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1. Introduction

Studies on the genetics of complex diseases such as diabetes, 

coronary artery disease, schizophrenia, various types of 

cancer, obesity, alcoholism, Alzheimer disease, etc. are at 

the frontier of research activity in human genetics, which 

received a new impetus with the completion of the Human 

Genome Project at the turn of the century. Such diseases are 

determined by multiple genetic and environmental factors as 

well as the interactions between them. Association studies 

that involve linkage disequilibrium (LD) between markers 

and genes underlying such traits are being undertaken in 

different parts of the world. The key idea is that a disease 

mutation assumed to have arisen once on the ancestral 

haplotype of a single chromosome in the past history of 

the population of interest is passed on from generation 

to generation together with markers at tightly linked loci 

resulting in LD. The usual method adopted in such studies 

is that of case–control analysis wherein genotype or allele 

frequencies of candidate genes are compared in unrelated 

cases and controls. However, if the population is composed 

of a recent admixture of different ethnic groups that differ 

in marker allele as well as disease frequencies, spurious 

associations may result between the marker genotypes and 

the disease traits (Lander and Schork 1994). Family-based 

association methods such as the transmission/disequilibrium 

test (TDT), introduced by Spielman et al (1993) can 

circumvent such problems. This test detects linkage between 

the marker and the disease gene in the presence of LD 

between the two loci. A recent review of this test is given in 

Ewens and Spielman (2003).

When several adjacent marker loci are used for screening, 

one can examine each locus individually as in the work of 

Devlin and Risch (1995) and make some correction for 
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multiple testing. As this approach ignores the possible 

dependence among the two or more marker loci, we may 

lose information on linkage by conducting single-marker 

analysis. Several papers such as those of Clayton (1999), 

Clayton and Jones (1999), Zhao et al (2000), and Dudbridge 

et al (2000) consider multiple markers simultaneously. But 

their approaches have encountered one or other problem such 

as the discarding of families with ambiguous haplotypes, 

assumption of no recombination among the markers under 

study, method not being robust to population stratifi cation, 

and related issues.

In recent times, the advent of modern genotyping 

technology has enabled identifi cation of a very large number 

of single nucleotide polymorphisms (SNPs), providing 

databases of about 9 million out of the posited 10–13 million 

common SNPs in the human genome (International HapMap 

Consortium 2005). Patterns of correlations among them (LD) 

have been catalogued in several populations. With their help, 

genomewide association (GWA) studies to identify genetic 

variants for complex disease traits are now being undertaken 

using different methods. A family-based association method 

in the form of exhaustive allelic transmission disequilibrium 

tests (EATDT) has been advocated by Lin et al (2004). 

This method uses haplotype information after phase 

reconstruction by searching all alleles – individual SNPs as 

well as continuous haplotypes of all lengths – from the input 

sequence data of trios to fi nd the set yielding the lowest TDT 

P-values. It utilizes heterozygous transmissions and non-

transmissions for a specifi c allele in a given window from 

parent to an affected offspring via a computer algorithm. 

However, for a pair of markers, it does not distinguish 

between single and double heterozygotes and uses the usual 

2 x 2 McNemar table. 

We propose here an approach by which we can study 

the putative disease gene at any given location on the 

chromosome by considering only a pair of fl anking markers 

around it rather than the whole set of markers – a sort of 

interval mapping introduced in the literature by Lander and 

Botstein (1989) for quantitative characters. By choosing 

different gene locations throughout the length of the 

chromosome, the behaviour of the concerned statistics can 

pinpoint the optimum location of the disease gene. The 

TDT, with two loci data on parents and offspring, then 

needs to be carried out for the association tests involving 

only the fi rst- and second-order association parameters for 

which the necessary theory does not seem to be available 

in the literature. Once linkage between the disease gene and 

the two-marker haplotypes is established, usual likelihood-

based methods could be employed to develop statistics for 

estimating the possible location of the disease gene. 

We therefore develop, in this paper, a theory of TDT 

with two-marker loci from the fi rst principles and derive 

the necessary tests and their powers for the case when 

the linkage phase is known without error and under the 

assumption of known haplotype information on parents and 

affected offspring. Before doing so, however, we recapitulate 

the known results for the TDT with a single-marker case in 

what follows.

2. TDT with a single marker

Let A-a denote a marker locus that is to be evaluated in 

relation to a disease trait locus D-d with a recombination 

probability between them of r
1
. We assume that the random 

mating population under consideration is in a steady state 

with a constant population size, i.e. in equilibrium between 

the effects of genetic drift and recombination. This means 

that the time that has passed since the disease mutant was 

introduced is of the same order as the effective population 

size. 

We consider recessive disease genes so that allele D 

is dominant over allele d. We further assume that only 

individuals with genotype dd are affected by the disease 

whereas the homozygous genotype DD and the heterozygous 

genotype Dd are unaffected by the disease and therefore 

categorized as normal individuals. The population then 

consists of two types of individuals, affected and normal. 

We take an affected individual whose genotype at the 

disease locus is thus known as dd as well as the two parents 

of this individual whose genotypes at the disease locus are 

not known but both must have contributed the allele d to 

their child. We treat this as one nuclear family, a trio, and 

suppose we have N trios in our sample. Now we genotype 

these trios for the marker A-a and examine whether a parent 

heterozygous at the marker locus, i.e. having the genotype 

Aa has transmitted to the child a marker allele along with the 

allele d or not. When the disease and marker loci are neither 

linked nor show LD, i.e. there is no association between 

them, the number of times a marker allele is transmitted 

or not transmitted to the child along with the disease allele 

is expected to be the same. This is the rationale behind the 

TDT.

The TDT thus compares the frequencies of the marker 

alleles A and a, transmitted from the parents Aa to offspring 

dd with those of alleles that are not transmitted and hence is 

based on a 2 x 2 table containing frequencies for the marker 

alleles transmitted (T) or not transmitted (NT) from parents 

to affected offspring in a sample of 2N parents of N affected 

offspring as given in table 1.

The expected values of the counts in table 1 depend on the 

conditional probabilities with which a parent transmits one 

marker allele and not the other, given that it transmits a d allele. 

In order to determine them we need to consider the population 

genetics model of a two-loci system as discussed below.

Let the allelic frequencies of the marker and disease trait 

loci be denoted by p
1
, q

1
=1–p

1
 and p

d
, q

d
=1–p

d
, respectively. 
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There are ten genotypes, taking into account the two phases 

of linkage with respect to the two loci A-a and D-d. There are 

four possible two-locus haplotypes AD, Ad, aD and ad with 

frequencies, say, p
AD

, p
Ad

, p
aD

 and p
ad

, respectively, when the 

genotypes mate at random. Then the linkage disequilibrium 

coeffi cient between the two loci, denoted by D
1d

,
 
is defi ned 

as the deviation of the haplotype frequency from its expected 

frequency under equilibrium, which is simply the product of 

the corresponding gene frequencies. For example, if we take 

the haplotype AD we have 

D
1d

 = p
AD

 – p
1
 p

d
         (1)

The disequilibrium coeffi cient can also be expressed entirely 

in terms of the four haplotype frequencies (Narain 1990), as

D
1d

 = p
AD

 p
ad

 – p
Ad

 p
aD

         (2)

This coeffi cient measures allelic association that could be 

either due to linkage for loci on the same chromosome or just 

association without any linkage for loci on non-homologous 

chromosomes showing independent segregation at meiosis. 

Due to conditioning for the recessive genotype dd, 

we have to consider the probability of only those mating 

types that result in the formation of gametes Ad and ad. 

The total frequency of these gametes being p
d
, the relevant 

probabilities need to be divided by p
d
. From a table of such 

probabilities, one can determine the required conditional 

probabilities of transmission of gametes. For instance, for the 

expected value of the count b, we determine the probability 

that, given that the disease trait allele d is transmitted, 

the heterozygous parent Aa transmits the marker allele a 

and not the other allele A. This is written symbolically as

Pr. [T: a, NT: A / Aa, T: d] and is given by 

E(b) = 2N Pr. [T: a, NT: A / Aa, T: d]

        = 2N p
d

-1 [p
Ad

 p
ad

 + r
1
 p

Ad
 p

aD
 + (1-r

1
) p

AD
 p

ad
]

        = 2N [p
1
 q

1
 + (r

1
 – p

1
) D

1d
 / p

d
]

In a similar manner, we get the expectations of a, c and d. 

All these expectations are given in Appendix I. From these 

expectations, we get

E(c-b) = 2N [(1-2r
1
)D

1d
 /p

d
]        (3)

E(c+b) = 2N [2p
1
q

1
 + (q

1
-p

1
)D

1d
 /p

d
]       (4)

This shows that the expectation of the difference (c–b) would 

be zero if either r
1 
=1/2 or D

1d
 = 0, which indicates either no 

linkage or no disequilibrium. In that case the expectations of 

both c and b will be the same and equal to half. The statistic 

for TDT is therefore

χ2 = (c–b)2/(c+b)         (5)

which follows a chi-square distribution with one degree 

of freedom (df) and therefore can be used to test whether 

there is an association between marker A and the trait gene 

d. It may be noted that (c+b) provides an estimate of the 

variance of (c–b). Alternatively, the fi rst and second marker 

allele of each parent can be matched in four possible types 

as transmitted–transmitted, not transmitted–not transmitted, 

transmitted–not transmitted and not transmitted–transmitted 

to correspond to entries a, d, c, and b respectively in table 1, 

each parent being counted twice. Because of the matching, 

the observations tend to be dependent and one has to use 

the test for comparing correlated proportions. This leads to 

McNemar test, which is the same as that given by (5). In 

fact, in this we test the hypothesis of marginal homogeneity. 

It implies symmetry across the main diagonal so that 

hypotheses of marginal homogeneity and symmetry are 

equivalent. 

Under the alternative hypothesis that there is linkage 

between the marker and the disease gene, given that there is 

linkage disequilibrium, the chi-square statistic given by (5) 

follows a non-central χ2(1, λ) distribution
 
with 1 df and non-

centrality parameter λ given by

λ = [E(c) – E(b)]2 / [E(c) + E(b)]

   = 2N [(1 – 2r
1
 )2 D

1d
 2] / p

d
 [2p

1 
q

1
p

d

      + D
1d

 (1- 2p
1 
)]         (6)

The power of the test is then the probability that the

deviate from χ2(1, λ) is greater than or equal to χ2(α),

the critical value of χ2 to reject the null hypothesis

at signifi cance level α. Liu (1997) gives the power of this 

TDT for several values of N, p
1
,
 
p

d
, r

1
 and D

1d
 . The power 

increases with increase in D
1d

 but with decrease in r
1
. It is 

high when p
d
 is lower. The frequency p

1
 has, however, a 

small effect on the power. It also increases with an increase 

in N.

It may be seen that λ will be strictly zero when

either r
1
 =1/2 or D

1d
 =0, the values under the null

hypothesis, in which case the chi-square follows a central 

χ2 distribution with 1 df. Values of λ, therefore, under 

different values of the fi ve parameters, N, r
1
, p

1
, p

d
 and D

1d
 

refl ect the power of the TDT with a single marker. We give 

these values in table 2 below for N=200 and D
1d

=0.1 when 

r
1
 varies between 0.45 and 0.01 for each of the two values 

of p
d
 and p

1
. 

From table A.3 in Weir (1996), we fi nd that for the 

signifi cance value of 0.05 and 1 df, the power is 0.90 

Table 1. Observed counts for transmitted and non-transmitted 

marker alleles A and a among 2N parents of N affected 

offspring

Non-transmitted (NT) allele Transmitted (T) allele

A a Total

A a b (a+b)

a c d (c+d)

Total (a+c) (b+d) 2N



and 0.99 for non-centrality parameters of 10.5 and 18.4, 

respectively. As such, when r
1
 is 0.2, the power of the test 

for p
d
 = 0.5 and p

1 
= 0.2 would be greater than 0.90 but it 

would be even greater than 0.99 for p
d 
= p

1 
=0.2, indicating 

thereby that the power is high when the value of p
d
 is small. 

Thus, we can compare the power of the tests in terms of non-

centrality parameters. 

When the marker is at the disease gene locus itself,

r
1
 = 0, p

1
 = p

d
 , and D

1d
 = p

d 
q

d
, giving 

λ = 2N q
d
          (7)

3. TDT with two-marker loci

Now we consider another marker locus B-b tightly linked 

with A-a with a small probability of recombination between 

them as r and the trait locus D-d is located between them 

with an r
1
 recombination probability between A and D, 

and r
2
 recombination probability between B and D. Then, 

given r and assuming no interference, r
2
 can be expressed in 

terms of r
1
 using the relation r = r

1
 + r

2
 – 2 r

1
 r

2 
so that there 

is only one unknown to handle. We now have to consider 

the frequencies of the marker gametes AB, Ab, aB and ab 

transmitted from the doubly heterozygous parents (AaBb), 

which could be of two types (AB/ab or Ab/aB) depending 

upon the phase of the linkage, to affected offspring having 

genotypes dd with those of the gametes not transmitted. It is 

based on a 4 x 4 table containing frequencies of the marker 

gametes transmitted (T) or not transmitted (NT) from parents 

to affected offspring in a sample of 2N parents of N affected 

offspring as given in table 3.

The expected values of the counts in table 3 depend upon 

the conditional probabilities with which a parent transmits 

one marker haplotype and not the other, given that a d 

allele is transmitted. In order to determine them we need 

to consider the population genetics model of a three-loci 

system as discussed below.

Let the gene frequencies of the two markers A-a and B-b 

be denoted, respectively, by p
1
, q

1
=1–p

1
 and p

2
, q

2
=1–p

2
 and 

that of the disease locus, as before, by p
d
, q

d
=1–p

d
. There 

are now 36 genotypes with respect to the three loci, A-a, 

B-b and D-d, there being 12 double heterozygotes and 4 

triple heterozygotes with possible linkage phases. We get 

eight three-locus haplotypes ABD, ABd, AbD, Abd, aBD, 

aBd, abD and abd with respective frequencies, say p
ABD

, 

p
ABd

, p
AbD

, p
Abd

, p
aBD

, p
aBd

, p
abD

 and p
abd

 when the genotypes

mate at random. Let the pair-wise (fi rst-order) LD para-

meters between A-a and B-b be denoted by D
12

, between

A-a and D-d, as before, by D
1d

, and between B-b and D-d

by D
2d

. The three-locus (second-order) LD para-

meter between (A, B) and D, denoted by D
12d

 is defi ned

by

D
12d

 = p
ABD

 – p
1 
D

2d
 – p

2
 D

1d
 – p

d
 D

12
 – p

1
 p

2
 p

d
.      (8)

It may be noted that to describe the association among

alleles at three loci, the effects of two-locus disequilibrium 

are removed by subtraction (Bennett 1954). This 

disequilibrium coeffi cient can also be expressed entirely

in terms of the eight three-locus haplotype frequencies

as

D
12d

 = [ p
ABD

 p
abd 

– p
ABd

 p
abD 

]

            – [ p
AbD

 p
aBd

 – p
Abd

 p
aBD

].        (9)

Due to conditioning for the recessive genotype dd, we

have to consider the probability of only those mating

types that result in the formation of gametes AdB, Adb,

adB and adb. The total frequency of these gametes being

p
d
, the relevant probabilities need to be divided by p

d
.

From a table of such probabilities, one can determine 

the required conditional probabilities for transmission

of gametes. For instance, for the expected value of the

count n
41

, we determine the probability that, given that the 

disease trait allele d is transmitted, the doubly heterozygous 

parent AaBb, in the coupling phase, transmits the marker 

gamete AB and not the other gamete ab. This is written 

symbolically as
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Table 2. Values of non-centrality parameters for different 

recombination probabilities between the marker A-a and the 

disease locus for two combinations of gene frequencies when 

N=20

r
1

p(d)=0.5, p(1)=0.2 p(d)=p(1)=0.2

0.45 0.36 1.61

0.30 5.82 25.01

0.20 13.09 58.06

0.10 23.27 103.22

0.04 30.78 136.52

0.01 34.92 154.90

Table 3. Observed counts for transmitted (T) and non-transmitted 

(NT) marker gametes AB, Ab, aB, and ab among 2N parents of 

N affected offspring

Non-transmitted 

gamete (NT)

Transmitted gamete (T)

AB Ab aB ab Total

AB n
11

n
12

n
13

n
14

n
1.

Ab n
21

n
22

n
23

n
24

n
2.

aB n
31

n
32

n
33

n
34

n
3.

ab n
41

n
42

n
43

n
44

n
4.

Total n
.1

n
.2

n
.3

n
.4

2N



Pr. [T: AB, NT: ab / AB / ab, T: d] and is given by

E(n
41

) = Pr. [T : AB, NT: ab / AB / ab, T: d] 

  =  2N p
d

-1 [{(1-r) p
AdB 

p
adb

 + r p
Adb 

p
adB

 } + (1-r
1
)(1-r

2
) 

p
AdB

 p
aDb

 

 +  r
2
 (1-r

1
) p

Adb
 p

aDB
 + r

1
 r

2
 p

ADB
 p

adb
 + r

1
 (1-r

2
) p

ADb
 

p
adB

]

 =  2N [{p
1
p

2
q

1
q

2 
+ (p

1
p

2
 + q

1
q

2
 – r) D

12
 + D

12

2} + 

{-p
2
q

2
(p

1
 – r

1
)D

1d
 – p

1
q

1 
(p

2
 – r

2
)D

2d
 + (p

1
 – r

1
)(p

2
 

– r
2
)D

12d
 – (q

2
 – r

2
)D

12
D

1d
 – (q

1
 – r

1
)D

12
D

2d
 + 

D
12

D
12d

}/p
d
].

 

In a similar manner we get the expectations of the other 

counts of table 3. However, to conserve space, we give, in 

Appendix II, only the expectations of the 4 cell counts (n
14

, 

n
23

, n
32

, n
41

) that are relevant to our study. 

It may be verifi ed that by pooling appropriate cell counts 

in table 2, we can get the expectations of cell counts in 

table 1. For instance, if we pool over the different levels 

of the locus B-b, in the third and fourth rows and the fi rst 

and second columns, we get E(c). Similarly, we can get the 

expectations of cell counts in the table (not shown) for the 

TDT applied to the locus B-b by pooling over the different 

levels of the locus A-a.

3.1 Various tests

In TDT the 4 entries in the diagonal do not contribute to the 

test since these pertain to doubly homozygous parents. Of the 

12 remaining entries, the 6 above the diagonal are matched 

with the 6 below the diagonal. Of the 6 pairs so formed, 4 

pertain to the singly heterozygous parents at each of the two 

markers (there being two possible homozygotes at the other 

marker locus) and 2 to the doubly heterozygous parents (one 

in the coupling phase and the other in the repulsion phase). 

When there is no association between the markers and the 

disease gene making all the Ds zero or when the markers and 

the disease gene are not linked, i.e. r
1
 = r

2
 = ½ so that r = ½ 

also, the expectation of the matched entries below and above 

the diagonal are same. Symbolically, E(n
ij
) = E(n

ji
) for i<j, 

i,j=1,2,3,4. The 4 x 4 table therefore satisfi es the condition 

of symmetry. In this case, marginal homogeneity occurs 

since the expectation of marginal totals E(n
i.
) and E(n

.j
) 

become the same. But here the symmetry is not equivalent 

to marginal homogeneity as is the case in the 2 x 2 table for 

the TDT with a single marker. Marginal homogeneity can 

occur without symmetry. Therefore, we need here a test for 

symmetry.

Following Bowker (1948), the test of symmetry in the 

square 4 x 4 contingency can be performed with the help of 

the statistic 

χ2 = Σ Σ (n
ij
 – n

ji
)2 / (n

ij
 + n

ji
) for 2 ≤ i ≤ 4, 1 ≤ j ≤ (i-1). 

This statistic follows a chi-square distribution with 6 df. This 

is a composite statistic testing for the linkages between the 

disease gene and either of the two markers, either singly or 

jointly, on the condition that all the pair-wise disequilibria 

as well as second-order disequilibrium exist. It can be 

partitioned into six components corresponding to the six 2 

x 2 contingency tables formed by conditioning the data only 

for the given table. For the table with entries, n
ii
, n

ij
, n

ji
, n

jj
, 

the chi-square with 1 df would be 

 χ2 = (n
ij
 – n

ji
)2 / (n

ij
 + n

ji
) for 2 ≤ i ≤ 4, 1 ≤ j ≤ (i–1). (10)

The expectations of the difference (n
ij
 – n

ji
) and the sum

(n
ij
 + n

ji
) for different linkage tests involving double 

heterozygotes in the coupling and repulsion phases would be 

as given in Appendix III (the expectations for other linkage 

tests are not given for the sake of brevity). On the null 

hypothesis of no linkage between the disease gene and the 

markers, each of the expectations of the difference, given in 

Appendix III, would be zero. For data conditioned in a given 

2 x 2 table, the null hypothesis for binary matched pairs is 

H
0
: E(n

ij
)=E(n

ji
) or E(n

ij
)/E(n

ij 
+ n

ji
)=0.5. 

Under H
0
, n

ij
 has a binomial distribution (n

ij

*,1/2) with

n
ij

*=n
ij
 + n

ji
 that, for large samples, is approximately 

normal with mean (1/2)n
ij

* and variance n
ij

*(1/2)(1/2). The 

standardized normal test statistic is then

 [n
ij
 – (1/2)n

ij

*]/[n
ij

*(1/2)(1/2)]1/2 = (n
ij
 – n

ji
)/(n

ij
 + n

ji
)1/2

leading to a χ2 test statistic with 1 df as already given 

above.

For interval mapping of the disease gene, we have to 

consider a situation when the parental genotype is doubly 

heterozygous. However, double heterozygotes of the type 

AaBb can have two different kinds of allelic arrangements 

on the homologous pairs of chromosomes, namely AB/ab 

and Ab/aB. The former, where both the dominant genes are 

located on the same chromosome, is said to have the linkage 

in the coupling phase while the latter, where one dominant 

gene is on the fi rst member and the other dominant gene is 

on the second member of the pair of chromosomes, is said 

to have the linkage in the repulsion phase (Narain 1990). 

Segregation of the heterozygous parents in the two phases 

is normally done with the help of progeny tests or pedigree 

analysis. In the latter case, pedigrees are often ascertained 

through a child affected by the disease. For rare diseases, this 

means we have families with heterozygous parents. If we 

have marker information on both the parents and the child 

for each family ascertained, we may be able to determine the 

phase of the double heterozygotes from such data as shown 

in a study on cystic fi brosis by Weir (1989). 

There would, thus, be two chi-square tests, each on 1 df, 

for testing the relevant null hypothesis of no linkage, given 

by:
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χ
1

2 (AB/ab) = (n
14

 – n
41

)2 / (n
14

 + n
41

)     (11)

χ
1

2 (Ab/aB) = (n
23

 – n
32

)2 / (n
23

 + n
32

).     (12)

In the fi rst case, the statistic tests whether the marker gamete 

AB is linked with the disease gene when the parent is in the 

coupling phase, whereas the second statistic tests whether 

the marker gamete Ab is linked with the disease gene when 

the parent is in the repulsion phase, on the assumption that 

both fi rst- as well as second-order disequilibrium exist. In 

either of the cases, it tests whether the disease gene is in the 

given interval of the two markers, the null hypothesis being 

that the disease gene is not in the interval.

3.2 Power of the tests

Under the alternative hypothesis that the gene does lie in the 

interval, namely, that the disease gene is linked with both 

the markers, given that the disequilibrium coeffi cients are 

non-zero, the chi-squares, given by (11) and (12), follow 

approximately a non-central chi-square distribution with 

1 df and with non-centrality parameters λ1 and λ2 given 

respectively by

λ
1
 = [E(n

14
 ) –E(n

41
)]2 / [E(n
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 ) + E(n

41
)] 
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2
q

2 
D

1d
 + D

12
D

2d

        + (1/2)(q
2
 – p

2
) D

12d
} + (1 – 2r

2
){p

1
q

1
D

2d
 + D

12
D

1d 

              
+(1/2)(q

1
 – p

1
) D

12d 
}]2/ S

1
      (13)

λ
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}]2/S
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where S
1
 and S

2
 are given by (AIII.2) and (AIII.4), 

respectively.

The alternative hypothesis here is that both the markers 

are linked with the disease locus, i.e. r
1
 ≠ 1/2 and r

2
 ≠ 1/2. 

The situation when only one of the markers is linked with 

the disease locus, i.e. say r
1
 ≠ 1/2 but r

2
 = 1/2, is not tenable 

since in that case r = r
1
 + r

2
 – 2r

1
r

2
 = 1/2, which violates the 

assumption of tightly linked markers. 

It may, however, be noted that, in the above discussion, 

the non-centrality parameters are determined approximately. 

Their computation therefore does not seem to give an exact 

answer. Also, when r is small, rejection of the symmetry test 

always means that both r
1
 and r

2
 are not equal to 1/2 and 

one of the LD coeffi cients is not zero. This shows that the 

information obtained by the proposed interval mapping may, 

under some scenarios, be compromised. 

If a priori information indicates that the two markers are 

likely to have the same recombination probability with the 

disease locus, i.e. r
1
 = r

2
, the non-centrality parameter is 

simplifi ed in the two cases to

λ
1 

* =
 
4N2 p

d

-2 (1–2r
1
)2 (C

1
 + C

2
)2 / S

1
*        (15)

λ
2

* = 4N2 p
d

-2 (1–2r
1
)2 (C

1
 – C

2
)2 / S

2
*        (16)

where

C
1
 = p

2
 q

2
 D

1d
 + D

12 
D

2 d
 + (1/2)(q

2
 – p

2
) D

12d
 

C
2
 = p

1 
q

1 
D

2 d 
+ D

12
 D

1 d
 + (1/2)(q

1
 – p

1
) D

12 d

S
1
* and S

2
* being given by (AIII.2) and (AIII.4), respectively, 

with r = 2r
1 

(1–r
1
). It is seen that in this case the λs will 

become zero when either r
1
 =1/2, i.e. no linkage between the 

markers and the disease locus or the Ds, the disequilibrium 

coeffi cients in Cs become zero.

It may be seen that, in general, λs will be strictly zero when 

either r
1
 =1/2, and r

2
 =1/2 or else D

1d
 = D

2d
 = D

12d
 = 0, the 

values under the null hypothesis, in which case the chi-squares 

follow a central χ2 distribution with 1 df. Values of λs, therefore, 

under different values of the ten parameters N, p
1
, p

2
, D

12
, p

d
, 

D
1d

, D
2d

, D
12d

, r
1
 and r

2
 refl ect the power of the TDT with two 

markers. We give in table 4 below the values of λ
1
 for N =200,

D
1d

 = D
2d

 = D
12d 

=0.1, D
12

 =0.1, and r
2
 = 0.05 for different values 

of r
1 
for each of the two combinations of gene frequencies.

The results indicate that the power increases with a 

decrease in the values of r
1
 and that power is high with 

smaller values of p
d
. Most of the results, if not all, particularly 

the effect of disequilibrium coeffi cients true for the single-

marker case are, therefore, carried over to the two-markers 

case. Compared with the values given in table 2, the values 

of the non-centrality parameter are consistently higher in 

table 4, indicating the benefi ts of having information about 

linkage from the second marker. 

When one of the markers, say A-a, is at the disease gene 

locus itself,

r
1
=0, p

1
=p

d
, q

1 
= q

d
, D

1d 
= p

d
 q

d
, D

12 
= D

2d
, D

12d 
= (q

d
 – p

d
)D

2d
 

and we get

λ
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 = 2N [p
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q
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d 
q

d
 + {(1 – 2r

2
)

       + (q
2
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2
) (q

d
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2d 
/ 2 + D

2d
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λ
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q
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p
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q
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        – (q
2
 – p

2
) (q

d
 – p
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2d 
/ 2 + D

2d
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Table 4. Values of the non-centrality parameter λ
1
 for different 

recombination probabilities between the marker A-a and the 

disease locus for each of the two combinations of the gene 

frequencies when N = 200 

r
1

p(d)=0.5, p(1)=p(2)=0.2 p(d)=p(1)=p(2)=0.2

0.45 23.27 85.99

0.30 31.45 115.41

0.20 36.94 135.12

0.10 42.45 154.87

0.04 45.76 166.74

0.01 47.42 172.67
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When the other marker, B-b, is also at the disease gene locus, i.e. 

at the other marker A-a itself, r
2 
= 0, p

2 
= p

d
, q

2 
= q

d
, D

2d 
= p

d 
q

d
, 

and we get, for λ
1 
only as coupling phase is only possible in 

such a case, 

λ
1
 = 2N q

d
, 

the same as (7), as it should since the whole system now 

reduces to a single locus case.

4. Discussion

The theory of TDT with a single-marker locus has been 

successfully extended to two-linked marker loci with fi rst- 

and second-order disequilibria. A new test statistic for testing 

linkage with 1 df based on the test for symmetry has been 

proposed. It uses data only on doubly heterozygous parents 

who transmit the given haplotype to their affected offspring. 

The power of the test has also been discussed in terms of 

non-centrality parameters. Further extension of TDT to three 

or more markers is quite involved due to a commensurate 

increase in the parameters of disequilibrium coeffi cients of 

various orders, besides the increase in parameters pertaining 

to gene frequency and linkage. However, for the purpose of 

interval mapping of the disease gene, this is not required. 

We need consider only a pair of fl anking markers around the 

putative disease gene.

The major assumption in this study is that two-loci 

haplotypes are known in parents. The traditional method to 

determine haplotypes is either pedigree analysis or molecular 

haplotyping. Both these methods require a lot of work, of 

either collecting a large number of pedigree members or in 

performing costly laboratory tests. Due to these limitations, 

the current trend is to use appropriate statistical methods 

and develop computer algorithms to infer the phase of 

the linkage from the genotypes and thus reconstruct the 

haplotypes. The methods include a parsimony approach 

given by Clark (1990), a maximum-likelihood method via 

an expectation–maximization (EM) algorithm (Excoffi er and 

Slatkin 1995), and a Bayesian approach based on priors from 

population genetics (Stephens et al 2001). The inferences in 

these cases are, however, drawn from unrelated individuals 

and are therefore not applicable to the TDT as presented in 

this paper. Marchini et al (2006) extended their algorithms 

for phase inference, which can handle data on related 

individuals such as father–mother–child trios. This could 

be useful for data collected on nuclear families such as the 

TDT with two-linked marker loci considered in this paper. In 

fact, EATDT – a TDT type test used in the study by Lin et al 

(2004) – makes use of this approach for phase determination 

before using haplotype information for the test.

Another limitation of this study is that when the disease 

under study has a late age of onset, the parental marker 

genotypes may not be available at all. In this situation, the 

missing parental genotypes could be reconstructed from the 

genotypes of their offspring and treated as if they have been 

typed (Spielman and Ewens 1996). However, a better way 

would be to generalize the test proposed in this paper to the 

‘sib TDT’ or S-TDT type procedure discussed in Spielman and 

Ewens (1998), where data consist of marker genotypes of the 

offspring only, both affected and unaffected, for each family.
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Appendix I

Expectations of cell counts in the single-marker case
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Appendix II

Expectations of the four relevant cell counts in the two-

markers case.
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Appendix III

Expectations of the difference (n
ij
 – n

ji
) and the sum (n

ij
 + n

ji
) 

for the linkage tests in the two-marker case (linkage between 

D-d and A-a as well as B-b)

(a) Genotype for the markers in the coupling phase
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(b) Genotype for the markers in the repulsion phase
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