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1. Introduction

Human papillomavirus (HPV) is a double-stranded DNA 

virus that is non-enveloped and has an icosahedral capsid 

(Longworth and Laimins 2004a). HPV causes malignant 

transformation as well as genital warts and lesions. HPV 

is transmitted sexually and the integrin alpha 6 has been 

identifi ed as a receptor for the entry of HPV into the 

epithelial cells (Evander et al 1997). The virus replicates 

as an extrachromosomal DNA inside the nucleus of the 

host cell. At present, roughly 118 different types of HPV 

have been characterized (Jo and Kim 2005). These can be 

classifi ed into cutaneous or mucosal, depending on whether 

they infect cutaneous or mucosal epithelial cells. Depending 

on the risk of malignancy, HPVs are further grouped as 

high-risk or low-risk types. The high-risk ones such as 

HPV-8, -16, -18 and -31 cause malignant progression of 

lesions (Motoyama et al 2004), while the low-risk ones such 
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as HPV-6, -11 cause benign warts and lesions that do not 

become malignant (Li et al 2005; Sur and Cooper 1998). 

The so-called ‘low-risk’ types, especially HPV-6 and -11, 

however, have been identifi ed in penile cancer (Dianzani 

et al 1998), laryngeal and bronchogenic carcinomas (Reidy 

et al 2004) and oesophageal squamous cell carcinoma 

(OSCC) (Cooper et al 1995; Matsha et al 2002; Chen et al 

1994; Dreilich et al 2006). HPV is associated with several 

cancers; the best-studied one is the cervical cancer. HPV is 

a causative agent in at least 99% of cases of cervical cancers 

(Longworth and Laimins 2004a). Several reports have 

shown an aetiological role for HPV in other cancers such as 

breast cancer (zur Hausen 1999, 2002; deVilliers et al 2004; 

Khan et al 2008), head and neck squamous cell carcinoma 

(Ferris et al 2005; Fakhry and Gillison 2006) and anogenital 

cancer (Finzer et al 2002).

A study in a high-risk area in Southern China showed 

that 60% of oesophageal cancer biopsies contained HPV

(Chang et al 1994, 1997). Out of the HPV-positive tumours, 

50% contained the low-risk HPV-6 DNA and 8% showed 

HPV-16 DNA. Another study showed that HPV-11 is

the predominant type (48%) present in HPV-positive

OSCC patients (Matsha et al 2007) in the Transkei region 

of South Africa. Therefore, the role of low-risk HPV types 

in tumour development is not very clear. It has been shown 

that viral oncoprotein E6 is involved in the transformation of 

host cells. Malignant cells show deregulated overexpression 

of E6 and E7 oncoproteins, which ultimately leads to 

the development of cancer (Snijders et al 2006). The 

overexpression of E6 and E7 requires integration of viral 

DNA into the host genome. It has been shown that HPV 

E6 expression alone can lead to cellular transformation in 

vitro (Sedman et al 1991, 1992; Gao et al 1997; Kiyono 

et al 1997). This review focuses on the expression of E6 

and E7 during the viral life cycle, mechanisms of cellular 

transformation by E6 and E7, and cellular targets for E6 and 

E7 proteins.

2. HPV genome and life cycle

The HPV genome is approximately 8 kb in length and is 

divided into three regions, the non-coding long control 

region (LCR, ~1 kb), and the protein coding early (E, ~4 kb) 

and late (L, ~3 kb) regions. The viral genome encodes six 

early (E1, E2, E4, E5, E6 and E7) and two late (L1 and L2) 

proteins (fi gure 1). The transcription of early and late genes 

is controlled by the LCR. The viral proteins are translated 

from polycistronic mRNAs containing overlapping reading 

frames (Jo and Kim 2005). Upon entry into the host cell, 

the E1 and E2 genes are expressed fi rst and encode proteins 

required for viral DNA replication (Motoyama et al 2004). 

E1 and E2 form a complex that binds to the viral origin of 

replication and recruits host polymerases necessary for the 

replication. E1 also exhibits helicase activity, unwinding the 

DNA ahead of the replication complex. E2 also regulates 

transcription of early genes from the viral promoter; when 

the level of E2 is low; it binds to the promoter and induces 

transcription, while at high levels, it represses transcription of 

the early genes including E6 and E7 by blocking the binding 

of host factors to viral promoters (Longworth and Laimins 

2004a). HPV E4 is expressed only at the later stage of the 

viral life cycle when virus particles are being assembled. 

HPV E5 is frequently deleted in cervical carcinoma cells, 

Figure 1. The double-stranded circular genome of HPV-16 is roughly 8 kb in size and grouped as having early (E) or late (L) genes. The 

early genes encode six proteins E1, E2, E4, E5, E6 and E7, and the late genes encode two structural proteins L1 and L2. Viral transcription 

and DNA replication is controlled by the long control region (LCR). The proteins are encoded by a polycistronic mRNA with overlapping 

reading frames. The viral DNA replicates extrachromosomally as an episome.
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which suggests that it may not be important for maintaining 

the transformed state. HPV E6 and E7 genes encode 

oncoproteins that cause transformation of the host cell. Also, 

E6 and E7 are involved in maintenance of the HPV genome 

extrachromosomally. The two late genes L1 and L2 encode 

structural proteins that form the viral icosahedral capsid 

consisting of 72 capsomers (Jo and Kim 2005). 

HPVs are mostly sexually transmitted and infect the 

genital region; they are limited to the genital tract as ~20% 

of oropharyngeal cancers contain high-risk HPV DNA. 

The viral life cycle is linked to the differentiation stage of 

the infected host cell, and can be divided into productive 

and non-productive stages. During persistent infection of 

basal cells, the viral genome replicates as an episome and 

there are 20–100 such episomes in the infected cells. When 

the cells undergo differentiation, shedding of new virions 

occurs. Deregulated expression of E6 occurs when the HPV 

genome integrates into the host genome, which disrupts the 

E1 and E2 genes and therefore the transcriptional repression 

of early genes is lost (Finzer et al 2002). It was also shown 

that integration of the viral genome results in stabilization 

of E6 and E7 mRNAs (Jeon and Lambert 1995). Integration 

occurs near the fragile sites in the human genome (Thorland 

et al 2003) and results in termination of the viral life cycle 

as large portions of the genome are disrupted and therefore it 

becomes functionally inactive.

3.  HPV E6 and E7 oncoproteins and cellular 

transformation

The HPV E7 oncoprotein is about 100 amino acids in length 

(Munger and Howley 2002). The HPV E7 oncoprotein has 

been shown to bind to the retinoblastoma protein (pRb) 

and inactivate its function by preventing the binding of 

pRb to E2F transcription factor (Dyson et al 1989). The 

pRb protein is active in its hypophosphorylated form and 

binds to E2F transcription factors to prevent S-phase entry. 

During the normal cell cycle, pRb is phosphorylated by 

cyclin D1/cyclin-dependent kinase (CDK)4 and cyclin 

E/CDK2 complexes causing dissociation of pRb from E2F 

thereby allowing normal S-phase progression (Munger and 

Howley 2002; Jo and Kim 2005). HPV E7 binds to the 

hypophosphorylated pRb, preventing its interaction with 

E2F. Therefore, in cells overexpressing HPV E7 protein, 

the checkpoint control at G1/S transition is lost and the cells 

continually traverse the cell cycle leading to uncontrolled 

cellular proliferation (Dyson 1998; Jo and Kim 2005). HPV 

E7 has also been shown to cause degradation of pRb through 

the ubiquitin–proteasome mediated pathway (Boyer et al 

1996). The binding of HPV E7 to pRb occurs through the 

motif LXCXE present within the E7 protein (Liu et al 2006). 

Apart from its interaction with pRb family members, E7 

interacts with a wide variety of cellular proteins. One such 

class of proteins is the histone deacetylases (HDACs), which 

function as transcriptional co-repressors; binding of HPV 

E7 to HDACs via Mi2 allows E2F-dependent transcription 

(Brehm et al 1999; Longworth and Laimins 2004b) which 

promotes cell proliferation. HPV E7 also binds to CDK2/

cyclin A and CDK2/cyclin E, and activates these kinases 

which in turn phosphorylate pRb and induce transcription 

of S-phase genes (Arroyo et al 1993; McIntyre et al 1996). 

HPV E7 was also found to bind to CDK inhibitors (CKIs) 

p27 and p21, which removes the cell cycle checkpoint 

control at the G1/S interface (Zerfass-Thome et al 1996; 

Funk et al 1997) and promotes uninhibited rounds of cell-

cycle progression.

The HPV E6 oncoprotein is 160 amino acids in size 

(Munger and Howley 2002). The E6 protein from high-

risk HPV is suffi cient for the induction and maintenance 

of cellular transformation (Hawley-Nelson et al 1989; 

Thompson et al 1997; Duensing and Munger 2002; Munger 

et al 2004). HPV E6 protein has been reported to bind to 

p53 and cause proteasomal degradation of p53 by 26S 

proteasome (Scheffner et al 1990; Werness et al 1990; Crook 

et al 1991; Band et al 1993; Havre et al 1995; Scheffner et 

al 1993; Li and Coffi no 1996). Interestingly, the levels of 

p53 in normal cells are very low; during overexpression of 

E7 protein, p53 levels are increased due to an inhibition of 

mediator of DNA damage 2 (MDM2)-mediated proteasomal 

degradation of p53 in normal cells (Eichten et al 2002). 

The degradation of p53 occurs through a trimeric complex 

containing E6, E6-associated protein (E6AP) and p53 (Talis 

et al 1998; Zanier et al 2005). E6AP acts as an E3 ubiquitin 

ligase that ubiquitinates p53 and targets it for degradation by 

proteasome. HPV E6 protein also inactivates p73, which is a 

homologue of p53 protein (Park et al 2001). High-risk HPV 

E6 proteins can also downregulate p53 activity by targeting 

CREB-binding protein (CBP) and p300 (Zimmermann et 

al 1999). However, a recent report has shown that high-

risk HPV E6 can degrade p53 protein even in the absence 

of E6AP (Massimi et al 2008). The inactivation of p53 

compromises the integrity of the replicated DNA and causes 

DNA damage (Havre et al 1995; Kessis et al 1996) and 

chromosomal instability (Schaeffer et al 2004; Thomas and 

Laimins 1998); these abnormalities result in cell proliferation 

or tumour development (Foster et al 1994; Cheng et al 2007; 

Hebner et al 2007; Cooper et al 2007). Low-risk HPV E6 

oncoproteins can also bind to p53, but with very low 

affi nity and do not degrade p53 (Slebos et al 1995). There is 

accumulation of p53 after DNA damage in cells expressing 

HPV-11 E6 protein and the cells are arrested in the G1 phase 

of the cell cycle (Slebos et al 1995). It has been further 

shown that low-risk HPV E6 proteins do not bind E6AP 

to form a trimeric complex of E6/E6AP/p53 like the high-

risk E6 proteins (Zanier et al 2005). The high-risk HPV E6 

protein HPV-16 E6 has been reported to prevent apoptosis 



by a p53-independent mechanism which involves inhibition 

of Bax gene expression and degradation of Bax protein in 

human keratinocytes (Magal et al 2005). Inhibition of the 

pro-apoptotic protein Bax results in inhibition of apoptosis 

and therefore cells accumulate mutations in their DNA. 

High-risk E6 proteins also prevent apoptosis by binding 

to tumour necrosis factor receptor 1 (TNFR1) and inhibit 

TNFR1 apoptotic signalling (Duerksen-Hughes et al 1999; 

Filippova et al 2002).

High-risk E6 mRNAs undergo alternative splicing 

resulting in generation of smaller E6* protein (Inagaki et 

al 1988; Schneider-Gadicke et al 1988; Sedman et al 1991; 

Stacey et al 1995; Vaeteewoottacharn et al 2005). This 

phenomenon of alternative splicing has been reported in 

high-risk HPV types only; the low-risk types do not show 

alternative splicing. This is because the low-risk types 

lack the essential dinucleotides (GT) of splice consensus 

sequences that are present in the high-risk types HPV-

16, -18, -31 and -33 (Schneider-Gadicke et al 1988). The 

alternatively spliced E6* mRNA is found at much higher 

levels compared with the full-length E6 transcripts (Smotkin 

and Wettstein 1986; Zheng and Baker 2006). The full-length 

E6 protein is roughly 18.9 kDa and the spliced E6* protein 

is 6.5 kDa (Schneider-Gadicke et al 1988). The E6* protein 

negatively regulates the expression of the active full-length 

E6 protein thereby resulting in lower E6 levels (Sedman et 

al 1991). A study also showed that E6* can bind in vitro 

to full-length E6 protein as well as E6AP protein (Pim et 

al 1997), which inhibits E6 from binding to E6AP and 

degrading p53. 

High-risk HPV E6 proteins are capable of immortalizing 

the host cell; this is achieved by preventing the shortening 

of telomere length. In somatic cells, with each round of 

cell division, there is a shortening of telomere length 

which corresponds to cell ageing. In human cancer cells, a 

signifi cantly high level of telomerase activity has been found 

which suggests a role in tumour development (Pendino et 

al 2006). High-risk HPV E6 proteins prevent telomere 

shortening by increasing the expression of the catalytic 

subunit of human telomerase reverse transcriptase (hTERT) 

by forming a complex with E6AP and directly binding to the 

hTERT promoter (Klingelhultz et al 1996; Oh et al 2001; 

Veldman et al 2001; Blasco and Hahn 2003; Veldman et 

al 2003; Gewin et al 2004; Seo et al 2004) and thereby 

immortalizing the host cell. E6 forms a complex with c-

Myc displacing the repressor proteins upstream sequence 

factors (USF1 and USF2) from the hTERT promoter and 

activating transcription (Veldman et al 2003; McMurray 

and McCance 2003). However, one report has shown that 

activation of hTERT by binding of E6 to the E-box does not 

require c-Myc (Gewin and Galloway 2001). Furthermore, 

the E6/E6AP complex targets NFX1-91 (a newly identifi ed 

repressor for hTERT) for degradation by ubiquitination 

(Gewin et al 2004). Other cellular targets include Bak, 

Fas-associated death domain-containing protein (FADD) 

and procaspase 8, which is degraded by E6/E6AP causing 

inhibition of apoptosis (Thomas and Banks 1999; Garnett 

et al 2006). HPV E6 also downregulates the expression of 

Notch1, a p53 target gene involved in tumour suppression 

(Yugawa et al 2007; Talora et al 2002). Downregulation of 

Notch1 is observed in cervical cancer cells and contributes 

to tumorigenesis. E6 binds to and inhibits tyrosine kinase 2/

janus kinase–signal transducer and activator of transcription 

(Tyk2/Jak-STAT) activation and interferon regulatory factor 

3 (IRF3) transcriptional activities, resulting in inhibition of 

the interferon signalling pathway (Li et al 1999; Ronco et 

al 1998). E6 has also been reported to bind to the tumour 

suppressor protein breast cancer-associated protein 1 

(BRCA1) and release the inhibition of transcription in 

response to oestrogen (Zhang et al 2005). Another study 

has shown that HPV-16 E6 activates nuclear factor kappa 

B (NF-κB) leading to enhanced expression of inhibitor of 

apoptosis 2 (IAP-2), which prevents apoptosis of epithelial 

cells (Nees et al 2001; Yuan et al 2005; James et al 2006). 

A multistep model for HPV E6-mediated tumorigenesis is 

shown in fi gure 2.

4. E6 targets PDZ domain-containing proteins

High-risk HPV E6 proteins interact with certain cellular 

proteins containing a PSD95/Dlg/ZO-1 (PDZ) domain. 

High-risk E6 interacts with several PDZ domain-containing 

proteins such as human homologues of Drosophila 

melanogaster disc large and scribble tumour suppressors 

(hDlg and hScrib), post-synaptic density protein 95 

(PSD95), multiple PDZ domain-containing protein 1 

(MUPP1), membrane-associated guanylate kinase (MAGI-

1, -2, -3), GAIP-interacting protein c-terminus (GIPC), 

PALS-1 associated tight junction protein (PATJ) and 

protein tyrosine phosphatase N1 (PTPN1) through complex 

formation with E6AP and targets them for degradation by 

proteasome (Kiyono et al 1997; Lee et al 1997; Gardiol et 

al 1999; Glaunsinger et al 2000; Lee et al 2000; Thomas 

et al 2001, 2002; Nguyen et al 2003; Massimi et al 2004; 

Favre-Bonvin et al 2005; Handa et al 2007; Jing et al 2007; 

Spanos et al 2008). Low-risk HPV E6 does not contain 

the PDZ-binding motif and therefore cannot target these 

proteins. Degradation of PDZ domain-containing proteins 

results in cellular transformation due to loss of cell–cell 

contact and loss of cell polarity (Watson et al 2003; Thomas 

et al 2005; Storrs and Silverstein 2007) and also because 

many PDZ domain-containing proteins are involved in 

cell signalling (Jelen et al 2003). One study has shown 

that the degradation of phosphatase PTPN13 by E6 results 

in anchorage-independent growth and a Ras-dependent 

invasive phenotype (Spanos et al 2008). The PDZ-binding 
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motif of high-risk HPV E6 is present at the extreme

C-terminus of the protein and consists of a four amino acid 

stretch ETQV/L (Thomas et al 2001), while low-risk HPV 

E6 lacks the PDZ-binding motif (fi gure 3). Mutations in 

these residues result in a loss of the PDZ-binding ability of 

E6. Conversely, introduction of the PDZ-binding motif from 

a high-risk E6 into the C-terminus of a low-risk E6 protein 

results in the latter’s ability to target and degrade PDZ 

domain proteins (Gardiol et al 2002; Pim et al 2002). It has 

recently been shown that an arginine residue at position 154 

and just outside the PDZ-binding motif of E6 plays a role 

in binding to the PDZ domains of Dlg and MAGI (Zhang 

et al 2007; Thomas et al 2008). Mutations in the conserved 

arginine-154 severely abolished the PDZ domain-binding 

ability of E6 compared with wild-type E6.

5. Other cellular targets of E6

Apart from the molecules mentioned above, HPV E6 

oncoproteins bind to several other protein molecules inside 

the host cell, which may directly or indirectly cause changes 

in cellular programming. High-risk HPV E6 has been shown 

to bind to cystic fi brosis transmembrane receptor-associated 

ligand (CAL) and degrade it in a PDZ domain-dependent 

manner (Jeong et al 2007); E6 also downregulated the CAL 

transcript levels inside the cell. High-risk HPV E6 was 

found to inactivate the transcriptional coactivator adenosine 

deaminase 3 (ADA3), which functions as a coactivator for 

p53 transactivation (Kumar et al 2002). HPV E6 also binds 

and inactivates the transcriptional coactivators CBP and 

p300 (Patel et al 1999), which results in downregulation of 

transcription from the interleukin-8 promoter (Huang and 

McCance 2002). One report has shown that HPV E6 protein 
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Figure 2. Multiple effects of high-risk HPV E6 protein on different cellular targets leading to malignant transformation. Integration of 

HPV DNA into the host genome results in deregulated overexpression of E6 which, in association with E6AP ubiquitin ligase, targets 

different proteins involved in several pathways. The cumulative effect of these changes in cellular programming causes tumorigenesis. 
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Figure 3. The sequence of E6 proteins from high-risk and low-

risk HPVs at the C-terminus. High-risk E6 proteins from HPV-16, 

-18 and -31 have a four amino acid residue at their C-terminus 
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in binding to PDZ domain-containing proteins. Low-risk HPV E6 
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cannot target PDZ domain-containing proteins.
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binds to E6BP, which is a putative calcium-binding protein 

(Chen et al 1995; Elston et al 1998). High-risk HPV E6, 

but not low-risk ones, targets E6 targeted protein 1 (E6TP1) 

for degradation (Gao et al 1997, 1999). E6TP1 shares high 

homology with GTPase-activating proteins and therefore this 

might be a strategy by E6 to modulate G protein signalling. 

Another tumour suppressor tuberin has been shown to be 

a target of HPV-16 E6; binding of E6 to tuberin results in 

degradation of tuberin and enhances insulin-dependent cell 

proliferation (Lu et al 2004). It has also been shown that 

E6 induced minichromosome maintenance 7 (MCM7) and 

cyclin E in an E2F-dependent manner, which suggests that 

E6 causes inactivation of the pRb/p16 pathway by a different 

mechanism as compared with HPV E7 protein (Shai et al 

2007). 

6. Other cellular targets of E7

Apart from its well-characterized interaction with pRb, HPV 

E7 has been found to interact with a plethora of cellular 

proteins involved in different pathways. High-risk HPV-16 

E7 protein was found to induce transcription of enhancer of 

zeste homologue 2 (EZH2) via E2F transcription factors 

(Holland et al 2008). EZH2 enhances the proliferation of 

HPV-positive tumour cells through bypassing the G1/S 

checkpoint and inhibiting apoptosis. Genetic screening 

to identify kinases targeted by HPV-16 E7 in colorectal 

carcinoma cells showed fi ve essential kinases – CDK6, 

epidermal growth factor receptor-related protein tyrosine 

kinase B3 (ERBB3), FYN, adaptor protein 2 associated 

kinase 1 (AAK1) and testis-specifi c serine/threonine kinase 

2 (TSSK2) (Baldwin et al 2008) – which are essential for 

cell viability and cell proliferation. HPV-16 E7 was also 

found to upregulate the expression of interleukin-6 (IL-

6) and anti-apoptotic Mcl-1 expression in human lung 

cancer cells through the phosphatidylinosotol-3-OH kinase 

(PI3-K) pathway which may contribute to the growth of 

HPV-positive tumour cells in an autocrine fashion (Cheng 

et al 2008). The transfection of H-Ras into human primary 

keratinocyte cells expressing HPV-18 E6/E7 resulted in 

abolition of senescence-like growth arrest in these cells and 

conferred an invasive potential (Yoshida et al 2008); this was 

due to an increased production of matrix metalloproteases-1 

(MMP1) and -9 (MMP9) through the extracellular signal-

regulated kinase pathway. Thus, HPV-containing tumour 

cells acquire invasive properties in the presence of Ras or 

other growth-promoting pathways. HPV-16 E7 has been 

found to downregulate the expression of the cell adhesion 

molecule E-cadherin in transformed keratinocytes (Caberg 

et al 2008); siRNA-mediated silencing of the E7 gene 

Figure 4. A multistep model showing different pathways that are commonly targeted by the HPV E7 protein. The integration of HPV 

DNA into the human genome causes unregulated overexpression of E7 oncoprotein. The cumulative effects of modulation of different 

pathways result in cancer.
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caused upregulation of E-cadherin as well as pRb. HPV E7 

protein also contributes to evasion of immune surveillance 

of HPV-containing tumour cells by binding and inactivating 

interferon regulatory factor 1 (IRF1) and also inhibits the 

interferon-α (IFN-α) signalling pathway by inactivating 

IRF9/p48 (Barnard and McMillan 1999; Um et al 2002). The 

p600 protein, a member of the pRb family, has been recently 

found to be targeted by the E7 oncoprotein, which results 

in anchorage-independent cell growth and transformation 

(Huh et al 2005). HPV E7 has also been shown to activate 

the cell survival protein kinase B/Akt signalling pathway 

by inactivating protein phosphatase 2A (PP2A) which 

dephosphorylates PKB/Akt and terminates the signalling 

(Pim et al 2005) (fi gure 4).

7. Key events/mechanisms in E6- and E7-mediated 

transformation

Out of the diverse molecules and pathways targeted by 

HPV E6 and E7 oncoproteins, some pathways/molecules

might play a decisive role in the development and 

progression of cancer. In the case of E6, targeting the 

PDZ domain-containing proteins such as hDlg, hScribble, 

and p53 for degradation constitutes a major mechanism of 

modulating the antitumour pathways of the host cell; this is 

further supplemented by induction of the catalytic subunit 

of hTERT, which contributes to cellular immortalization. 

For the E7 oncoprotein, targeting pRb and its family 

members such as p600, p27 and p21 for degradation 

constitutes a major step in tumorigenesis. This effect could 

be further augmented by activation of the cell-survival 

pathways of protein kinase B/Akt. Both E6 and E7 bind 

and inactivate several transcription factors involved in the 

immune response, e.g. IRFs. This serves to avoid immune-

based destruction of HPV-containing tumours while 

acquiring invasive potential through modulation of other 

pathways. Although E6 and E7 proteins alone have shown 

transforming activity in vitro, HPV-mediated tumorigenesis 

in vivo requires the coordinated action of the two proteins in 

achieving cellular reprogramming.

8. Conclusion

There has been lot of research to understand the mechanisms 

of HPV E6 protein-mediated tumorigenesis in epithelial cells. 

While some mechanisms and pathways are well understood, 

many mechanisms are poorly understood. For example, 

what is the trigger for HPV to terminate its productive life 

cycle and integrate into the host genome? Are there any viral 

factor(s) that cause integration, and what is the exact role 

of low-risk HPV E6 proteins in the development of cancer? 

HPV E6 is currently being used as a vaccine candidate 

to protect women against HPV-induced cervical cancer. 

However, given the role of HPV in other types of cancer, it 

will be worthwhile investigating the protective effi cacy of 

E6 protein in other HPV-associated cancers. 
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