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1. Introduction

MicroRNAs are small non-coding RNAs which are 

formed by two-tiered processing of precursor gene 

products, resulting in mature oligomers with a size of ~23 

nucleotides (Cullen 2004; Kim et al. 2006). These small but 

important components of the cellular system exist broadly 

in all multicellular organisms. More than 700 microRNA 

sequences have been reported for human and a total of

10 883 known microRNAs have been reported for various 

species in the Mirbase database. Mirbase is a database that 

archives updated information about microRNAs across 

various species with full annotation and classifi cation 

(Ambros et al. 2003; Griffi ths-Jones et al. 2006, 2008). 

About 30% of the total genes of higher eukaryotes are 

expected to be controlled by microRNAs (Griffi ths-Jones 
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2004). Additionally, in the case of vertebrates, the matter 

is further complicated by the fact that, unlike plants, there 

are very few cases with absolute complementarity between 

a microRNA and its target (Miller and Waterhouse 2005). A 

large part of abundance assessments is based upon predictions 

made by presently existing softwares which themselves agree 

with each other to a limited level and a maximum of 50% 

(Kiriakidou et al. 2004; Hammell et al. 2008). In general, 

these softwares predict large amounts of false-positive targets 

and leave ample space for improvement in target prediction 

methodologies. Most of them are primarily dependent on 

two major assumptions: (i) the free energy of interaction of 

the microRNA with its target, and (ii) the conservation and 

continuity of the seed region (Lai 2002, 2004).

An interesting study has been done by Kertesz et al. 

(2007) where information from partition function for 

the untranslated region (UTR) has been used to assess 

accessibility in terms of difference in free energy (ΔG). 

This approach has a predecessor in the microTAR program, 

which considers the difference between the energy required 

to open the structure of the target region and free energy of 

target formation (Thadani and Tammi 2005). The accuracy 

of such programs may decrease with an increase in length 

of the RNA as they are dependent upon single-sequence 

and thermodynamics-based RNA structure prediction 

methodologies. A detailed survey of the limitations of RNA 

structure prediction methodologies can be found elsewhere 

(Gardner and Giegerich 2004; Andronescu et al. 2005). 

Some sofwares have successfully used phylogenetic 

conservation to improve predictions and have given 

strong support for assumptions that consider phylogenetic 

conservation of target sites as the basis for the targeting 

and prediction of valid targets (Lewis et al. 2005). A new 

generation of softwares has evolved now, which are based 

on a multivariate machine learning approach and consider 

multiple features for classifi cation (Kim et al. 2006; Wang 

and El Naqa 2008). Due to the large number of false-

positive results, the overall agreement between these 

softwares is very low. Recently, a support vector machine 

(SVM)-based target prediction refi nement approach has 

been introduced through the MirTif software, which takes 

output from a target prediction tool and tries to identify 

the potential predicted targets based on k-mer information 

from a predicted Target:miR pair (Yang et al. 2008). Two 

recent studies on the relationship between microRNAs and 

targets have observed the signifi cance of fl anking region 

sequences around the target sites in a contextual manner 

and emphasized the need to look beyond seed pairing and 

miR:Target interactions alone (Grimson et al. 2007; Didiano 

and Hobert 2008). The motivation for the present work has 

largely been drawn from the observations made by these two 

landmark studies, along with the work done by Kertsez et 

al. (2007) on the role of fl anking regions and their folding 

in target determination through target site accessibility. In 

the present study, we have considered the intrinsic sequence 

behaviour of the fl anking regions around the target sites as 

a critical determinant, which could hold the signature for a 

possible target in the form of characteristic variations in the 

dinucleotide density profi les of the fl anking regions. 

2. Materials and methods

2.1 Experimental dataset collection

In the present study, we have used a newly released database 

of experimentally validated targets for human, miRecords 

version 1, in addition to TarBase version 4 (Sethupathy et 

al. 2006; Xiao et al. 2009). Many of the reported miR:Target 

interactions in MiRecords have been validated through 

site-specifi c mutational analysis, in addition to expression 

analysis. Both the databases differ from each other with 

just after overlapping entries, which have been removed in 

the present study. There were a total of 99 experimentally 

validated interactions for human in Tarbase version 4 and 

about 1072 experimentally validated entries in MiRecords. 

We considered only those entries where microRNA-binding 

site information was available and experimentally validated. 

We did not consider those entries in which reported binding 

sites were not found in the UTR sequences, sites that were 

poorly defi ned or where UTR sequences differed or were not 

available. Details of all the datasets used in this study are 

available in supplementary data 1. Besides these, a total of 

38 experimentally validated negative interaction instances 

reported by various studies and used by Yang et al. (2008) 

were also collected. Details of other additional datasets used 

in model building and testing for SVMs have been given in 

the following related sections.

2.2 Encoded pattern generation and scan for equivalence

In some experimental studies, it has been reported that the 

activity of microRNA is sensitive to the specifi c interactions 

in the entire length and even a single change at any specifi c 

position may alter the effi cacy of inhibition (Doench and 

Sharp 2004; Didiano and Hobert 2008). In the present 

study, we have given due importance to this observation 

and considered the interaction patterns between the 

microRNA and its targets through the entire length. Encoded 

sequence patterns precisely retain the interactions between a 

microRNA and its target. For all the experimentally validated 

targets where mutational analysis was not performed in the 

experimental record, sequences were extracted with some 

extra sequences for both the fl anks. They were aligned 

to their partner microRNA reverse complement using 

a standard alignment procedure and optimized scoring 
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matrix. The same was done for the microRNA:target 

pairs predicted by the RNAhybrid tool (Rehmsmeier et al. 

2004). All alignments were converted into a single encoded 

sequence pattern represented by an alphabet of size fi ve i.e. 

Σ = {M,X,B,b,W}; where M = match; X = mismatch, B = 

bulge in the target, b = bulge in the microRNA, W = wobble 

match. The encoded patterns generated for experimentally 

validated pairs were collected in a form of a library, giving 

precise information on interaction patterns observed so far 

and experimentally feasible for various microRNAs. In 

this manner, we generated 148 unique encoded patterns 

overall from the available experimental details in miRecords 

and TarBase for human, representing various interaction 

arrangements experimentally known in human. Further, 

we considered genes of the apoptosis, diabetes and insulin, 

and toll-like receptor (TLR) pathways for application of 

our methodology and associated studies from the fi ndings. 

For every pathway, member genes were identifi ed from the 

KEGG database (Kanehisa and Goto 2000). Using their 

Ensembl ID, the corresponding mRNA and UTR sequences 

were retrieved from the Ensembl Biomart server (Hubbard 

et al. 2002). We retrieved the sequences of 115 genes in the 

TLR, 88 genes in the apoptosis and 138 genes in the insulin 

pathways. For each of these sets of genes, we retrieved their 

UTR sequences, over which RNAhybrid was run separately 

with an increased energy cut-off parameter of –10 kcal. 

For every experimentally validated encoded pattern, we 

looked for closely similar or identical matches across the 

enormous amount of predicted encoded patterns for every 

pathway. Such predicted patterns, exhibiting similarity to 

the experimental patterns, may point towards a biologically 

feasible miR:Target interaction. The similarity level can 

be categorized into various levels, depending upon the 

mismatches. 

2.3 Frequency of open nucleotides in target sites

In a previous work by Long et al. (2007) with a limited amount 

of experimental data, it was argued that a continuous open 

block of four bases or more could be required by the target sites 

to fi nd suitable interactions with the targeting microRNAs. 

With the presently available experimental data from both 

the databases, we looked into Ensembl for microRNA target 

genes and their sequences. All genes were searched for their 

respective UTRs and their respective UTRs were retrieved. 

The retrieved UTRs were subjected to secondary structure 

fold prediction using the Vienna Package RNAfold software 

(Hofacker and Stadler 2006). Using a python script, the target 

sites reported for each UTR sequence were searched and the 

corresponding regions from the secondary structure sequences 

were retrieved for further analysis.

In order to test the specifi city of observations, we 

needed random data as the negative set for comparison and 

statistical signifi cance. For negative data, we created two 

datasets: (i) randomly selected coding regions from the 5′ 

end, and (ii) randomized target UTRs retaining the same 

nucleotide composition, in order to avoid any possible bias. 

For contribution of openness, we considered three different 

features: (i) stretch of the longest continuous unpaired 

nucleotides present in the target site, (ii) total number of 

unpaired nucleotides present in the target region, and (iii) 

ratio of unpaired nucleotides versus the target region length. 

The R statistical package was used to perform the Wilcox 

test.

2.4 Flanking region analysis

To detect any overrepresented sequence motif in the 

fl anking regions, we ran Gibbs motif sampler for DNA 

(Thompson et al. 2003, 2004). The inputs to this part of the 

analysis were the complete target region of 70-base fl anking 

sequences around the microRNA target site. We also looked 

for any possible structural motif across the experimentally 

validated target sequences with 70 base fl anks on both sides 

of the target region. We used tools such as RNAforester 

and mLocaRNA to get any possible common secondary 

structure motif present in the majority of these sequences 

(Höchsmann et al. 2003; Will et al. 2007). These tools 

utilize the RNA secondary structure information to develop 

multiple alignments as well as report the structural motifs. 

2.5 Dinucleotide density variation-based discrimination 

using support vector machines

2.5.1 Feature extraction, feature selection and window 

optimization: In order to discriminate between the 

target UTRs and negative instances, we needed distance-

specifi c dinucleotide density variation profi les for the 

fl anking regions on both sides of the target sites, with some 

standardized window size for every positive and negative 

instance. We considered 70-base long fl anks on both sides 

of the target sites. For every such instance, the target region 

was considered as the centre from which both terminals 

gave rise to two different subsequences in two opposite 

directions. On a trial and error basis, we tested various 

sliding windows with different sizes to scan the sequences 

in both the directions. Windows overlapping with a single 

base were made. For every training instance, we recorded 

the dinucleotide density in every window, which refl ected 

the dinucleotide-based compositional variations at different 

distances and positions from the target region. In this way, 

the varying dinucleotide densities with respect to the distance 

from the target site estimated for each instance formed the 

feature vector set for the training instances. On the basis 

of various F-score values to estimate the discrimination 



power of various features to separate the positive instances 

from the negative ones, the most discriminating features 

were found. The F-score values to measure every feature’s 

discrimination capacity out of n- features were calculated 

using the following relationship:

2.5.2 About SVM and parameter optimization: SVMs 

are kernel-based statistical learning machines, where a 

discriminant function is established for such a margin 

which is widest and successfully separates the positive 

sets from the negative sets using multidimensional feature 

space mapping (Drucker et al. 1997). The margin, which 

maximizes the separation between the two categories,

is formed by support vectors, the training cases, which

defi ne the margin of separation around the discriminant

line, i.e.

In the core of SVMs are kernel functions which actually 

measure the similarities between two objects defi ned over 

multiple features. Every object which is classifi ed is defi ned 

over a number of features, and similarity between two 

such objects is estimated using various kernel functions. 

We opted for a Gaussian radial basis kernel. An SVM has 

two parts: training and testing. For training, one needs to 

feed known instances of positive and negative classes. 

Before performing the training, it is better to convert the 

data vectors into corresponding scaled values, which can be 

scaled on Gaussian parameters, as values coming in different 

ranges for different features can infl uence the estimate of 

similarity measurement and decision. In our case, we did 

not need scaling, as all the values taken were in the range of 

0–1. The next step was a grid search to fi nd the best training 

parameters for the radial basis kernel-based learner. This 

searches the best C and γ parameters, both of which infl uence 

the accuracy of the prediction. The C parameter specifi cally 

determines the optimal trade-off between the process of 

margin maximization and minimization of training error. We 

performed this by using a grid search script available in the 

LibSVM package, with cross validation value of 10 folds 

(Chang and Lin 2001).

2.5.3 SVM models, training and testing: We used 

LibSVM’s training and prediction modules in our analysis. 

Since we had experimentally validated data from two 

different sources, we decided to prepare two separate SVM 

models from both the databases as the training sets. These 

two separate SVMs were formed with a total of 73 positive 

sequences from TarBase and 73 negative sequences derived 

from randomized sequence data, as well as randomly 

picked sequence data from non-coding regions (total 146 

sequences), a total of 88 positive sequences from miRecords, 

88 randomized sequences and randomly picked non-coding 

sequences as the negative set (total 176 sequences). Besides 

this, we also considered 32 experimentally validated negative 

interactions, which were predicted as microRNA targets 

but were found to be false positives when experimentally 

tested (Yang et al. 2008). Preparation of a training dataset 

is critical, as the wrong proportion of negative and positive 

instances as well as an unsuitable negative set can infl uence 

the accuracy through a class imbalance problem (Akbani 

et al. 2004). In this article, we have used terms such as 

‘Mirecords (based) dataset’ for datasets where the positive 

instances have been derived from MiRecords, and ‘Tarbase 

(based) dataset’ for those sets that have their positive 

instances collected from the Tarbase database. For the 

TarBase-based SVM model, the complete miRecords-based 

model’s negative and positive datasets worked as the testing 

set, and for the miRecords-based SVM model, the complete 

TarBase model’s negative and positive datasets worked as 

the testing set. This way, the accuracies of both the SVMs 

were estimated over a relatively large amount of validated 

datasets, which has not been done before. In addition to this, 

other datasets were also prepared for further performance 

assessment using various combinations of positive and 

negative instances as described below.

2.5.4 Performance and SVM model testing: Sensitivity 

(Sn), specifi city (Sp) and accuracy (Ac) and Matthew 
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Where,

X
–

i(+) =  Mean value of i-th feature in experimentally 

validated positive instances

X
–

i(–) =  Mean value of ith feature in negative 

instances

Xi =  Overall mean value of the ith feature

Xk,i(+) =  Feature value for k-th positive instance for ith 

feature

Xk,i(–) =  Feature value for k-th negative instance for ith 

feature.

F x k x Xi b
i

i
( ) .= ⋅ ⋅{ }+( )=∑sign vi

1

Where

x =  Input vector to be classifi ed (in our case its 

sequence to be predicted as target)

xi =  Support vector i

k(x.Xi) =  Kernel function between the support vector 

and input vector

Vi = quadratic programming parameter

b = bias of the non-linear decision function



correlation coeffi cient (MCC) of the SVMs were estimated 

using the following equations:

Sn = TP/(TP + FN)

Sp = TN/(TN + FP)

Ac = TP + TN /(TP+TN+FP+FN)

Where TP = true positive, TN = true negative, FP = false 

positive and FN = false negative.

Performance was also measured by forming receiver 

operating characteristic (ROC) curves and calculation of 

the area under the curve (AUC) over four different dataset 

models, as accuracy measurement alone can be misleading 

sometimes. The ROC measures the performance behaviour 

of a TP with respect to an FN and provides information about 

the level of trade-off between these two. An AUC value of 

0.5 or below suggests a random nature of the classifi er and 

an inappropriate model. The higher the value of the AUC, 

the better the classifi er model. Altogether, four different 

dataset models were formed to work as training and testing 

sets besides the above-mentioned test sets (Supplementary 

data 5). Three different tests, besides the above-mentioned 

tests, were carried out for performance assessment and 

comparison with a recently published refi nement program 

MirTif (Yang et al. 2008). The positive instances were 

taken from experimentally validated data for human in 

the Mirecords and Tarbase databases, while the negative 

datasets were made by an equal number of randomized UTR 

sequences and randomly picked non-genic sequences. The 

randomized data from UTR sequences and randomly picked 

non-genic sequences as negative instances are different in 

both the datasets for model generation purposes. Besides 

this, 32 experimentally validated instances of negative 

predictions were considered from the complete negative 

dataset of a total of 38 sequences used by the recently 

published MicroRNA:target refi nement tool, MiRTif 

(Yang et al. 2008). These 38 instances were experimentally 

validated psuedotargets, out of which we could consider 32 

instances suitable for analysis due to sequence discrepancies 

and data format requirements. For all these models, the 

ROCs and AUCs were estimated for 10-fold cross-validation 

along with other performance measures.

2.6 Regulatory and upstream region analysis

For all of the predicted target genes, their 2 kb upstream 

promoter regions were extracted from Ensembl. The 

upstream promoter region sequences were scanned for 

putative transcription factor-binding sites (TFBS) using 

the Transfac database and Match software (Wingender 

et al. 2000; Kel et al. 2003). In order to get the optimum 

output from Match, we opted for settings that minimized the 

number of FPs and FNs. 

To know which genes were similar to the target genes 

found on the basis of their expressions at different stages/

tissues, we used the Gene Sorter module at USCS (http:

//genome.ucsc.edu/cgi-bin/hgNear). We retrieved all the 

genes exhibiting expression proximity to every predicted 

target, and retrieved their corresponding 2 kb upstream 

promoter regions from Ensembl, which were analysed for 

TFBS along with the promoter region upstream sequences 

of the target genes. MicroRNA target predictions reported by 

TargetScan and miRDB were also considered in this analysis 

(Lewis et al. 2005; Wang and El Naqa 2008).

3. Results and discussion

3.1 The optional: interaction pattern-based initial sorting

For many experimentally validated microRNA:target pairs 

reported in databases such as Tarbase and miRecords, we 

noticed that the free energy of interaction was higher than 

–20 Kcal/mol, an interaction energy cut-off usually practised 

in target prediction. We also noticed different interactions 

for the same microRNA in many cases. The minimum 

free energy may not always ensure correct targets. This is 

supported by the fact that in human there are fewer cases 

of exact or very high complementarity ensuring lesser free 

energy. The same amount of minimum or lesser free energy 

can be obtained for a different interaction between the target 

and the microRNA. In the present study, for many cases, 

we observed different interaction patterns for the same 

microRNAs and many different interaction patterns for 

different microRNAs (supplementary data 2). Some recent 

studies have argued for high specifi city of microRNA–target 

interactions and emphasized the need to review the rule of 

5′ seed-based predictions as other parts of the miR:Target 

pairs were also found to be critical (Brennecke et al. 2005; 

Kim et al. 2006; Didiano and Hobert 2008; Hammell et 

al. 2008). Therefore, in the primary stage of this work, we 

assumed that local interaction geometry should be specifi c 

and helpful in the initial sorting of the potential targets 

from the predicted interaction. In total, we generated 148 

unique encoded interaction patterns for human, which may 

be considered as the library of all possible experimentally 

validated interactions for various microRNAs in human.

For our analysis, we considered genes from the apoptosis, 

TLR and insulin pathways. The fi rst-stage targets were 

predicted by RNAhybrid, which yielded a large number 

of predicted targets from which most potential targets 

had to be screened using our methodology. All predicted 

microRNA:target pairs were realigned for refi ned alignment 

through the same procedure as discussed above. This also 
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ensured a common format for both the target:microRNA 

interaction representations. The predicted patterns were 

scanned against the library of the experimental encoded 

patterns for various similarity levels. In every pathway, 

the least numbers were observed for a 100% match, which 

increased when the similarity levels were reduced. These 

numbers and candidates for various categories are available 

in supplementary data 3. We also assumed that the predicted 

interaction pattern matching some of the closest experimental 

encoded interaction patterns should have same microRNA 

partners, given that only the experimentally known 

interactions for a particular microRNA were considered. We 

observed that a smaller fraction of microRNAs shared 100% 

resemblance for their experimentally validated encoded 

interaction patterns with other microRNAs. Even for a 

single mismatch condition, a small number of microRNAs 

came in the same group (supplementary data 2). Through 

this step, we screened out a total of 17 potential target genes 

from the three pathways mentioned above and selected 

them for further study in the follow up of our SVM-based 

prediction of these.

3.2 The transitional: measuring target region openness

as a discriminating feature

In an earlier study, it has been argued that the structural 

openness of the targets could be an important factor and 

the structure should be thermodynamically supportive in 

allowing a microRNA to bind to the target site (Robins et 

al. 2005). Robins et al. (2005) had considered the folded 

mRNA structure’s role in predicting targets in Drosophila 

and hypothesized fi rst about the possibility of considering 

the role of free base pairs as the targeting centre in a target 

mRNA. They used the predicted secondary structures of 

UTRs exclusively and estimated the single-stranded regions 

for at least 3 bases. A related study considering target site 

structure for openness was carried out by Long et al. (2007). 

They assumed that every potential target site should have 

four continuous bases with a high probability of being 

unpaired (Long et al. 2007). They experimentally tested 

it on a small dataset. We tried to look into this aspect of 

target sites in order to know if this particular aspect could 

be used as an effi cient discriminating feature. We carried out 

a statistical test over predicted UTR structures considering 

UTRs with experimentally reported target sites, randomly 

generated UTR structures and non-UTR structures to test 

the strength of local target site openness as a possible 

discriminating feature as argued by Long et al. (2007). From 

our analysis, we observed that the mean continuous stretch of 

open regions for target sites was ~6 bases long, the average 

number of unpaired bases was ~9 bases and the average ratio 

of unpaired bases to target region length was ~0.4. In order 

to assess whether the observations refl ected the openness 

properties of only microRNA target regions or not, we carried 

out the Wilcox Rank Sum tests for all the three classes of 

observations between all experimentally validated sites and 

two different representations of the random data. We did not 

fi nd these features signifi cant enough at a signifi cance level 

of 5% to demarcate a target site away from a non-target site, 

as the P values were above 0.05 (see supplementary data 

4). Therefore, parameters based on the openness assessment 

in the target sites alone did not appear suffi cient enough to 

achieve a sensitive generalizable discrimination function for 

target site prediction, prompting us to look beyond the target 

regions and include the information and role of fl anking 

regions around target sites.

3.3 The critical: fl anking region analysis and SVM-based 

identifi cation

For identifi cation of some structural and sequential motifs 

in the fl anking regions of the target sites, we looked into 

the experimentally validated sequences using the approach 

described in the Methods section. For structural motif, we 

could not fi nd any signifi cant motif but at sequence level, 

we found three kinds of sequence motifs, overrepresented 

in a mutually exclusive manner – A-rich regions, U-rich 

regions and C-rich regions. The presence of AU-rich regions 

in the fl anking regions has been observed to be associated 

with some of the target RNAs (Grimson et al. 2007; Didiano 

and Hobert 2008). Studies done by Didiano and Hobert 

(2008), Kertesz et al. (2007) and Long et al. (2007) suggest 

very clearly that microRNA:target interaction information 

alone may not be suffi cient as a marker for successful 

target prediction, as information from the fl anking regions, 

structure of the target UTR and site accessibility may also be 

critical for successful target prediction. 

Considering the above-mentioned observations and 

limitations of sequence- and structural motif-based 

approaches, we looked for some sequence composition-

based intrinsic features of the fl anking regions around the 

target sites. Such features may retain the essence of structural 

information derived from the nearest neighbourhood principle 

and may also work like some signatures. The dinucleotide 

density variation profi le as appeared to be a solution as it 

retains compositional information as well as the essence of 

the nearest neighbourhood principle used in RNA structure 

prediction. In a previous work, the dinucleotide densities of 

upstream regions have been successfully used to discriminate 

between genes of different functional categories as well as 

between species (Shankar et al. 2007). Recently, SVMs have 

been successfully used in microRNA:target prediction with 

multiple features, including k-mer features from target:miR 

interactions (Kim et al. 2006; Wang and El Naqa 2008). 

The same could be used for our purpose of discrimination 

based on position-specifi c variation of dinucleotide density. 
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The idea behind SVMs is generation of a maximum margin 

hyperplane to minimize error in the classifi cation process. 

It is critical to select strong features which could generate 

maximum discrimination. We prepared the dinculeotide 

density variation profi les of the experimentally validated 

positive targets and false targets by considering the variation 

pattern of densities of 16 dinucleotides across the fl anking 

regions around the target in a position-specifi c manner 

in both the directions. Every positional window and the 

dinucleotide densities for those positions were considered as 

possible discriminating features. For the above-mentioned 

dataset models, the most discriminating features were 

found through a feature selection procedure. The most 

discriminating position-specifi c dinucleotide densities were 

selected from the fl anking regions of the various target sites 

from negative as well as positive instances, which were 

well able to discriminate between the positive and negative 

instances. The ten best common discriminating features 

among the top fi fteen features obtained for Tarbase- and 

Mirecords-based datasets are listed in table 1, where the 

average validation accuracy for both the models was found 

to be above 90%.

We prepared sliding windows of various base lengths 

and recorded the performance of the SVMs to correctly 

classify targets and non-targets. For different window sizes, 

we tested the SVM models for their TPs, FPs, TNs, FNs, Sn, 

Sp, Ac and MCC. We also optimized the C and γ values for 

both the SVMs with 10-fold cross-validation. These values 

are listed in table 2. We obtained the best C and γ values 

of 8 and 2, respectively, for a positive set from the TarBase 

training data with a cross-validation accuracy of ~90%. For 

miRecords data as the training set, we observed the C and 

γ values of 2 and 2, respectively, with a cross-validation 

accuracy of ~95%. The best classifi cation accuracy was 

observed for a window size of 20, where the best balance 

between specifi cities (0.98, 0.92) and sensitivities (0.92, 

0.97) were also observed with the highest values for MCC 

(0.90, 0.797) for the miRecords-based model and TarBase-

based model, respectively. For all the models, a window of 

20 bases emerged as the one that could perform the best 

characterization based on position-specifi c variation in 

dinucleotide densities (fi gure 1). This study provides strong 

support for the intrinsic compositional role of fl anking 

sequences around the target site. The dinucleotide profi le 

variation patterns in the fl anking regions could be useful 

in classifying the targets successfully. We extended our 

fi ndings with these two separate SVM models over the 

targets predicted by the earlier steps and found positive 

predictions for a total of 11 genes out of 17 most likely 

potential targets screened during the previous steps. The 

results are detailed in table 3.

In order to assess the performance of our hypothesis 

further, we formed four different dataset models and 

carried out three different sets of performance tests. We 

also compared these with a recently published software 

to refi ne microRNA:target prediction, Mirtif (Yang et 

al. 2008). For every such model, we repeated the above-

mentioned procedures for parameter estimation, cross-

validation as well as formed ROCs and calculated their 

AUCs. MirTif uses the k-grams frequency information 

for nucleotide combinations from microRNA:target pairs 

for prediction. The authors claim ~82% accuracy and 0.86 

AUC for their dataset. For model building, MirTif uses 195 

positive instances from Tarbase and 38 negative instances. 

The authors have used the same data for the training set 

as well as the testing set. First, we tested the accuracy of 

MirTif against the positive instances in our Mirecords data, 

in which our Tarbase model had achieved 87% accuracy. 

On the positive instances of the MirRecords dataset, the 

accuracy of MirTif fell to 74% (table 4C). It should be noted 

that this dataset was unseen by MirTif as it was trained using 

Tarbase-positive data only. Thereafter, we assessed the Sn, 

Table 1. The top 10 most signifi cant features from the fl anking regions of microRNA target sites found common in the two 

dataset models. The positive and negative instances were best discriminated by these common position-specifi c window densities of 

dinucleotides given here with their respective F-scores.

Feature# (Tarbase) Dinucleotide F-score Feature# (MiRecords) Dinucleotide F-score

81 AA 0.73203 81 AA 0.25795

59 CG 0.21046 43 CG 0.20155

75 CG 0.19292 75 CG 0.15458

197 UA 0.19048 11 CG 0.15131

91 CG 0.13736 65 AA 0.13708

11 CG 0.12136 91 CG 0.13628

65 AA 0.10329 59 CG 0.11815

165 UA 0.09289 165 UA 0.11746

43 CG 0.08291 85 UA 0.10847

85 UA 0.07565 197 UA 0.09420
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Sp, Ac, MCC, ROC and AUC for various combinations of 

test and training data. While doing so, we built models and 

test sets in which we appended the negative dataset from 

the MirTif-negative dataset in models C (Tarbase-based 

data + 32 experimentally validated negative instances) and 

D (MiRecords-based dataset + 32 experimentally validated 

negative instances). In models A (Tarbase-based dataset 

only) and B (MiRecords-based dataset only), we directly 

used the MirTif-negative data as the negative test set without 

using them in the training set. Details of the Mirecords-based 

and Tarbase-based datasets have already been discussed 

in the previous sections. In all the tests, our methodology 

Table 2. 

(A) Performance measure of the support vector machine (SVM) with the miRecords model for different window sizes. The best 

performance was observed for a window size of 20 bases.

Window size  C-value Gamma CV-fold CV rate Ac (%) Sn Sp MCC

6 2 0.5 10 90.9 86.3 0.73 1 0.75

10 8 0.5 10 93.7 91 0.85 0.73 0.82

16 2 0.5 10 92.6 91.7 0.88 0.96 0.83

20 2 2 10 93.1 95.2 0.92 0.98 0.9

32 8 2 10 93.1 91.7 0.96 0.88 0.83

(B) Performance measure of SVM with TarBase model for different window sizes. Best performance was observed for window of size 

20 bases.

Window size C-value Gamma CV-fold CV rate Ac% Sn Sp MCC

6 0.03 0.13 10 91.7 88.6 0.84 0.93 0.77

10 0.5 0.5 10 93.8 89.2 0.83 0.95 0.79

16 0.5 0.5 10 92.4 85.2 0.81 0.89 0.7

20 8 2 10 94.5 89.7 0.86 0.93 0.79

32 32 5 10 91.7 89.7 0.88 0.9 0.79

CV, cross validation; Ac accuracy; Sn sensitivity; Sp, specifi city; MCC, Matthew correlation coeffi cient

Table 3. Predictions made by SVM on potential target genes selected through interaction pattern encoding match step over various 

pathways associated genes.

Gene MicroRNA  Pathway Support vector machine (SVM) 

(miRecords model)

SVM

(TarBase model)

PRKY hsa-miR-196a Insulin Absent Absent

SOCS4 hsa-miR-196a Insulin Absent Absent

RAF1 hsa-miR-125b Insulin Present Present

PIK3R3 hsa-miR-132 Insulin Present Absent

PPP1CB hsa-miR-145 Insulin Absent Absent

SOS1 hsa-miR-23a Insulin Present Present

AKT3 hsa-miR-34a Insulin Absent Absent

PRKAB1 hsa-miR-1 Insulin Present Present

RELA hsa-miR-20a TLR Present Present

TMEM189 hsa-miR-132 TLR Present Present

BCL2 hsa-miR-221 Apoptosis Absent Present

APAF1 hsa-miR-132 Apoptosis Present Present

PIK3R3 hsa-miR-132 Apoptosis Present Absent

PRKY hsa-miR-196a Apoptosis Absent Absent

ATM hsa-miR-132 Apoptosis Present Present

CASP7 hsa-miR-23a Apoptosis Present Present

IKBKG hsa-miR-20a Apoptosis Present Present
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performed better than MirTif, with most of the performance 

measures achieving better scores. All the AUC values scored 

were above 0.90 and higher than the MirTif AUC (0.86), all 

Ac values scored were higher than the MirTif Ac (81.9%), 

models A and B had better Sns and better Sps among all 

the models (table 4A, B and C). The complete details of the 

models and respective tests are available in supplementary 

data 5. The ROCs for these tests are given in fi gure 2.

The observed fall in the Ac level of MirTif, when tested 

with positive cases from our Mirecords dataset, could be due 

to the fact that MirTif uses the same dataset for training as 

well as testing, where all positive instances have been derived 

from Tarbase. MirTif considers a skewed dataset, having a 

total of 195 positive instances against only 38 negative 

instances. In our models, in all the above-mentioned tests, 

we never used same testing and training data completely. 

All predictions were largely in instances never seen before, 

whereas the Tarbase-derived dataset models have been 

tested over datasets containing all positive instances from 

miRecords and vice versa. With fully unseen test data, 

our models performed better. In addition, we maintained 

a reasonable ratio of positive and negative instances in 

order to avoid problems created by class imbalance. The 

basic work plan of the entire methodology is illustrated in 

fi gure 3. The related details of the datasets can be found in 

supplementary data 1.

3.5 Application: regulatory module analysis over the 

predicted targets

More than fi fteen years ago, microRNAs came into 

prominence for their possible negative regulatory roles, 

with the fi rst discovered microRNA, lin-4, exhibiting 

complementarity with the lin-14 gene and its downregulatory 

impact observed in C. elegans (Lee et al. 1993). Later, they 

were found to downregulate a number of genes (Lim et 

al. 2005). Together with transcription factors, microRNAs 

present a complex regulatory system (Hobert 2004). 

Therefore, it was interesting to look into the regulatory 

roles of these microRNAs along with the transcription factor 

partners associated with them.

We selected SVM-supported predictions for further 

analysis. For every potential target, we carried out further 

analysis by looking into co-expressed genes using the 

gene sorter tool (Kent et al. 2005) and considering gene 

expression data for expression-based distance calculation. 

The gene sorter at the University of California Santa Cruz 

(UCSC) provides a module to look at related genes, based on 

the Euclidean distance computed over expression profi les of 

related genes across various tissues and stages. Our interest 

was to evaluate other co-expressed genes as well, which 

could be the targets for the same microRNA predicted to 

target the associated target gene. Further, we also looked 

into the promoter regions of these genes so that we could 

fi nd some possible regulatory circuits associated with 

these genes, their associated microRNAs and transcription 

factors.

All these genes were compared with their respective 

predicted target genes with which their expression proximity 

had been observed. We retained only those genes that had 

the same common microRNA targeting them along with the 

predicted associated gene with which they were co-expressed 

(table 5). Besides this, for every such gene which exhibited 

a common expression and microRNA, we looked into the 

5′ promoter regions up to 2 kb upstream for the presence 

of common TFBS. Every such target and its co-expressed 

and co-targeted genes shared some common set of TFBS. 

For detailed and pair-wise comparisons between the genes 

regarding TFBS sites, please see supplementary data 6. 

Some interesting fi ndings which deserve to be mentioned 

here are about two genes of the apoptosis pathway, APAF1 

and ATM. We found them to be targets sharing a common 

microRNA, hsa-miR-132, and standing close to each other 

for expression similarity, sharing about eleven transcription 

factors in common (table 5). Another set of interesting 

fi ndings is associated with the microRNA hsa-miR-23a, 

Figure 1. Performance measure of our support vector machine (SVM) model at different window sizes. The fl anking regions around the 

target site were analysed for varying dinucleotide density profi les with varying distance as the SVM feature to discriminate between a true 

and a false target, with different window sizes. It was found that a window of 20 bases performs the best. Sp, specifi city; Sn, sensitivity; 

MCC, Mathew correlation coeffi cient; Ac, accuracy.
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Table 4. (A) Comprehensive performance test of our support vector machine (SVM) models. Details of these models and tests are 

available in supplementary data 5. Model A uses a ‘Tarbase-based’ dataset, B is ‘MiRecords based’, C is a Tarbase-based model where 

negative instances and positive instances are from Model A in addition to experimentally validated 32 negative instances. Similarly, 

Model D has an additional 32 experimentally validated negative instances added to the total negative instances in Model B

CV rate Ac% TP TN FP FN Sn Sp MCC AUC

Model A 94.52 88.46 76 108 12 12 0.86 0.91 0.78 0.94

Model B 93.18 89.33 64 95 10 9 0.88  0.90 0.75 0.98

Model C 93.26 86.54 65 115 5 23 0.74 0.96 0.73 0.9473

Model D 93.27 90.45 56 105 0 17 0.77 1 0.81 0.985

CV, cross validation; Ac, accuracy; Sn, sensitivity; Sp, specifi city; TP, true positive; TN, true negative; FP, false positive; FN, false 

negative; MCC, Matthew correlation coeffi cient; AUC, area under the curve

(B) Average performance comparison between MirTif and our methodology. The average has been taken here after considering the 

values from the performances of all of the four support vector machine (SVM) models. The individual performances and respective 

accuracy, sensitivity, specifi city and area under the curve (AUC) of our models are mostly higher as can been seen from (A)

Average accuracy (Ac%) Sensitivity (Sn) Specifi city (Sp) Area under the curve (AUC)

MirTif 81.97 0.835 0.736 0.86

Our methodology 88.65 0.812 0.94 0.96

(C) Fall in accuracy observed in the MirTif prediction in positive instances from miRecords. MirTif has been trained and tested over 

the same set of data whose positive cases were taken from the Tarbase database

Number of positive 

interactions

True  positive False positive % Accuracy on miRecords 

positive data

% Accuracy reported in 

mirTif publication

miRecords 117 87 30 74 81.97

Figure 2. The receiver operating characteristic (ROC) plots for performance measure. Four different combinations of datasets were used 

to measure the performance of our support vector machine (SVM) models. Details about the models are available in supplementary data 5. 

For all the models the measured performance was signifi cantly higher than MirTif (Yang et al. 2006). AUC, area under the curve.
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which targets the CASP7 gene and transcription factor 

vitamin D receptor (VDR), whose site is present in CASP7 

as well as in all of its fi ve co-expressed and co-targeted genes 

(HMGN2, NFX1, KIAA0323, JMJD2A and TWA1). This is 

a signifi cant observation as CASP7 is a critical component 

of apoptosis and T-cell signalling (Korfali et al. 2004). Since 

VDR is common to all these genes, which are co-expressed 

and co-targeted with CASP7 and hsa-mir23a, respectively, 

a complete regulatory circuit involving hsa-miR-23a, VDR, 

CASP7 and these co-expressed genes emerges. HMGN2 is 

involved in chromatin structure and transcription, NFX-1 has 

transcription factor activity (Song et al. 1994), KIAA0323 

is a hypothetical protein, JMJD2A is a histone demethylase 

transcription repressor (Zhang et al. 2005), while TWA1 

is a nuclear protein, which is supposed to be critical in 

microtubule formation and cell division (Umeda et al. 2003). 

Figure 3. The basic work plan. The fl ow of the entire methodology practised here to predict most probable targets out of predictions made 

by target-fi nding softwares. The initial step is sorting based on similarity with experimentally known interactions. The sorted candidates are 

subjected to fl ank analysis and support vector machine (SVM)-based fi nal prediction which utilizes the distance-based dinucleotide density 

variation profi le in the fl anking regions to characterize a possible target.
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Interestingly, most of these genes are nuclear factors and in 

some way associated with cell growth and death. Another 

transcription factor, TBX5, was found to be common 

with two co-expressed and co-targeted genes (NFX1 and 

HMGN2) of CASP7 as well as a target for the microRNA 

hsa-miR-23a. TBX5 was found to be common in many of the 

predicted target genes associated with apoptosis reported in 

this study. TBX5 protein is a T-box transcription factor with 

a repressor role in transcription control of the cell cycle and 

plays a very important role in cell growth (He et al. 2002).

What we have reported here is supported by an 

experimental study with hsa-miR-23a, where it was found 

that after an antagomir inhibition of hsa-miR-23 in lung 

carcinoma cells, A549, downregulation of cell growth was 

noticed (Cheng et al. 2005). With the CASP7 system, these 

observations strongly indicate that hsa-miR-23a is a critical 

component in cell growth and death (fi gure 4). In this 

study as well, hsa-miR-23a was found to target SOS1 and 

associated genes (WHAM, MCM3AP, NCOA6, WDR37).

4. Conclusion

We have presented a novel methodology to refi ne 

microRNA target prediction, using dinucleotide density 

profi le variation in the fl anking regions of target sites. 

As observed in some recent work, the role of the target 

fl anking regions in controlling microRNA targeting could 

be signifi cant (Grimson et al. 2007; Kertesz et al. 2007; 

Table 5. Regulatory analysis of co-expressed, co-targeted and co-regulated genes. The predicted target genes were analysed for

co-expressed genes which share same microRNA targets and were studied for their enriched transcription factor-binding sites

Gene Associated genes MicroRNA Associated transcription factor-binding sites

IKBKG ARHGEF18 hsa-miR-20a CACD; DBP; Pax-8; RFX; Tal-1beta:E47

PIK3R3 CAMSAP1L1 hsa-miR-132 AhR; CACD; C/EBPalpha; c-Ets-1(p54); Ets; GATA-X; Oct-1; 

OG-2; RFX1; Spz1

ATM APAF1 hsa-miR-132 c-Ets-1; c-Ets-1(p54); DBP; Ets; Oct-1; Pax-8; Spz1; Tel-2; 

v-Myb; ZF5

CASP7 HMGN2,NFX1,KIAA0323, JMJD2A, 

C20orf11

hsa-miR-23a BRCA1:USF2, C/EBP, CKROX, CREB, ETF, KROX, LRF, 

Spz1, TBX5,ZF5 (3); AP-2, CACD, DBP, MAZ, Oct-1, Pax-

8,RFX,RFX1,Sp1,YY1(4);  c-Ets-1, Ets; GARP, v-Myb(5); 

VDR3(6);

APAF1 ATM, CNOT2 hsa-miR-132 ATF6, GABP, Oct-1, Octamer, Pax-8, v-Myb

PRKAB1 IMPACT, ASH2L,TBC1D15 hsa-miR-1 AP-2alpha, C/EBPalpha, FAC1, GATA-X, Hand1:E47, MYB, 

Nkx2-5, Oct-1, OG-2, RUSH-1alpha, ZF5 (2); BRCA:USF2, 

C/EBP, RFX, TBX5, v-Myb (3); CACD, c-Ets-1, Ets, Pax-8 

(4);

RELA MAP3K14, RNH1 hsa-miR-20a AhR:Arnt; AP-2; c-Ets-1; ETF; KROX; LRF; Nkx2-5; Oct-1; 

OG-2; RFX; Sp1; TBX5 (2); CACD; C/EBP; C/EBPalpha; 

Hand1:E47; kid3; Sp1(3)

TMEM189 VAPA hsa-miR-132  AP-2; C/EBP; Kid3; NF-Y; Pax-8; SREBP; v-Myb

BCL2 TET2, YTHDC1, VEZF1 hsa-miR-221 AP-2; CdxA; C/EBPalpha; ER; FAC1; Oct-1; Sp1; TBX5(4); 

AP-2alpha; CACD; c-Ets-1; CREB; Ebox; KROX; LRF; OG-

2; Pax-8; RFX; SREBP; ZF5(3); Hand1:E47(5) 

SOS1 WHAM,MCM3AP, NCOA6, WDR37 hsa-miR-23a AP-2; BRCA1:USF2; CKROX; FAC1; Hand1:E47; Oct-1 

CACD; Kid3; MAZ; v-Myb CdxA; c-Ets-1; RFX; RFX1; 

Spz1; VDR; WT1 

Figure 4. The proposed hsa-miR-23a regulatory module. It was 

found that hsa-miR-23a could be critical in regulating apoptosis 

by regulating these fi ve genes which are co-expressed together as 

well as co-targeted by hsa-miR-23a and share many transcription 

factor-binding sites (TFBS) in common, of which VDR and TBX5 

appear to be the most critical as they too were found to have an 

hsa-miR-23a target site.
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Didiano and Hobert 2008). We found that the sequence-

based intrinsic features derived from these regions, when 

represented as the varying dinculeotide density profi les of 

the fl anking regions around the target sites with the help 

of the SVM learning approach, were able to successfully 

discriminate between the positive and negative instances. 

MicroRNAs are important components of the regulatory 

system, which work in a concerted fashion along with 

transcription factors. Finding the correct targets for these 

components of the regulatory system may shed light on the 

behaviour of various pathways and genes at different levels. 

We concluded this study by looking into the regulatory 

aspects of our fi ndings in association with co-expressed and 

co-targeted genes sharing common transcription factor sites, 

and identifi ed some regulatory modules. The procedure 

described here could be useful in narrowing the predicted 

targets and can be easily extended to other species. Based 

on the methodology presented in this article, some novel 

software can also be developed.
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