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1. Introduction

Natural selection is believed to be an unforgiving and relentless 

force in the evolution of life on earth. An organism that cannot 

adapt to a changing environment or an environment hostile 

to cell functions is at risk as a species. Thus, it is important 

to understand the mechanisms used by plants, animals and 

microorganisms in adapting to environments in the biosphere 

that would ordinarily denature proteins and enzymes or 

otherwise cause disruption of life-giving cellular processes. 

These hostile environments involve such stresses as extremes 

of temperature, pH, cellular dehydration, desiccation, high 

extracellular salt environments and even the presence of 

denaturing concentrations of urea inside cells (Yancey et 

al. 1982; Yancey 2003, 2004). In response to these harsh 

environmental stresses, organisms accumulate low molecular-

weight organic compounds called osmolytes to protect 

their cells and macromolecular assemblies. Two defi ning 

characteristics of protective osmolytes are that they stabilise 

proteins against denaturing stresses (Santoro et al. 1992; 

Taneja and Ahmad 1994; Xie and Timasheff 1997a, b Foord 

and Leatherbarrow 1998; Kaushik and Bhat 1998; Anjum et 

al. 2000; Kim et al. 2003), and their presence in the cell does 

not largely alter protein functional activity (Myers and Jakoby 

1975; Yancey et al. 1982; Wang and Bolen 1996). The basic 

premise is that the natural selection of protecting osmolytes 

is based upon selection at a particular molecular level which 

confers generic stabilisation to all proteins without altering 

their functional activity (Yancey 2003, 2004). 

Within the three chemical classes of osmolytes, distinctions 

have been made according to the manner in which functional 

activity is maintained within the cell by particular osmolytes. 

This has resulted in classifi cation of organic osmolytes 

either as ‘compatible’ or ‘counteracting’ in terms of their 

effects on the functional activity of proteins (Borowitzka 

and Brown 1974; Bowlus and Somero 1979; Yancey
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et al. 1982). Compatible osmolytes are those that stabilise 

proteins without substantively affecting protein functional 

activity (Borowitzka and Brown 1974; Bowlus and Somero 

1979; Pollard and Wyn Jones 1979; Wang and Bolen 1996). 

Representatives of this class include certain amino acids (e.g. 

proline and glycine) and polyols (e.g. trehalose, sucrose and 

sorbitol), and the stresses that compatible osmolytes protect 

against include dehydration, high-salt environments and 

extremes of temperature (Yancey et al. 1982). Counteracting 

osmolytes consist of the methylamine class of osmolytes 

(trimethylamine N-oxide [TMAO], glycerophosphoryl 

choline [GPC] and betaine), which are believed to have the 

special ability to protect intracellular proteins against the 

inactivating effects of urea on proteins (Yancey and Somero 

1979; Lin and Timasheff 1994). In contrast to compatible 

osmolytes, which do not largely affect the functional activity 

of proteins, counteracting osmolytes are believed to cause 

changes in protein function that are the opposite of the effects 

urea has on protein function (Somero 1986). Urea is a special 

case. It is a perturbing solute that inhibits enzyme activity, 

yet it is employed by several species as a major blood and 

intracellular osmolyte (Yancey and Somero 1979; Yancey et 

al. 1982). The selective advantage of a methylamine is that 

it stabilises proteins from denaturation by urea (Yancey and 

Somero 1979; Lin and Timasheff 1994; Wang and Bolen 1997)

and offsets urea’s functional effects, such that the kinetic 

character of the (enzyme-mediated) metabolic pathways is 

maintained to the same degree in shark cells as in cells that 

have neither solute (Hochachka and Somero 1984).

2. Urea is perturbing in action

In contrast to the usually benign effects of most organic 

osmolytes, the waste product urea is a well-known perturbant 

of macromolecules. Urea is a chaotropic agent that disrupts 

hydrophobic interactions responsible for the globular 

structure of proteins (Nozaki and Tanford 1963; Von Hippel 

and Schleich 1969; Yancey and Somero 1979; Yancey and 

Somero 1980). This loss of structure infl uences enzyme 

kinetic properties such as maximal velocity (V
max

) and K
m
 

(Yancey and Somero 1979, 1980) and alters the melting 

point transition temperature of proteins (Nozaki and Tanford 

1963; Singh et al. 2008). Urea can also preferentially bind to 

proteins, dehydrating their exposed surfaces and promoting 

unfolding (Creighton 1991; Zou et al. 1998; Wu and Wang 

1999). In addition, there are numerous non-specifi c effects 

that can infl uence protein function, such as solute-induced 

attenuation of hydrophobic interactions important in 

substrate–protein interactions or attenuation of electrostatic 

interactions between substrate and protein (Bolen and 

Fisher 1969). Urea could also result in cell membranes that 

are too fl uid and unstable (Barton et al. 1999). In addition 

to a chaotropic nature, high urea concentration can also 

bring about post-translational modifi cation of proteins 

either by carbamoylation or carbonylation near neutral 

pH; for insightful discussions, see reviews by Kraus and 

Kraus (2001) and Nystrom (2005). Here we review the 

literature pertaining to the methylamines’ counteraction of 

the deleterious effects of urea on function and stability of 

proteins.

At the concentrations found in marine elasmobranches 

and mammalian kidneys, a wide variety of biological 

functions are inhibited or disrupted including alteration 

(usually inhibition) of enzyme kinetics (V
max

 or K
m
), 

destabilisation of protein folding and assembly, inhibition 

of muscle contraction and tissue respiration, and death of 

exposed cells and organisms (Yancey 1985). For example, 

bony fi sh exposed to 400 mM urea in seawater begin dying 

as their blood urea exceeds 200 mM (Griffi th et al. 1979). 

Occasionally, major effects of low urea concentration

(e. g. 25 mM) (Hand and Somero 1982) are seen on proteins, 

but most begin above 100 mM. Intracellular urea in the 

cells has been shown to disrupt protein structures at the 

high concentrations found in some animals and marine 

life (MacMillen and Lee 1967; Hand and Somero 1982; 

Wolff and Balaban 1990; Withers and Guppy 1996). It has 

also been shown that intracellular urea concentrations are 

high enough to offer competitive inhibition of enzymes 

(Withycombe et al. 1965; Yancey and Somero 1978; 

Lushchak and Lushchak 1994).

Beyond its physiological effects on protein structure 

and function, hyperosmolar urea has been shown to acutely 

regulate multiple signalling events in renal medullar cells 

in vitro. In particular, a pathway exhibiting a hallmark of a 

receptor tyrosine kinase pathway is triggered by urea. This 

includes activation of phospholipase C-γ (Cohen et al. 1996), 

activation of phosphatidylinositol 3-kinase and its effectors 

Akt and p70 S6 kinase (Zhang et al. 2000), activation of Shc 

with recruitment of Grb2 (Zhang et al. 2000) and induction 

of immediate early genes (Cohen and Gullans 1993). Urea 

also exerts a pro-oxidant effect necessary for increased 

expression of the stress-responsive gene Gadd153 (Zhang et 

al. 1999). However, little is known about the cellular aspects 

of hyperosmotic urea. Acute hyperosmotic urea shocks have 

been reported to induce apoptosis (Michea et al. 2000).

The perturbing action of urea would seem to disprove the 

compatible osmolyte hypothesis. However, the cells of all 

non-aestivating urea-accumulating animals examined so far 

(cartilaginous fi shes, amphibia, mammalian kidneys) contain 

stabilising osmolyte, mainly methylamines (Yancey 1985; 

Garcia-Perez and Burg 1991; Wray and Wilkie 1995).

3. Urea functions as a balancing osmolyte

Osmoconformers adapt to osmotic stress by accumulating 

one or more organic solutes. Organisms acquire these 
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osmolytes most economically by exploiting metabolic end-

products (Hochachka and Somero 2002) and, therefore, urea 

has become a major balancing osmolyte in diverse ureogenic 

species (Griffi th 1991). Urea is the primary nitrogenous 

waste product of most semiterrestrial and terrestrial 

amphibians (Shoemaker et al. 1992). The urea concentration 

in body fl uid is generally 5–10 mM for hydrated frogs, but is 

sometimes as high as 30 or 50 mM. Table 1 in Withers and 

Guppy (1996) summarises the urea concentrations in various 

animals. In contrast, aestivating amphibians accumulate 

urea to a high concentration (McClanahan 1972; Jones 

1980; Loveridge and Withers 1981;Etheridge 1990) because 

urea that is synthesised for ammonium detoxifi cation 

cannot be excreted, as dehydrated or aestivating frogs are 

essentially anuric (Shoemaker et al. 1992; Yokota et al. 

1985). The urea concentration is often higher than 100 

mM in these aestivating amphibians and may even exceed 

300 mM (table 1 in Withers and Guppy [1996]). Urea can 

assume physiological roles other than as a nitrogenous 

waste product. For example, it is a major osmolyte that 

maintains osmotic gradient for marine elasmobranch fi shes

(300–500·mM) (Yancey et al. 1982; Yancey 1994; Ballantyne 

1997) and mammalian kidney (400–600 mM). It increases 

up to 3–4 M in xeric rodents under antidiuretic conditions 

(MacMillen and Lee 1967). Some frogs also accumulate 

large amounts of urea when acclimated to a high external 

salinity (e.g. Xenopus laevis, Rana cancrivora [Goldstein 

1972; Funkhouser and Goldstein 1973; Romspert 1976; Katz 

and Hanke 1993]) or during aestivation (e.g. Scaphiopus 

couchii) by an accelerated rate of urea synthesis (Jones 

1980; McBean and Goldstein 1970). The high concentration 

of urea in these frogs promotes a favourable osmotic gradient 

for water transfer between the frog and its environment, and 

so urea functions as a balancing osmolyte (McBean and 

Goldstein 1970; Jones 1980). Amphibians accumulate urea 

when exposed to a low water potential, a response that aids 

in maintaining proper hydration during saline adaptation 

and aestivation (Shpun et al. 1992; Jørgensen 1997). Urea is 

also important in amphibian hibernation, although relatively 

little is known about the winter physiology and water 

balance of these animals (Pinder et al. 1992). In principle, 

urea that accumulates in response to water defi cit could also 

serve a cryoprotective function in hibernating amphibians 

(Costanzo and Lee 2005). 

4. Origin of the counteraction hypothesis (urea:

methylamine)

Although urea is a perturbing solute that inhibits enzyme 

activity and stability, it is employed by some species as a 

major osmolyte (Yancey and Somero 1979; Yancey and 

Somero 1980; Yancey et al. 1982;Yancey and Burg 1990 ). 

The answer to this paradox was the discovery of protective 

osmolytes such as betaine, TMAO, sarcosine and GPC in 

certain elasmobranches by Yancey and co-workers (Yancey 

and Somero 1979, 1980; Yancey et al. 1982) and later in other 

marine organisms and mammals (Yancey et al. 1982;Yancey 

and Burg 1990; Yancey and Siebenaller 1999). The optimal 

ratio of methylamines to urea for stabilising enzymes against 

the perturbing effects of urea is approximately 1:2, which 

is the ratio generally found in tissues containing high urea 

levels (Yancey and Somero 1980; Yancey 1988, 2003). It is 

believed that at this magic ratio the opposing effects of these 

two classes of solutes on protein stability and function are 

cancelled algebraically (Yancey 2003). This is referred to as 

the counteraction hypothesis. 

For a number of enzymes from sharks and rays, mammalian 

kidney and non-urea-containing mammalian organs, Yancey 

and Somero (1980) found that urea alone generally increases 

K
m
 and decreases k

cat
, whereas methylamine alone has the 

contrasting effect of decreasing K
m
 while increasing k

cat
. 

When urea and methylamine are combined in a 2:1 urea:

Table 1. Enzymes tested for the counteraction hypothesis

Enzymes Reference

Elasmobranch and mammalian glutamate dehydrogenase Yancey and Somero 1980

Elasmobranch and teleost actomyosin ATPase Yancey 1985

Elasmobranch lactate dehydrogenase Yancey and Somero 1980

Arginosuccinase Yancey and Somero 1980

Creatine kinase Yancey and Somero 1980

Carbamoyl phosphate synthetase Anderson 1981

Yeast alcohol dehydrogenase Mashino and Fridovich 1987

Teleost glycine cleavage complex Yancey 1992

Mammalian (renal) Ca-ATPase Vieyra et al. 1991; Yancey 1985

Mammalian (renal) cAMP phosphodiesterase Yancey 1992

Muscle Ca-ATPase de Meis and Inesi 1988

Mammalian (renal) arginosuccinase Yancey and Somero 1980



methylamine ratio, the effects of both solutes on K
m
 and k

cat
 

offset one another, giving apparent k
cat

 and K
m
 values in the 

combined presence of urea and methylamine that are equal 

to k
cat

 and K
m
 determined in the complete absence of the two 

solutes (Yancey and Somero 1980). Opposing effects are 

also seen on protein stability, including thermal denaturation 

of bovine RNase-A (Yancey and Somero 1979), catalase 

(Mashino and Fridovich 1987) and lysozyme (Arakawa 

and Timasheff 1985), renaturation rate of elasmobranch 

and mammalian lactate dehydrogenase (Yancey and Somero 

1979), and unfolding of bovine glutamate dehydrogenase 

with thiol reagent. Recently, betaine at 2.5 M was found 

to reverse the large increase in the dielectric increment 

and relaxation time of bovine serum albumin in 5 M urea 

(Bateman et al. 1992). One cell line study found that urea 

and betaine in growth medium penetrate Madine–Darby 

canine kidney (MDCK) cells, such that the intracellular 

contents can be manipulated (Yancey and Burg 1990). 

Yancey and Somero’s counteraction hypothesis is elegant 

in its simplicity, but the extent to which it holds as a general 

mechanism for proteins in urea/methylamine-containing cells 

is unclear (Mashino and Fridovich 1987). To be completely 

effective and general in its action, the counteracting osmolyte 

methylamines would be expected to offset the effects of urea 

on any protein, regardless of whether that protein evolved in 

the presence of these two solutes. At this point, most studies 

on the effects of urea, methylamine and urea/methylamine 

mixtures on k
cat

 and K
m
 have focused on enzymes from 

kidney or cartilaginous fi shes, enzymes that have evolved in 

the presence of methylamines and urea (Burg et al. 1996; de 

Meis and Inesi 1988; Yancey and Somero 1978; Yancey and 

Somero 1980). Only a very small number of studies have 

been conducted on enzymes that have not evolved in the 

presence of methylamine or urea (Yancey and Somero 1978; 

Yancey and Somero 1980; Mashino and Fridovich 1987), 

so the question of whether the counteraction hypothesis is 

general in its effects has not been extensively explored. Of 

the small number of enzymes studied, a signifi cant fraction 

of these do not exhibit counteraction (Yancey and Somero 

1978; Yancey and Somero 1980; Mashino and Fridovich 

1987). 

5. Mechanism of urea–methylamine compensation

The initial explanation for osmolyte properties was 

proposed by Clark and Zounes (Clark and Jounes 1977) and 

Wyn Jones and co-workers (Wyn Jones et al. 1977). Both 

groups realised that amino acids and methylamine solutes 

are structurally similar to the Hoffmeister series, a ranking 

of anions and cations which, since 1888, have been found 

to affect the solution phenomena in the same way: ions to 

the left generally stabilise, salt out and enhance catalysis of 

the macromolecular system while those to the right do the 

opposite (Collins and Washabaugh 1985; Woolverton et al. 

1990).

A long-standing hypothesis to explain the effect of 

osmolytes in bulk solution and in the neighbourhood 

of proteins invokes the phenomenon of surface tension 

(Arakawa and Timasheff 1982). Hydrogen bonding between 

water molecules results in a high surface tension at aqueous 

interfaces. Substances (such as methylamines) that increase 

surface tension will be in a lower concentration at the 

interface than in the bulk solution, while those that lower 

surface tension will be in a higher concentration at the 

interface. If a protein or other large molecule is present in 

solution, then small molecules that lower surface tension 

should accumulate adjacent to the protein, while those that 

raise it are conversely excluded. However, as Bolen (2004) 

points out, the behaviour of a protein in the presence of urea 

and TMAO is exactly the opposite of the predictions from 

surface tension effects. Urea, which increases the surface 

tension of water, should stabilise rather than denature 

proteins, while TMAO, which lowers surface tension of 

water, should favour denaturation. This is the reverse of 

what is observed to occur. Recently, molecular dynamical 

modelling of the ternary mixture protein/water/urea/TMAO 

(Bennion and Daggett 2003) suggests that water structure 

is enhanced by TMAO. TMAO was able to strengthen and 

shorten water–water, and water–urea H-bonds, the effect of 

which was to deny urea access to the peptide backbone of 

the protein, and hence limit unfolding. In addition, TMAO 

interacting with protein side chains assisted in ordering the 

hydration layer around the protein, further stabilising it.

A number of groups have shown that thermodynamic 

compensation can explain the counteraction without invoking 

interaction between the solutes (Lin and Timasheff 1994; 

Wang and Bolen 1997; Baskakov et al. 1998). The generally 

held belief of the mechanism of counteraction is that urea 

shifts the denaturation equilibrium, native conformation ↔ 

denatured conformation towards the right and methylamines 

have the opposite effect on this equilibrium. Therefore, a 

2:1 ratio of [urea]:[methylamine] keeps the denaturation 

equilibrium unperturbed (i.e. equilibrium in the absence of 

either co-solute). 

6. The urea–methylamine system brings about partial 

compensation

In vitro studies were carried out to see the effects of these 

solutes on the denaturational equilibrium of proteins 

(Yancey and Somero 1979; Lin and Timasheff 1994; Burg 

1995). Most studies carried out earlier used T
m
 (melting 

temperature) as a measure of protein stability and could 

provide data on partial or little counteraction of proteins 

and enzymes by the molar ratio 2:1 (urea:methylamine). 

There is always a lag of 1–3°C in T
m
 in the presence of 2 M
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urea and 1 M TMAO (see fi gure 2 in Burg [1995], see 

fi gure 2 in Lin and Timasheff [1994]); Yancey and Somero 

[1979]). Measurements of T
m
 of RNase-A have also shown 

that the best ratio for a perfect compensatory effect is 1:1.35 

(Burg 1995). Various functional activity measurements have 

shown that complete compensation of methylamine:urea 

works at 1:1 (Bagnasco et al. 1986; Baskakov et al. 1998; 

Qu and Bolen 2003). 

A list of enzymes tested for the counteraction hypothesis 

and reported to counteract at the 2:1 urea:methylamine ratio 

is given below (table 1). Unfortunately, none of the enzymes 

reported here was found to show perfect compensation at 

the said ratio.

7. Counteraction is protein dependent

Counteraction does not always occur, i.e. a few urea-

inhibited enzymes are not restored by TMAO (Hand and 

Somero 1982; Mashino and Fridovich 1987; Yancey 1992; 

Yancey and Somero 1980). This may require a different 

kind of adaptation, i.e. urea insensitivity or urea-requiring 

activity in some elasmobranch proteins (Yancey 1985) or 

perhaps some uncompensated inhibition is tolerable in non-

limiting reactions. Aestivators that use urea may not need 

methylamines, since metabolism needs to be suppressed 

(Hand and Somero 1982; Yancey et al. 1982). Furthermore, 

in apparent contradiction to the counteracting osmolytes 

hypothesis, urea (1.0 M) and three different methylamines 

(TMAO, betaine, and GPC) all have similar and partially 

additive inhibitory effects on aldose reductase, an enzyme 

that is important in the renal medulla for catalysing the 

production of sorbitol from glucose (Burg and Peters 1997). 

All of them substantially decrease both the Michaelis 

constants (K
m
) and V

max
. There are several other instances in 

which counteraction has not been observed. These exceptions 

show that (i) TMAO does not counteract the perturbing 

effects of urea on enzyme–substrate interactions of A4-

lactate dehydrogenase with pyruvate, or of glyceraldehyde-

3-phosphate dehydrogenase with glyceraldehyde 3-

phosphate (Yancey and Somero 1980); (ii) TMAO does 

not counteract the effects of urea on phosphofructokinase 

activity and structure (Garcia-Perez and Burg 1991);

and (iii) betaine does not counteract the K
m
 effects of urea

on uricase (Yancey 1992). Counteraction has also been 

found to be more complex in certain systems including 

contraction of skinned shark muscle fi bres (Altringham et 

al. 1982) and various aspects of mitochondrial respiration. 

Less commonly observed is the urea activation and TMAO 

inhibition of mitochondrial respiration (Ballantyne and Moon 

1986; Anderson 1990) and of certain enzymes (Yancey and 

Somero 1980). Perhaps TMAO makes some enzymes too 

rigid or too aggregated for proper functioning, while urea 

may restore fl exibility or disaggregation of functionality.

In an attempt to further understand the urea–methylamine 

compensation on protein stability, our laboratory has 

recently tested different proteins with varying physico-

chemical properties. We demonstrated that at a 2:1 (urea:

methylamine) ratio, the counteracting effect on the 

Gibbs energy of stabilisation (ΔG
D

o) is protein specifi c; 

α-lactalbumin (α-LA) is perfectly compensated by the 

counteracting effect of TMAO and sarcosine. However,

this is not true in the case of lysozyme and RNase-A. 

Based on the m-value measurements, we showed that one 

of the most probable causes for this protein-dependent 

compensatory effect may be that the change in the

fractional exposure (Δα
i
) of protein groups is different 

in different proteins. Recently, the effects of sarcosine 

(Holthauzen and Bolen 2007) and TMAO (Mello and 

Barrick 2003) on the urea-induced denaturation of proteins 

and vice versa were investigated and values of m
u
 and m

MA
 

were reported. The results reported by Mello and Berrick 

(2003) suggest that for a perfect compensation [urea]:

[TMAO] ratios are 2.37:1 and 1.07:1 for Nank 1–7* and 

barnase, respectively (see Singh et al. 2008). These results 

suggest that 1 M TMAO can reverse the effects of 2.37 

and 1.07 M urea on Nank 1–7* and barnase, respectively. 

In support of our prediction, the heat-induced denatured 

states of RNase-A and lysozyme were found to be entirely 

different from α-LA. The heat-induced denatured state of 

α-LA is highly compact (Griko 2000; Griko et al. 1994), 

whereas RNase-A and lysozyme have open denatured states 

(Privalov et al. 1989). In summary, we now understand that 

the urea–methylamine system is ineffi cient in maintaining 

protein stability and function. It brings about partial or little 

compensation; in addition, the compensation is protein 

specifi c.

8. Urea–non-methylamine counteraction systems

Interestingly, several reports exist in the literature on 

the counteraction of urea by other non-methylamine 

osmolyte systems but none holds true in general. It has 

been shown that glutamate can counteract the effect of 

urea on glutaminyl-tRNA synthetase from Escherichia coli

(Mandal et al. 2003). Myoinositol, the strongest protein 

stabiliser, also counters the effect of urea on some proteins 

(Gerlsma 1968; Shifrin and Parrott 1975). However, it 

could not offset urea inhibition of two mammalian renal 

enzymes (Yancey 1992). A non-natural compound dimethyl 

sulphoxide (DMSO), used as a cryoprotectant, was found in 

one study to protect Na+ K+-ATPase from urea inactivation 

(Mirsalikhova 1978). Heat shock protein 72 (Hsp72), a 

molecular chaperone that is abundant in the renal papilla, 

was demonstrated to counteract urea-mediated inhibition 

of lactate dehydrogenase and β-galactosidase (Neuhofer

et al. 1999, 2005; Neuhofer and Beck 2005). These studies 
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provide evidence which indicates that there is some 

other urea-counteracting system in addition to the urea–

methylamine system.

9. Salt counteracts the effect of urea in many 

mammalian cells

Bento et al. (1998) evaluated the effects of NaCl and urea, 

individually and in combination, on the viability of murine 

inner medullar collecting duct (mIMCD) cells. Exposure to 

hyperosmolar NaCl or urea caused comparable dose- and 

time-dependent decreases in cell viability, such that 700 

mosmol/kg H
2
O killed more than 90% of the cells within 24 h.

Surprisingly, cells exposed to a combination of NaCl + urea 

were signifi cantly more osmotolerant, e.g. 40% cells survived 

900 mosmol/kgH
2
O. MDCK cells but not human umbilical 

vein endothelial cells also exhibited a similar osmotolerance 

response. In another study, it was found that cell death

was strongly increased after adaptation to 250 mM urea. 

This effect was reversible, dose dependent and, interestingly, 

blunted by 125 mM NaCl (Colmont et al. 2001). In

another communication on a reverse experiment, it was 

reported that pretreatment with urea (200 mM for 30 

min) protected IMCD cells from the apoptotic effects of 

hypertonic stress (200 mosmol/kg H
2
O). The protective 

effect of urea was dose dependent and was effective 

even when applied for a short time (less than an hour) 

following NaCl exposure. However, a protective effect 

was not observed in non-renal 3T3 cells. Pretreatment with 

hypertonic NaCl protects MDCK cells against high urea 

concentrations (Muller et al. 1998). 

The mechanism by which NaCl offsets the harmful effects 

of urea in cells has been assigned to Hsp27 and Hsp70. In 

fact, hyperosmotic stress induces Hsp27 and Hsp70 in many 

cells including MDCK, papillary interstitial (PI), papillary 

collecting duct (PCD), IMCD. While organic osmolytes 

protect against high salt concentrations, Hsps appear not to 

be involved in this process (Alfi eri et al. 2004). However, 

Hsp27 and Hsp70 are expressed at high levels in the renal 

papilla and their abundance changes appropriately with 

the diuretic state (Medina et al. 1996; Muller et al. 1998), 

suggesting a protective function against the adverse effects 

of high solute concentrations present during antidiuresis. 

The functional signifi cance of Hsp70 and Hsp27 for the cells 

has been demonstrated; forced expression of Hsp70 protects 

MDCK cells against the detrimental effects of high urea 

concentrations (Neuhofer et al. 2001). This effect is at least 

partially attributable to the chaperoning activities of Hsp70, 

since urea is a potent protein-destabilising agent and Hsp70 

counteracts the urea-mediated decrease in activity of several 

enzymes (Neuhofer and Beck 2005). Urea also induces 

apoptosis (Bento et al. 1998; Zheng et al. 2000; Colmont et 

al. 2001), while Hsp70 prevents the execution of the apoptotic 

pathway by several mechanisms, including inhibition 

of Apaf-1 and cytochrome c release from mitochondria

(Beere et al. 2000). In agreement, targeted disruption of 

the tonicity-inducible Hsp27 and Hsp70 genes in mice is 

associated with renal papillary apoptosis after stimulation 

of the renal concentrating mechanism (Shim et al. 2002). 

These results are also in agreement with the observation that 

inhibition of NaCl-induced Hsp27 and Hsp70 expression in 

MDCK cells is associated with higher caspase-3 activity 

after urea exposure of mock transfected cells (Neuhofer et 

al. 2005).

10. Requirement of salt for maintaining perfect 

osmotic balance in urea–methylamine systems in vivo

The question of urea:methylamine counteraction is 

especially germane in the case of organisms surviving under 

high concentrations of extracellular salt. In mammalian 

kidneys, medullar fl uid similarities can increase up to 3800 

mosmol l-1 (equivalent to ~2.0 M NaCl) during antidiuresis 

and decrease up to 170 mosmol l-1 during duresis (Haussinger 

and Lang 1992). In marine elasmobranches (sharks, skates 

and rays) the intracellular osmolalities are equal to that of 

sea-water (Prosser 1973; Pang et al. 1977), which means 

that their body cells will experience an osmotic pressure that 

is equal to the major ions present in the sea-water (i.e. Na+ = 

470.2, K+ = 9.9, Ca2+ = 10.2, Mg 2+ = 53.6, Cl- = 548.3 mmol 

l-1) (Prosser and Brown 1961). Because animal cells cannot 

maintain any substantial osmotic pressure across their body 

membranes, the intracellular and extracellular osmolality 

have necessarily to be equal. The major intracellular solutes 

are urea, NaCl, GPC, betaine, TMAO, sorbitol, inositol, etc. 

One role of intracellular organic osmolytes is to balance 

osmotically high levels of salt in the extracellular fl uid. 

It may, however, be noted that the total concentration of 

intracellular osmolytes (GPC, betaine, TMAO, sorbitol, 

inositol and urea) measured is not substantial. The mean sum 

measured by nuclear magnetic resonance (NMR) imaging 

is 85.8 μmol g-1 wet weight and the mean sum by chemical 

analysis was 76.7 mmol kg-1 wet weight (Burg 1995). This 

suggests that either other unidentifi ed solutes that maintain 

the osmotic balance must be present in the cells (Beck et 

al. 1984; Schmidt-Nielsen 1997) or the total NaCl and 

KCl concentration is much larger than the total putative 

concentration of the salts. There are confl icting reports on the 

intracellular NaCl concentration (Bulger et al. 1981; Beck et 

al. 1984; Schmidt-Nielsen 1997). The strong evidence for 

the requirement of salt for osmotic balance inside the cells 

indicates that putatively NaCl may play a crucial role in 

bringing about a perfect compensation of protein stability 

at a urea:methylamine ratio of 2:1. Therefore, if we translate 

the same in vitro, the issues of the counteraction hypothesis 

may be resolved.
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11. Magic of osmotic gradient or intracellular salt in 

urea–methylamine compensation of proteins

The counteracting osmolyte hypothesis suggests that a 

mixture is more benefi cial to cells than urea or methylamine 

alone, since the latter might overstabilise proteins. Second, 

the hypothesis predicts that urea-counteracting osmolytes 

should be regulated specifi cally in response to intracellular 

urea and not external NaCl or osmotic pressure per se, to 

maintain a roughly constant ratio to urea inside the cells 

(Yancey and Somero 1979; King and Goldstein 1983). The 

second prediction is the major cause of a fl aw in the theory. 

The fact that salts are critical for fi lling the osmotic gap in 

those organisms cannot be denied. It would be worthwhile 

to preferentially exclude cellular salt NaCl/KCl at higher 

concentrations from the protein surface and hence stabilise 

proteins. Furthermore, osmotic pressure correlates well with 

protein stabilisation. It may be noted that urea counteractants 

– methylamine osmolytes – are methylated glycine 

derivatives. In vitro studies show that most methylation 

reactions are K+-dependent, with little betaine accumulating 

below 0.4 M K+; at this potassium concentration sarcosine 

was the major product. K+ concentrations above 0.4 M 

enhanced glycine and betaine synthesis from sarcosine 

and N, N-dimethylglycine (Robertson et al. 1992). This 

observation suggests that control of betaine synthesis is 

modulated by intracellular K+; this cation may also function 

as an intracellular signal for osmoregulation. In support of 

this, many studies on cell lines indicate that urea and NaCl 

have a counterbalancing effect on the growth and survival of 

cells (Bento et al. 1998; Neuhofer et al. 1999; Zheng et al. 

2000; Colmont et al. 2001). Mechanistically, urea induces 

both an apoptotic and a proapoptotic effect on cells and 

NaCl, on the other hand, could reverse its effect by inducing 

many antiapoptotic genes (Bento et al. 1998; Zheng et 

al. 2000; Colmont et al. 2001). In another study, E. coli

(Chambers and Kunin 1985) were found to use trace

amounts of human urinary osmolytes (including betaine)

to grow effectively in the presence of salts and urea.

Betaine alone did not provide protection, but it did in 

combination with salts. Another issue to be addressed here is 

what triggers methylamine accumulation inside the cells. As 

mentioned earlier, signifi cant progress has been made on the 

effect of urea inside the cells leading to cell death. However, 

not a single report exists in stress response biology to 

indicate that urea stress induces specifi c genes required for 

methylamine biosynthesis and accumulation. It, therefore, 

appears that either osmotic gradient or intracellular ionic 

salts are the key determinants of what type and how much 

of methylamine will be accumulated in the cells. There are 

various reports in the literature that osmotic pressure or 

NaCl induces many genes required for the stress response 

in many organisms (Muller et al. 1998; Neuhofer et al. 

1999; Neuhofer et al. 2001; Neuhofer et al. 2005 ). All these

fi ndings suggest that evaluation of osmotic gradient of 

organisms or the intracellular ionic salt concentration will 

answer the paradox of urea–methylamine compensation or 

mechanism of urea counteraction by other non-methylamine 

systems.

We propose that cellular salt KCl/NaCl might be a

crucial candidate that has the magic of counteracting the 

stability of many enzymes while assisting in bringing about 

complete compensation of the urea–methylamine system. 

There are at least three possible ways by which NaCl can 

rescue proteins from urea denaturation and bring about urea 

counteraction in the presence or absence of methylamines. 

One mechanism may be that NaCl per se perhaps helps in 

counteraction by inducing Hsps (molecular chaperones). 

It is a common fact that hyperosmotic salt stress induces 

Hsps in cells. Reports demonstrate that Hsp72 and Hsp27 

or Hsp70 may be the chaperones involved, depending 

on the species (Muller et al1 998; Neuhofer et al. 1999; 

Neuhofer et al. 2001; Neuhofer and Beck 2005; Neuhofer 

et al. 2005 ). The second possibility is that NaCl induces 

genes required for methylamine synthesis in the presence 

of urea. There are reports that hyperosmotic urea and NaCl 

induce distinct programmers of osmolyte accumulation 

(Garcia-Perez and Burg 1991). Therefore, the concentration 

of accumulated salt will determine how much methylamine 

is accumulated keeping in mind that it has to maintain the 

magic ratio of 2:1 (urea:methylamine). The third possibility 

is the thermodynamic effects of the interaction of NaCl with 

the macromolecules. The salts KCl and NaCl also act like 

protein stabilisers and are excluded from the protein surface 

at higher concentrations (Robinson and Jencks 1965). 

Therefore, understanding the chaperone effect of cellular 

salt in protein stabilisation and folding in the presence of 

urea may unveil many interesting insights of protein folding 

in vivo.

12. Conclusion

In summary, we now understand that the urea–

methylamine system is highly restrictive in maintaining 

the stability and functioning of many proteins; rather, it

brings about partial compensation of protein stability. It 

appears in nature that apart from the urea–methylamine 

system, there exist at least two more systems to counter 

the effects of urea on protein stability and function. The 

urea–NaCl system seems to work in general and the 

urea–molecular chaperone (Hsp) system seems to be 

highly restrictive. Consideration of the osmotic gradient 

or intracellular salt may resolve the issues of the protein 

dependency of counteraction and the partial compensatory 

effects of urea–methylamine. Further research needs to 

focus on these dimensions.
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