history, premating
barriers that first come into play are of particular significance
as subsequent barriers can only stop the gene flow that
remains after the effect of earlier-acting barriers. In this
regard, sexual isolation is often the first potential barrier to
operate, and thus must be considered in any comprehensive
study. Failure to include early-acting barriers may lead to
overemphasis on the importance ascribed to barriers such as
gametic isolation and intrinsic genetic incompatibilities that
can only operate in sympatry.

Various species pairs amenable to genetic analyses are
known in the genus Drosophila that has enhanced our
knowledge in the field of speciation. Further, a large number
of closely allied or representative species, now inhabiting
open and continuous areas, were originally formed in parts
formerly isolated, or that varieties became in fact isolated
from haunting different stations, disliking each other and
breeding at different times so as not to cross (Stauffer
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1975). Thus, the origin of reproductive isolating mechanisms
is an important event in the process of speciation that is
evident from the work done in Drosophila (Singh 2010a).
The foremost architect of synthetic theory of evolution and
leading evolutionary geneticist of his time, Theodosius
Dobzhansky (1973) remarked that ‘Nothing in biology
makes sense except in the light of evolution’.

In many cases, species arisen by genetic divergence and
subsequent reproductive isolation of geographically separat-
ed and differentially adapted races and subspecies enrich our
knowledge on speciation genetics. In many species groups
genomes have been sequenced (Clark et al. 2007), and so
genomic approaches may help in identifying the molecular
genetic and neurophysiological changes responsible for the
evolution of mating behaviour and sexual isolation in the
genus Drosophila. The evolution of female mate mechanism
favouring males of their kind is considered a crucial step in
the early stages of speciation. Female mate choice is the
product of the interplay between neurological and physio-
logical processes, which in turn are regulated by gene ex-
pression patterns during courtship and mating. Therefore, the
genomics of mate choice and identification of genes under-
lying assortative mating is an important future prospective
for understanding of speciation genetics.
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