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1.  Introduction 

Microarrays have the potential to identify pathways that 

are altered in disease. This promise has resulted in this 

technology being aggressively pursued by researchers, 

hospitals and pharmas because of its potential for an 

improved understanding of the disease process, better 

diagnostic protocols, new drugs, and new treatment 

regimens. A major application of microarrays has been to the 

analysis of cancer. The focus has been on identifying genes 

that are altered in the initiation, progression and metastasis 

of cancer. Such analysis is confounded by the fact that 

most cancers are highly heterogeneous, microarray signals 

are noisy and there is a large variation in the “normal” 

levels of most genes. Identifi cation of the signals that are 

characteristic for the disease phenotype and its progression 

requires the use of robust techniques. 

In this paper we develop a new robust method which 

fi rst uses principal component analysis (PCA) (see Wall 

et al 2003; Evritt and Dunn 2001) to identify the overall 

structure of clusters in the data and select the subset of genes 

that distinguish the clusters. We use this set of genes and 

a new consensus ensemble k-clustering technique, which 

averages over several clustering methods and many data 

perturbations, to identify strong, stable clusters. We also 

defi ne a simple criterion to fi nd the optimum number of 
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clusters and a method to identify robust markers for disease 

progression within each cluster. 

Our method results in stable lists of genes and pathways 

that distinguish high and low grade tumours and other sets 

which mark progression of disease from ductal carcinoma 

in situ to invasive ductal carcinoma. The clustering paints a 

portrait of the disease at varying levels of granularity. When 

the data is divided into two clusters, the normal samples 

form one cluster and the disease samples form another. At 

the next level of clustering, the low grade and high grade 

samples separate. The optimal number of clusters is seven, 

corresponding to a split of the low grade cluster into two 

and the high grade cluster into four sub-clusters. The sub-

clusters are well separated by a strong set of markers which 

are able to distinguish them with sensitivity and specifi city 

in the 80-100% range. We identify the genes and pathways 

that mark disease progression in each sub-cluster. A major 

result of our analysis is that each sub-cluster contains 

samples from non-invasive and invasive tumours from the 

same patient. This suggests that within each grade of breast 

cancer, different groups of patients progress to the same 

fi nal phenotype along different pathways. This prediction 

needs to be validated by a study on a chip with more 

genes from the pathways we identify. If verifi ed, it would 

have signifi cant implications for disease identifi cation and 

treatment. 

2. Materials and methods 

2.1 Description of microarray data 

We used public data from Ma et al (2003) (www.

geneexpression_ma.org) which consists of a cohort of 36 

breast cancer patients of whom 31 were diagnosed with at 

least two out of three pathological stages of disease: atypical 

ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS 

and invasive ductal carcinoma or IDC respectively. The 

remaining 5 patients were diagnosed to have pre-invasive 

disease (ADH) only. 

As described in the original study of Ma et al (2003), 

normal as well as disease samples were harvested from 

each patient in as many different disease stages (ADH, 

DCIS, IDC) as possible by laser capture micro-dissection 

(Arcturus, CA, USA) in triplicate. Care was taken to avoid 

contamination between cells of different stages taken 

from the same patient. There were a total of 300 samples 

in the Ma et al (2003) study, each of which was analysed 

in duplicate with a 12,000 gene cDNA microarray. It was 

determined that the “normal cells” from cancer patients were 

highly similar to the normal epithelium of three non-cancer 

patients. This suggested that the “normal cells” from cancer 

patients could be used as a baseline to determine disease 

state and progression. 

The data Ma et al (2003) consists of the expression values 

of 1940 genes across the 93 samples and 32 of these were 

from disease free or normal patients, 8 were ADH samples, 

30 were DCIS samples and 23 were IDC samples. The 1940 

(out of the 12,000) genes were selected in Ma et al (2003) 

by their ability to distinguish “normal cells” and each of 

the disease stages ADH, DCIS and IDC using a linear 

discriminant function. The patients were further classifi ed 

by pathological analysis into 3 categories based on the 

tumour grade: grade I (18 patients), grade II (22 patients) 

and grade III (19 patients). 

2.2 Overview of analysis technique 

The fl ow chart of our analysis method is presented in fi gure 

1. First the dataset was normalized and missing entries 

imputed robustly. Next, we used PCA to identify the genes 

which account for most of the variation in the data. The 

optimal number of clusters k
opt 

in the data was estimated 

using gap statistics (Tibshirani et al 2001) and silhouette 

scores (Kaufmann and Rousseeuw, 1990). 

Consensus ensemble clustering (Monti et al 2003; Strehl 

and Ghosh 2002) was applied to the projection of the data 

on these genes to identify k=2, 3,…, k
opt 

data and method 

perturbation independent (robust) clusters. To ensure 

sensitivity to subtle signals that may be present, we used the 

full set of genes on the samples after each k level clustering 

to fi nd the best pool of genes that distinguish disease classes 

within and between clusters. This non-stringent selection 

was motivated by the expectation that the key genes altered 

in disease pathways most likely change their expression 

levels in subtle ways, and may not necessarily be the same 

genes that are best to distinguish the clusters. On this larger 

set of genes for each k, we identifi ed two sub-classes. The 

fi rst set distinguished each cluster from its complement. 

The second set defi ned progression from non-invasive to 

invasive disease. Finally, we used annotated databases to 

identify the functional pathways that are most representative 

of the clusters identifi ed. Each of these steps is described in 

detail below. 

2.3 Data normalization and imputation 

The genes were normalized by fi rst applying a robust 

nonlinear local regression method as described in Ma 

et al (2003) and then by applying a global normalization 

procedure which consists of subtracting the median of 

each gene across the arrays. Thirteen genes had missing 

values in 13-15% of the samples and were discarded and 

105 genes had missing entries for up to 5% of the samples. 

These missing entries were imputed using a dynamical kNN 

approach (Alexe et al 2006). 
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2.4 Principal component analysis 

Principal component analysis or PCA (Kaufmann and 

Rousseeuw 1990; Everitt and Dunn 2001; Wall et al 2003) 

was used to retain those genes in the dataset that contribute 

most to its variance. PCA was applied to the expression 

matrix E
ij
 whose the rows were the 93 samples and whose 

columns were the 1927 genes. The analysis was done by 

a singular value decomposition of this matrix after it was 

centered and scaled to mean 0 and variance 1 per column. 

From the eigenvectors of the largest eigenvalues that 

accounted for 85% of the variation in the data we selected 

the subset of genes with coeffi cients in the top 25% in 

absolute value in these eigenvectors. This collection of 

genes was further used to fi nd robust clusters in the data. 

2.5 Ensemble consensus k-clustering

Using the genes from PCA, we fi rst identifi ed the optimal 

number of clusters using gap statistics (Tibshirani et al 

2001) and silhouette scores (Kaufmann and Rousseeuw 

1990). Next, we applied an ensemble consensus k-clustering 

approach (initiated by Monti et al 2003 and Strehl and 

Ghosh 2002) to group the samples into the optimum number 

of clusters. The ensemble consensus clustering integrates 

the results of various clustering techniques across sample 

data perturbations into a pairwise agreement matrix which 

is used to partition the samples into the optimum number of 

clusters. 

The overall technique has two distinct parts: (i) a 

method which generates a collection of clustering solutions 

using different methods applied to many perturbations of 

the data, and (ii) a consensus function that combines the 

clusters found to produce a single output clustering of 

the data. The approach used in our paper is summarized 

below. 

Step 1: 150 datasets were created from the imputed data 

restricted to the 207 signifi cant genes identifi ed by PCA. 

Fifty datasets came from bootstrapping the samples, 50 

from bootstrapping genes and 50 by fi rst projecting the data 

Figure 1. The fl ow chart of our method. 
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on bootstrapped genes and then by further bootstrapping on 

samples. 

Step 2: The optimal number of clusters k
opt

 was inferred (a 

priori) using the gap statistic and silhouette scores. 

Step 3: k=2,…, k
opt

 clusters were created using representative 

methods from the three major classes: 

  (i)  Partitioning: partition around medoids (PAM) 

(Kaufmann and Rousseeuw 1990), k-means 

(Hartigan 1975) and graph partitioning (Zhao and 

Karypis 2003).

 (ii)  Agglomerative: hierarchical clustering based 

on average linkage, complete linkage and Ward 

metric (Kaufmann and Rousseeuw 1990) as well 

as bagglo, which is a hybrid agglomerative method 

developed in Zhao and Karypis (2003).

(iii)  Probabilistic: expectation maximization (EM) 

method (Dempster et al 1977), entropy-based-

clustering (ENCLUST) (Cheng et al 1999), 

clustering on subsets of attributes (COSA) 

(Friedman and Meulman 2004).

Step 4: Each clustering method was applied 50 times with 

different parameter initialization on the full dataset, and 

once on each of the 150 datasets from step 1. From the 

200 resulting clusters, we constructed an agreement matrix 

of size N
sample 

x N
sample

 for each method, whose entries m
ij
 

represented the fraction of times a pair of samples (i,j) 

occurred in the same cluster out of the number of times the 

pair was selected in the 200 datasets. Here N
sample 

denotes the 

number of samples in the dataset. 

Step 5: For each k, the agreement results of step 4 were 

averaged across the clustering techniques. The samples 

were then sorted such that those with the highest pairwise 

agreement appeared along the diagonal of the agreement 

matrix in k blocks. We applied simulated annealing to fi nd the 

k optimal clusters for which the average internal similarity 

(within each cluster) minus the average pairwise similarity 

(between all pairs of clusters) has a local maximum value.

2.6 Identifi cation of gene markers within clusters

We now used the full collection of genes on each of 

the clusters identifi ed at each k by consensus ensemble 

clustering. The markers were chosen to discriminate 

between two classes: class 1 = the group of interest (i.e. 

the entire cluster), class 0 = the samples not included in the 

group of interest (i.e. the complement of the cluster). The 

best markers were identifi ed in two steps. 

Step 1: A large pool of genes which distinguished the 

two labelled classes was selected based on a variant of the 

t-test statistic called the signal to noise ratio (SNR) (Golub 

et al 1999) with a permutation P-value of 0.1 and a false 

discovery rate (FDR) (Benjamini and Hochberg 1995) of 

0.5. The SNR statistic computes the difference of the means 

in each of two classes scaled by the sum of the standard 

deviations: SNR = (µ
0
 – µ

1
 )/(σ

0
 + σ

1
), where µ

0
 is the mean 

of class 0 and σ
0
 is the standard deviation of class 0 and so 

on. The t-test statistic is the same as the SNR except that the 

denominator is (σ
0

2 + σ
1

2)1/2. Since (σ
0
 + σ

1
) > (σ

0

2 + σ
1

2)1/2 

SNR penalizes features that have higher variance in each 

class more than those features that have a high variance 

in one class and a low variance in another. This bias is 

particularly useful in distinguishing genes which are altered 

in normal/disease or stage/grade progression. For example, 

in the normal/disease case, the pathway in which the gene 

is involved is working correctly in one class, and hence 

is regulated strictly (has low variance) while in the other 

class, the pathway is compromised and the gene is less well 

regulated (has high variation). 

Step 2: From the larger pool of genes from step 1, we 

identifi ed the best genes correlated with the class label 

using stringent criteria which combined (i) a permutation 

P-value of 0.05, (ii) stability to sample perturbation through 

bootstrapping and (iii) stability to leave-one-out experiments 

in top 25% genes selected by weighted voting and kNN 

classifi ers which distinguish the two classes with specifi city 

and sensitivity above 0.75. This analysis was done using 

the software GenePattern from the Broad Institute (http:

//www.broad.mit.edu/cancer/software/genepattern/).

2.7 Identifi cation of pathways and biological/

functional categories

We used the bioinformatics public resources DAVID 

(Dennis et al 2003), iHOP (Hoffnamm and Valencia 2004), 

and MatchMiner (Bussey et al 2003). We also used 14 

functional annotation sources including KEGG and GO 

annotations, Biocarta pathways, linked to DAVID as well 

as the functional classifi cation tool implemented in DAVID. 

The Functional classifi cation tool groups genes based on 

functional similarity. It uses Kappa statistics (Dennis et al 

2003) which is an index that compares the agreement against 

the possibility that it appeared by chance. Thus, 

κ = 

 Observed agreement – Chance agreement

    1 – Chance agreement

The Kappa statistic can be thought of as the chance-corrected 

proportional agreement, and possible values range from +1 

(perfect agreement) to 0 (no agreement above chance) to 

–1 (complete disagreement). The algorithm fi rst generates a 

gene-to-gene similarity matrix (genes in rows and functional 

terms in columns) based on shared functional annotation. The 

matrix is made from binary entries. If a gene is annotated 

in a term, the term entry is 1, if not then the entry is 0. The 

.



Analysis of breast cancer progression using principal component analysis and clustering 1031

J. Biosci. 32(5), August 2007

algorithm adopts the kappa statistic to quantitatively measure 

the degree to which genes share similar annotation terms. The 

higher the value of κ, the stronger the agreement. The fuzzy 

heuristic partition algorithm (Dennis et al 2003), which allows 

a gene to participate in more than one cluster, was used to 

classify highly related genes into functionally related groups. 

3. Results

3.1 Principal component analysis

We found that 50% of the variation in the data was 

represented by the fi rst 5 PCs and 85% by the fi rst 32 PCs. 

We identifi ed 207 genes as those with highest absolute 

value (top 1st quartile) in the coeffi cients of the fi rst 32 

eigenvectors as representative of most of the data variation. 

These thresholds were estimated through a calibration step 

whose aim was to optimize the overall cluster membership 

assignment for the optimal number of clusters identifi ed in 

the data restricted to the selected genes.

3.2 Consensus ensemble k-clustering

The gap statistic and the silhouette scores applied to the 

partition around medoids method identifi ed k=7 as the 

optimal value for the number of clusters in the data, although 

the gap statistic output oscillated between 6 and 7. The data 

was divided into k=2, 3,…,7 clusters by using the 207

genes identifi ed by PCA and by applying consensus

ensemble k-clustering. The results are shown schematically 

in fi gure 2. 

Note that even though the clusters at each level were 

determined independently, at clustering level k+1, two 

clusters were always obtained from splits of a parent

cluster at level k, while the remaining k-1 clusters were 

inherited unchanged from the previous level k. This shows 

that the data inherently supports a clustering into a hierarchy 

of subtypes. Moreover, the separation of samples into 

“normal” and “disease” at k=2 and of the “disease” samples 

into “low” and “high” grades at k=3 and so on, strongly 

suggests that disease progression is a hierarchical process 

Figure 2. Consensus ensemble k-clustering tree reveals the recursive splitting of breast cancer subtypes
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and is readily and robustly identifi able by our clustering 

procedure. 

At k=2, the samples separated into a “normal” (N) group, 

which contained all the normal samples and one ADH 

sample (from patient id 210), and a “breast cancer” (BCA) 

group, which contained all the remaining breast cancer 

samples. 

At k=3, the normal group was unaltered but the BCA 

group split into a low grade (LG) tumour group containing 

18 samples labelled grade 1 and 9 samples labelled grade 2, 

and a high grade (HG) tumour group containing 13 samples 

labelled grade 2 and 19 samples labelled grade 3. 

As k increased progressively from 4 through 7, the LG 

group split into 2 distinct subgroups (labelled LG1 and LG2 

in fi gure 2) and the HG group split into 4 distinct subgroups 

(labelled HG1-HG4). 

Table 1 shows the characteristics of the samples in these 

groups with respect to stage, ER, PR, Her2, lymph node 

and grade status for k = 2, 3 and 7. These subgroups of LG 

and HG are strongly dissimilar with respect to the cluster 

agreement matrix, which is shown in fi gure 3. We noticed 

that the HG1 subgroup is particularly different from the 

other HG subgroups (as is also evident in fi gure 2). All 

samples in it are ER-, PR- and mostly Her2-. The HG2 

subgroup has a mixed ER signature, and the HG3 and HG4 

subgroups consist mostly of ER positive samples. Based on 

these and other signatures (see below), we identify LG1 as 

Luminal A; LG2, HG3, HG4 as Luminal B; HG1 as Basal 

and HG2 as Her2+. 

At k=7, each of the six BCA clusters always contained 

samples in both DCIS and IDC stages from the same patient. 

This suggests that breast cancer is composed of distinct 

disease subtypes that develop early and progress along 

different pathways because progression within a subtype 

is less distinct than the subtypes themselves. This strong 

heterogeneity in the genetic signature of subtypes also 

suggests that treatment decisions may benefi t by taking 

account of the subtype as well as ER, PR and HER2 status. 

Note that the ensemble consensus clustering is absolutely 

critical to distinguish the subtypes. PCA by itself could 

identify a collection of useful markers, but could not identify 

the rich stratifi cation discovered by consensus ensemble k-

clustering. 

3.1 Identifi cation of signifi cant characteristic 

markers for the LG and HG subgroups

3.3.1 Markers for the LG and the HG groups: Using a 

non-stringent SNR test (permutation P-value P = 0.10) we 

ADH DCIS IDC N Pos Neg ND Pos Neg ND Pos Neg ND Pos Neg 1 2 3 

N 33 1 32               

BCA 60 7 30 23 47 10 3 42 15 3 10 37 13 44 14 18 22 19 

LG 28 7 13 8 26 2 21 5 2 4 18 6 20 8 18 9 

HG 32 17 15 21 10 1 21 10 1 6 19 3 24 6 13 19 

LG1 11 4 5 2 11 8 3 1 10 7 4 9 2 

LG2 17 3 8 6 15 2 13 2 2 3 8 6 13 4 9 7 

HG1 5 2 3 5 5 1 4 3 5 

HG2 10 7 3 7 3 5 5 3 4 1 9 1 2 8 

HG3 13 6 7 10 2 1 12 1 2 7 2 10 3 7 6 

HG4 4 2 2 4 4 4 2 2 4 

Grade 

2 

3 

7 

ER PR Her2 Node 
Cluster level 

k 
Group Size 

Stage 

Table 1. Clinical characteristics of k = 2, 3, 7 clusters

ND stands for “not determined”. The “Node” and “Grade” status of some samples was not provided in the data. At k=2, the clustering 

splits the data into normal samples and disease samples (BCA), except for one ADH which is classifi ed with the normals.  At k=3, the BCA 

samples split into high grade (grade 2 or 3) and low grade (grade 1 or 2) categories. At k=7, the low grade samples split into two clusters 

LG1, LG2 and the high grade into four: HG1 – HG4. The HG1 samples are all ER-, PR- and mostly Her2-. The HG3 and HG4 clusters 

are mostly ER+, PR+, Her2-. The HG2 cluster has mixed ER, PR and Her2 signatures.  Based on this and other gene signatures, using the 

Sørlie et al (2003) classifi cation, we identify HG1 as the Basal subtype; LG1 as Luminal A; LG2, HG3 and HG4 as Luminal B and HG2 

as the Her2+ subtype.  
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found 223 gene markers which distinguish the group LG 

from HG. A subset of 10 markers was selected based on 

their performance on leave-one-out cross-validation 

experiments for weighted voting (WV) and k-Nearest 

Neighbors (kNN) classifi cation models. The models 

trained on these 10 markers produced only 1 FP error 

(DCIS #79) and 1 FN error (DCIS #183) in leave-one-out 

experiments. 

3.3.2 Characteristic markers for LG: Again, using the 

SNR test and leave-one-out experiments for the WV and 

kNN models, we identifi ed 10 markers which distinguish the 

LG samples from all others (HG and N) with 90% accuracy. 

We fi nd that RBSK, Homo sapiens cDNA FLJ12924 fi s, 

clone NT2RP2004709 and CRIP1 are up-regulated in the 

LG group, and EYA2, ANXA1, RUNX3, DKFZp762A227, 

GPRC5B are down-regulated in the LG group. 

Figure 3. Heatmap of the agreement matrix for k = 7 clusters. Red/green represent strong/weak agreement across clustering methods and 

data perturbations. The normals and the LG1 and LG2 are cleanly separated while the HG1, HG2, HG3 and HG4 separation is weaker.  We 

fi nd that the optimum number of clusters using gap-statistics oscillates between 6 and 7 with the HG3 and HG4 clusters merging at k = 6.

LG1                         LG2                                              N                                           HG1         HG2         HG3            HG4

-1.0                                                                                                               0.0             1.0
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3.3.3 Characteristic markers for HG: Here the 

classifi cation accuracy was 97% for the markers shown in 

the table with 3 FP and no FN errors. The top markers up-

regulated in HG are TRAM, HSPC150, TACC3, CDKN3, 

UBE2C, and top markers down-regulated in HG are X123, 

GNG7, SH3BGRL2, LOH11CR2A and Homo sapiens, 

clone IMAGE:3917549 mRNA, partial cds. 

3.3.4 Low grade substructure: Table 1 shows that both 

LG1 and LG2 are ER+, PR+ and HER2-, which explains 

their pathological classifi cation as low grade. We note that 

LG2 has a greater fraction of grade II samples compared to 

LG1 which identifi es LG2 as the more aggressive subtype. 

The genes that discriminate LG1 from other low and 

high grade subgroups include the down-regulated BIRC5 

(survivin) gene, which inhibits apoptosis and is suggested 

as a marker of poor prognosis in different cancer types 

(see Fangusaro et al 2005; Lee et al 2005). Two others 

are ACAA1 and ACOX1 enzymes, which are involved in 

fatty acid metabolism. LG2 markers include 190 genes, 

among which are many oncogenes [BCL2 (down, breast 

cancer poor prognosis marker), RAD51 (up), EGFR (up), 

RUNX3 (up), BCL9 (down) and VAV3 (down)] and tumour 

suppressor gene NME1 (up). The ER and Her2neu status 

suggest that both LG1 and LG2 are Luminals in the standard 

nomenclature (Perou et al 2000), with LG2 presenting more 

aggressive features than LG1. 

3.3.5 High grade substructure: As seen in table 1, all the 

samples in the HG1 subgroup were ER and PR negative 

while those in the HG3 and HG4 subgroups were mostly ER 

and PR positive. The HG2 samples had mixed ER and PR 

signatures. The HG1 subgroup, which is the worst prognosis 

group based on clinical characteristics, has discriminatory 

markers of oncogenes BCL2 (up), RAD51 (down); GSTP1 

Table 2.  Accuracy of weighted voting classifi ers in  distinguish-

ing samples in a given subtype from all other samples

Group Sensitivity Specifi city Accuracy

LG 89.29 90.77 90.32

LG1 81.82 91.46 90.32

LG2 100.00 90.79 92.47

HG 96.88 95.08 95.70

HG1 100.00 96.59 96.77

HG2 100.00 96.39 96.77

HG3 84.62 92.50 91.40

HG4 100.00 94.38 94.62

The accuracy scores were computed using leave-one-out 

experiments. The gene markers for classifi cation were selected 

as the top genes based on their collective power to accurately 

discriminate between a group and its complement.
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(down) gene which leads to cancer susceptibility due to 

hyper-methylation or polymorphisms, and RRM2 (down). 

HG2 markers also include up-regulated BCL2 (1.7 fold less 

up-regulated than in HG1) and down-regulated RRM2. The 

HG3 markers, include a group of down-regulated genes in 

chromosomal region 17q23-25 which harbors the ERBB2 

amplicon 17q 22.24. These genes are KPNA2 (17q23.1-

q23.3), amplifi ed in breast cancer 1 (AIBC1, 17q23.2), 

Bcl-2 inhibitor of transcription (BIT1, 17q23.2), hypothetical 

protein TANC2 (17q23.3), and two proteosome protein 

PSMC5 (17q23-Q25) and PSMD12 (17q24.2). This suggests 

the possibility that patients in the HG3 subgroup might have 

a re-arrangement or deletion of genes around the Her2/neu 

gene leading to loss of regulation or function for these genes 

which might explain why only 15% of HG3 patients are 

HER2+, while 53% are HER2 - and 15% are undetermined. 

Figure 7. Progression models for low and high grade tumors. Marker genes were placed into Weinberg categories which are indicated in 

red. Although the exact order of these steps is not known, it has been suggested from other cancers that activation of oncogenes and loss of 

tumor suppressor genes are usually early events, and induction of angiogenesis is an early to mid-stage event.
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The most notable HG4 marker is down-regulated 

transforming growth factor, beta receptor II (TGFBR2). 

Mutations in this gene have been associated with the 

development of various types of tumours. The over-

expression of this gene was found to be associated with poor 

prognosis breast tumours. Overall, gene markers and clinical 

parameters lead to the conclusion that among the high grade 

subgroups HG4 is probably the best prognosis group 

composed of grade II tumours that are all ER+ and PR+. 

Based on these observations, we identify HG1 as Basal, 

HG2 as Her2+, and HG3 and HG4 as additional subtypes of 

Luminal (Perou et al 2000). 

Figure 4 presents a heatmap of the top 10 gene markers 

characteristic of each signifi cant phenotype identifi ed in 

the data. At each k level, each set of markers distinguishes 

the subtype from all the other subtypes with an accuracy 

above 90% in leave-one-out experiments for WV and kNN 

classifi cation models (see table 2). The signatures of the 

subgroups LG1-HG4 stand out clearly. Table 2 presents 

sensitivity and specifi city scores on leave-one-out cross-

validation experiments for WV models. Note that the 

specifi city ranges from 92-97%, and the sensitivity from 

82-100%. 

3.4 Identifi cation of signifi cant markers for breast 

cancer progression

We have identifi ed the progression markers at different levels 

of granularity in the data and found that the progression of 

the disease from non-invasive to invasive status occurs 

along different pathways. We have also identifi ed the top 

10 progression markers within each signifi cant subgroup. 

Figures 5 and 6 presents the heatmaps of the expression 

levels of these markers.

Figure 7 summarizes the pathways and the genes for 

disease progression in low/high grade using an analysis 

motivated by Hanahan and Weinberg’s “Hallmarks of 

Cancer” (Hanahan and Weinberg, 2000) (and see, Hanahan 

and Folkman, 1996). Progression in the low-grade 

groups seems to correlate with changes in metabolic and 

transportation pathways, while in the high grade groups it 

is related to alterations in cell-cycle and signaling pathways, 

with distinct subsets of genes involved in each. 

Table 3 presents a summary of the signifi cant pathways 

involved in the low-and high grade subgroups. We fi nd that 

the differences between the levels in the DCIS and IDC 

groups are quite subtle and the accuracy of leave-one-out 

experiments of simple WV models trained to distinguish 

between DCIS and IDC in each group ranges between 

60-70%.

4. Discussion

The main observation of the original paper of Ma et al was 

that the molecular signature of breast cancer is already 

present in the early (ADH) stage of the disease. The genes 

that distinguish ADH from normal progressively change 

their levels away from normal as the disease progresses to 

DCIS and IDC. They also noticed that that breast cancer 

progression is defi ned by distinct markers for low and high 

grade tumours. 

Using a new technique, we refi ned these observations 

into a stratifi cation of the molecular signature of breast 

cancer progression. Using the small gene set provided in the 

data, we identifi ed at least six different subtypes of breast 

cancer with distinct patterns of progression. Four of these 

subtypes (LG1, LG2, HG3, HG4) have a Luminal signature 

(predominantly ER+, PR+, Her2–); one subtype (HG1) had 

the triple negative (ER-, PR-, Her2–) characteristic of the 

Basal subtype, and one subtype (HG2) had a predominantly 

Her2+ signature (mixed ER, mostly Her2+). The validation 

of these subtypes on a larger dataset with more genes is 

currently underway.
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