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1. Introduction

Global soil respiration is estimated to be 76.5 Pg C yr-1, which 

is 30–60 Pg C yr-1 greater than the net primary productivity 

(NPP) (Raich and Potter 1995). Therefore, soil respiration 

is a major pathway for carbon to move from terrestrial 

ecosystems to the atmosphere and even small changes can 

strongly infl uence net ecosystem production (NEP) (Ryan 

and Law 2005). The potential switching of the terrestrial 

biosphere from its current role as a carbon sink to a carbon 

source is critically dependent upon the sensitivity of soil 

respiration to global warming (Cox et al 2000; Melillo et 

al 2002). Soil respiration is therefore a key process that 

improves our understanding of the terrestrial carbon cycle 

(Rustad et al 2000; Schlesinger and Andrews 2000).

Soil respiration consists mainly of root respiration (and 

associated mycorrhizal fungi) and microbial respiration in 

temperate grasslands. Although it has received considerable 

attention in recent decades, little is known about the 

contribution of root to total soil respiration, especially in 

China’s grasslands (Jia et al 2006; Li et al 2002). Quantifying 

the contributions of these two major components to 

total soil respiration is critical to better modelling of the 

ecosystem carbon cycle (Kirschbaum 1995; Mizue et al 
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2000) and understanding the biological processes that 

control soil respiration (Ryan and Law 2005). This is not 

only because microbial decomposition of residual organic 

matter infl uences the amount of carbon stored in the soil, 

but also because microbial and root respiration may respond 

differently to changing temperature (Boone et al 1998) 

which, in turn, may induce a difference in the respiratory 

ratio between roots and microorganisms (Nina 2000).

In the present study, we compare root and microbial 

respiration in two grassland sites with the same climatic 

conditions. The studied grasslands are on the Songnen Plain, 

northeast China. They are the largest natural grasslands 

of Leymus chinensis on the Eurasian continent (Xiao 

et al 1995). Two perennial C
3
-grasses, L. chinensis and 

Puccinellia tenuifl ora, are the major dominant species in 

this area. Since the 1960s, increased needs for agriculture 

and livestock have led to serious salinization and, in turn, 

degradation of the grassland: the dominant L. chinensis has 

been replaced with P. tenuifl ora, an indicator of a degraded 

grassland community (Wang and Earle 1997). However, the 

effect of the changes in species composition caused by the 

degradation on soil respiration and carbon sequestration 

remains unknown. 

Accordingly, using two communities dominated by these 

two grass species, this study aimed to (i) compare seasonal 

changes in soil respiration, (ii) separate the contribution of 

root and microbial respiration from total soil respiration, and 

(iii) examine the changes in carbon sequestration associated 

with grassland degradation.

2. Materials and methods

2.1 Study site

The study site is located in the Yao Jingzi Grassland 

Nature Reserve (44º 45´N, 123 º 45´E, 160 m a.s.l.) in the 

southwestern region of the fl at, low-lying Songnen Plain 

in northeast China. According to the local weather station 

(Changling), the area has a typical semi-arid temperate 

continental climate with an annual mean temperature 

of 4.9 oC, annual precipitation of 470 mm, and actual 

annual evaporation of 1600 mm over the past 20 years. 

The concurrence of abundant summer heat and moisture 

favours plant growth, and grass shoots grow from May to 

September (growing season). The soil, chernozem in nature, 

results from blocked drainage and is characterized by a high 

content of sodic saline. The grassland mainly consists of L. 

chinensis, P. tenuifl ora, Calamagrostis epigeios, Chloris 

virgata and Suaeda glauca. Two communities dominated by 

L. chinensis (Community 1) and P. tenuifl ora (Community 

2), which were close to each other (less than 500 m apart, to 

ensure identical climatic conditions), were selected for the 

experiment which ran from May to September 2002. 

2.2 Methods

The two communities cover approximately 20 000 m2. 

The sample areas were 50 m ×50 m. Soil respiration, shoot 

biomass, root biomass, microbial biomass carbon (MBC) 

and soil organic carbon (SOC) were measured once or twice 

a month.

2.2a Soil respiration, soil temperature and water content: 

Twelve cylindrical chambers (13 cm × 23 cm) were randomly 

placed in each community. Each of them was inserted

3 cm into the mineral soil. Soil respiration was measured 

in situ using an alkali absorption method (Gupta and Singh 

1981) during the growing season (May–September). All 

green vegetation above the ground was cleared one day 

before the chambers were fi xed for the measurement of soil 

respiration. Although clipping shortly before measurement 

might have increased the exudation and respiration rates of 

roots (Fu and Cheng 2004), the water content and nutrient 

turnover were not affected (Kuzyakov 2006). CO
2
 effl ux 

was collected for reaction with 20 ml 1 mol l-1 NaOH for 

24 h to avoid diurnal changes (Rochette et al 1992; Rochette 

and Flanagan 1997; Zhang et al 2003). NaOH solution was 

extracted for precipitation processing using saturated BaCl
2 

solution. The amount of CO
2 

absorbed was estimated by 

titration using 1 mol L-1 HCl solution and phenolphthalein 

as a visual indicator. 

The soil temperature at 10 cm depth was measured 

adjacent to the location where soil respiration was measured, 

using a calibrated electronic thermometer equipped

with an NTC probe (Testo 110, Lenzkirch, Germany). 

Gravimetric soil water content was determined by taking 

samples from the 0–10 cm deep soil layer next to the 

chambers and then weighing the samples against a constant 

weight. 

2.2b MBC: The chloroform-fumigation extraction method 

was used to measure MBC (Vance et al 1987). Twelve 

replicate samples were taken from the 0–30 cm deep soil 

layer each time. Fumigated and unfumigated samples were 

extracted by 0.5 mol l-1 K
2
SO4 for gravity fi ltering using 

presoaked Whatman 42 fi lter paper. The fi ltered samples 

were then vacuum fi ltered with a 0.45 µm Millipore fi lter. 

Organic carbon was analysed using the high-temperature 

combustion method with a Shimadzu TOC-500 Carbon 

Analyzer. A correction coeffi cient (0.45) was used while 

converting dissolved organic carbon to MBC when SOC 

was measured using a TOC auto-analyser (Joergensen 

1996). The MBC was calculated by the following equation: 

MBC = (C
f
 –C

n
)/K

EC

where C
f
 – carbon in fumigated soil, C

n
 – carbon in non-

fumigated soil, and K
EC

 – correction coeffi cient.
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2.2c SOC: The soil samples from the 12 cores close to the 

soil respiration chambers for each time were dried at 31ºC 

for 72 h, crushed small enough to be passed through a 2 mm 

sieve, ground to 200 mm, and stored in glass bottles. SOC 

was determined by the dry combustion method (Nelson 

and Sommers 1982) using a Carlo Erba model NA 1500 

automatic C/N analyser (Hake Buckler Instruments, Inc., 

Saddle Brook, NJ, USA). 

2.2d Shoot and root biomass: Shoot biomass was measured 

by clipping vegetation samples from twelve quadrates along 

with measurement of soil respiration. Plant materials were 

divided into living and dead parts before they were oven 

dried at 65ºC for 48 h and then weighed. Root biomass was 

measured by collecting soil samples from depths of 0–30 

cm from the twelve quadrates, at the same location of the 

chambers for the measurement of soil respiration. The soil 

samples were then further stratifi ed into 3 layers according 

to the depths at which they were collected: 0–10, 10–20 and 

20–30 cm. The roots were washed and oven dried for 24 h 

at 65ºC and then weighed. All sampled root biomass was 

less than 2 mm in diameter. As there is currently no effective 

method available for separating live and dead roots in fi eld 

investigations, we distinguished live and dead roots with the 

naked eye based on colour and consistency. Live roots are 

far more resilient than dead ones and are not easily broken if 

twisted. In addition, live roots are light coloured, succulent 

and covered by root hair, whereas dead roots are dark red or 

brown-red. Live roots accounted for about 50% of the total 

root biomass.

2.2e Root respiration: CO
2
 effl uxes from the roots and 

microorganisms were separated using an inferred approach 

(Kucera and Kirkham 1971). According to this method,

the linear relationship between root biomass and soil 

respiration rate is extrapolated to yield a y-intercept value, 

which can be used to indicate the minimum microbial 

respiration in the absence of root biomass (Kucera and 

Kirkham 1971). Root respiration can be estimated by 

subtracting the microbial respiration from the total soil 

respiration. 

2.2f Estimation of annual soil respiration: Annual soil 

respiration rate (g CO
2
 m-2 yr-1) (R

ann
) was estimated from Q

10
 

models between soil respiration rate and soil temperature as 

follows: 

where Tj represents the mean daily soil temperature at 10 cm 

soil depth for j days of the year. 

Ten-day mean soil temperature at 10 cm depth (1982–

2002) was obtained from the local weather station. Daily 

soil temperature (T
j
) was calculated using the relationship 

between the 10-day mean soil temperature at 10 cm (T) and 

Julian day (t) (fi gure 1 ) as follows:

(R2 = 0.98; P<0.001).

2.2g Estimation of carbon balance: The maximum (living 

and newly formed) shoot biomass measured during the 

growing season (May–September) was taken as the annual 

above-ground net primary productivity (ANPP). The below- 

ground net primary productivity (BNPP) was estimated

using the annual increment of growth, as defi ned by

Dahlman and Kucera (1965). A coeffi cient (0.45) was 

used to convert the dry mass to carbon content (Li et al

2004). The annual carbon output was estimated by 

multiplying the annual soil respiration by the proportion 

of microbial respiration in soil respiration. NEP was 

determined as the difference between the NPP and annual 

carbon output.

2.2h Statistical analysis: Kolmogorov–Smirnov statistics 

showed that all the data sets measured are normally 

distributed (P = 0.91). The difference of means of soil 

temperature, water content, SOC, root biomass, MBC 

and shoot biomass between the two communities were

assessed using a t-test and ANOVA. Linear regression 

was used to evaluate the relationship between soil respira-

tion and root biomass. Step-wise multiple linear regres-

sion was used to identify the most infl uential abiotic and 

biotic factors for controlling soil respiration. All statistical 

analyses were performed with a signifi cance level

of 0.05 with StatView 5.0 (SAS Institute, Inc., Cary, NC, 

USA).
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j

Tj=
=

∑β
β

0
1

365
1

T =
t

 
 

+  20 8336
2

365
2 9993 6 1837. cos( . ) .

π.. +

Figure 1. Relationship between ten-day mean soil temperature at 

10 cm depth and Julian day
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3. Results

3.1 Soil respiration, soil temperature, soil water content, 

MBC, SOC, shoot biomass and root biomass

Soil respiration in the L. chinensis community (Community 

1) ranged from 2.5 to 11.9 g CO
2
 m-2 d-1 with higher values 

in the summer and lower values in the spring and autumn 

(fi gure 2c). Soil respiration in the P. tenuifl ora community 

(Community 2) showed a similar pattern, ranging from 1.5 

to 9.3 g CO
2
 m-2 d-1. During the entire experimental period, 

the soil respiration in Community 2 decreased by 28%, 

compared with Community 1 (pair comparison, P<0.001). 

Soil temperature and water content over the entire course of 

soil respiration measurements ranged from 8.3 to 29.3 oC, 

and from 8% to 21% in Community 1, respectively (fi gures 

2a, b) and did not differ signifi cantly between the two 

communities. This suggests that soil temperature and water 

content may not exert a signifi cant effect on seasonal change 

in soil respiration between the two communities.

The MBC in both communities showed a similar seasonal 

pattern: increasing from May to July and decreasing in 

September in an inverted V-shape (fi gure 2d). The MBC 

ranged from 0.3 to 1.5 g m-2 and from 0.2 to 0.5 g m-2

for Communities 1 and 2, and the SOC averaged 31

and 22 g kg-1, respectively (fi gure 2e). Live root biomass 

varied from 0.55 to 0.9 kg m-2, with a maximum in early

June (0.9 kg m-2) in Community 1, and from 0.25 to

Figure 2. Comparisons of soil temperature (a), soil water content (b), soil respiration rate (c), microbial biomass carbon (d), soil 

organic carbon (e), live root biomass (f) and shoot biomass (g) between L. chinensis- and P. tenuifl ora-dominated communities at different 

observation times. Bars indicate the standard deviation of the mean (n=12). 
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0.5 kg m-2 without signifi cant seasonal change in 

Community 2 (fi gure 2f). Shoot green biomass increased 

from May, reaching its maximum of 452 g m-2 in late August 

in Community 1, while a much smaller shoot biomass 

with a maximum of 289 g m-2 in late August was seen in 

Community 2 (fi gure 2g).

In summary, the MBC, SOC, live root biomass and shoot 

green biomass in Community 2 decreased by 55%, 28%, 

45% and 37%, respectively, compared with Community 

1 (fi gures 2d–g). There were high within-site variations of 

root biomass in the two communities; the highest coeffi cient 

of variation was 33% in Community 1 in May and 25% in 

Community 2 in mid-August (data not shown). 

Multiple step-wise regression between soil respiration 

and soil temperature, water content, shoot biomass, root 

biomass, MBC and SOC showed that soil temperature was 

the primary factor affecting seasonal variation for both 

communities (R2 was 0.68 and 0.75 for Communities 1 and 

2, respectively).

3.2 Estimation of root respiration

In terms of the soil respiration rates and their correspon-

ding root biomass, a set of linear regressive relationships 

between soil respiration (y) and live root biomass (x)

were developed on each measuring date (e.g. 15 May, 

3 June, 21 June, 15 July, 16 August, 22 August and 26 

September; fi gure 3). Fifty-nine to 90% of the varia-

tion in soil respiration could be explained by the root 

biomass for Community 1, and 44–71% for Community 2 

(table 2). 

Microbial respiration rate ranged from 0.7 to 7.43 g CO
2
 

m-2 d-1 and from 0.42 to 4.83 g CO
2
 m-2 d-1 in Communities 

1 and 2, respectively (fi gure 4). The mean microbial 

respiration rates during the entire experiment were 3.78 and 

3.23 g CO
2 
m-2 d-1 for the two communities, respectively. The 

root respiration rate ranged from 0.78 to 5.26 g CO
2
 m-2 d-1 

in Community 2 (fi gure 4), decreasing by 41% compared 

with Community 1. There was a signifi cant difference 

(paired t-test of monthly means, n=7, P<0.001) in the root 

respiration rate between the two communities, but not for the 

microbial respiration rate (paired t-test of monthly means, 

n=7, P>0.05). 

Specifi c root respiration rate (root respiration rate 

normalized with root biomass) was higher in July (8.61 

mg CO
2 

g-1 d-1) and late August (8.81 mg CO
2
 g-1 d-1) in 

Community 1 and in late June (15.65 mg CO
2
 g-1 d-1) in 

Community 2 (fi gure 4), but they were not signifi cantly 

different as a whole during the study period (paired t-test of 

monthly means, n=7, P>0.05). 

The contribution of root to soil respiration ranged from 

38% to 76%, and from 25% to 72% for Communities 1 

and 2, respectively (fi gure 4). The ratio of root respiration 

to total soil respiration averaged 56% and 43% in the two 

communities, respectively. 

Figure 3. Linear regression lines between soil respiration rates 

and live root biomass in (a) L. chinensis- and (b) P. tenuifl ora-

dominated communities.

(a)

(b)

Table 1. Temperature-based Q
10

 models (y=β
0
eβ1T). R2 is the coeffi cient of determination.

Community Q
10

 model R2 Q
10

Basal soil respiration (g 

CO
2
 m-2 d-1)

Annual soil respiration 

(g C m-2 yr-1)

L. chinensis   Y=1.282 e0.077x 0.69 2.16 2.77 360.6

P. tenuifl ora Y=0.741e0.086x 0.83 2.36 1.75 239.5

In this model, y and T are soil respiration (g CO
2
 m-2 d-1) and soil temperature (°) at 10 cm soil depth; Q

10 
and basal soil respiration

(t= 10°) were calculated using the formula e10β1

 
andβ

0
 e10β1, respectively.



Wei Wang et al380

J. Biosci. 32(2), March 2007

3.3 Soil carbon balance

The carbon input and output of Community 1 decreased 

by 34% and 12%, compared with Community 2 (table 3). 

The BNPP accounted for 47% and 46% of the NPP in the 

two communities, respectively. NEP was 54% lower in 

Community 2 than in Community 1, primarily due to its 

lower NPP (243.5 vs 383.4 g C m-2 yr-1). 

4. Discussion

4.1 Effect of degradation on grassland biomass

As shown in fi gure 2g, the maximum biomass in the disturbed 

community (Community 2) was considerably lower than that 

in the undisturbed community (Community 1) (291 vs 452 

g m-2), suggesting that degradation signifi cantly decreases 

Table 2.  Regression of soil respiration Y (g CO
2
 m-2 d-1) as a function of live root biomass x (kg m-2).

L. chinensis-dominated community P. tenuifl ora-dominated community

Date a b R2 a b R2

15 May 1.82±0.33 3.21±0.54** 0.84 2.32±0.14 2.70±0.62** 0.71

3 June 2.54±0.23 4.58±0.32** 0.94 3.11±0.34 2.56±0.80* 0.47

21 June 7.43±1.17 5.61±1.24** 0.65 4.04±1.12 15.65±2.4* 0.49

15 July 5.63±0.3 8.61±0.56** 0.91 4.83±1.05 8.71±1.26* 0.53

16 August 1.94±0.45 7.30±1.86* 0.59 4.04±0.38 3.66±1.04** 0.62

22 August 6.42±0.57 8.81±0.98** 0.73 3.81±0.54 8.43±1.56* 0.44

26 September 0.70±0.04 3.33±0.44* 0.60 0.42±0.08 3.02±0.76* 0.55

The equation for predicting soil respiration from root biomass can be expressed as Y=a+bx, where a represents microbial respiration and b 

is specifi c respiration rate of roots (mg CO
2 
g-1 d-1) (per milligram mass of live roots). Data are expressed as mean ± standard deviation.

Degrees of freedom for all the above equations were 11. * Indicates the values different from zero (P<0.05) and ** means P<0.01.

Figure 4.  Seasonal changes in microbial respiration rate (a), root respiration rate (b), specifi c root respiration rate (c) and the contribution 

of root to soil respiration (d) in L. chinensis- and P. tenuifl ora-dominated communities.
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the shoot biomass of the grassland ecosystem. A similar 

conclusion was also drawn in a grazed L. chinensis steppe 

in Inner Mongolia (Li et al 2004) and in an alpine meadow 

on the Tibetan Plateau (Cao et al 2004). On the other hand, 

in grasslands, the below-ground biomass is generally 5–10 

times higher than the shoot biomass (Iwaki 1973). In our 

study area, the ratio of below-ground to shoot biomass 

averaged 4:1 and 3:1 in Communities 1 and 2, respectively, 

close to the ratio of 4:1 in a grazed L. chinensis steppe (Li 

et al 2004) and 5:1 in a light grazing alpine meadow on the 

Tibetan Plateau (Cao et al 2004). Root biomass at 30 cm 

depth is usually 85% of that of the whole depth in temperate 

grasslands (Jackson et al 1996). The actual ratio thus may 

be somewhat higher because roots deeper than 30 cm were 

not included. 

4.2 Factors controlling soil respiration

Soil temperature and water content are known to have a 

pronounced infl uence on the seasonal dynamics of soil 

respiration (Fang and Moncrieff 2001; Reichstein et al 

2003). The physical and chemical properties of soil such as 

SOC, root density and MBC may also affect the magnitude 

of soil respiration (Raich and Tufekcioglu 2000). Our study 

showed that the soil temperature at 10 cm was the main 

factor affecting the seasonal change of soil respiration 

(P=0.02). Similar results were also found in a typical steppe 

of Inner Mongolia and an alpine meadow on the Tibetan 

plateau (Li et al 2000; Cao et al 2004). 

The reported Q
10

 values vary widely from 1.5 to 5.6 in 

grasslands (Rey et al 2002). Our estimates (2.16–2.36 in 

table 1) were very close to the value obtained (2.0–3.0) in 

an L. chinensis steppe in Inner Mongolia (Li et al 2000),

but lower than that for an alpine meadow on the Tibetan 

plateau (Cao et al 2004). The higher Q
10

 value in the latter 

may be a result of the colder climate in Tibet because soil 

respiration is shown to be more sensitive to soil temperature 

in cold areas than in warm regions (Kirschbaum 1995). 

However, the Q
10

 value calculated by fi eld data is affected 

by many other factors, such as microbial and soil chemical 

properties, and varies even at the same site at different times 

(Kirschbaum 1995). Therefore, estimates of the Q
10

 value 

derived from a short-term observation should be considered 

with caution.

4.3 Requirements and limitations of the inferred approach

The inferred approach used in the present study was fi rst 

proposed by Kucera and Kirkham (1971). This approach has 

the following shortcomings. First, large variations in root 

biomass and soil respiration could lead to a relatively low R2 

(Kucera and Kirkham 1971). Second, this method assumes 

that microbial respiration is estimated as the respiration rate 

when the root biomass is zero (in fact, at this point, microbial 

respiration is minimum). Consequently, the root respiration 

derived by this method is based on the minimum microbial 

respiration, ignoring root biomass; however, this subtraction 

in some cases may not be valid as it is based on the minimum 

root activity (i.e. minimum root biomass). Finally, plants 

will allocate available photosynthates, i.e. whenever there is 

plenty of sugar (photosynthate) available, all roots get more; 

otherwise, only some get more. Consequently, microbes 

might get plenty of sugar only when there is a threshold 

value of soluble carbohydrates in roots (i.e. increased root 

exudation). Despite these shortcomings, this method is 

relatively simple and has been widely used in recent studies 

(e.g. Gupta and Singh 1981; Behera et al 1990; Hill et al 

2004; Wang et al 2005; Jia et al 2006). In his most recent 

review, Kuzyakov (2006) concluded that this approach, 

compared with other methods, has the lowest disturbance 

and highest universality for separating the sources of CO
2
 

effl ux from soil. 

4.4 Seasonal changes in microbial and root respiration

Microbial respiration depends on temperature, moisture, 

substrate quality and quantity, maximum activity of 

respiratory enzymes and demand for respiratory products 

(Ryan and Law 2005). In our study, microbial respiration

in both communities showed similar patterns (fi gure 4a); 

higher in the summer and lower in the spring and autumn, 

which corresponded to the change in soil temperature

(fi gure 2a). 

Root respiration exhibited a markedly different seasonal 

pattern from that of microbial respiration in the two 

communities (fi gure 4b). From May to early June, root 

respiration increased by a factor of 2.2 in Community 1 and 

from May to late June, by a factor of 6.74 in Community 2 

(fi gure 4). The higher root respiration in early summer may 

Table 3. Soil carbon balance estimated for the two grassland 

communities.

L. chinensis P. tenuifl ora 

ANPP (g C m-2 yr-1) 203.4 130.9

BNPP (g C m-2 yr-1) 180.0 112.5

NPP (g C m-2 yr-1) 383.4 243.4

MR (g C m-2 yr-1) 158. 7 138.9

NEP (g C m-2 yr-1) 224.7 104.6

ANPP, above-ground net primary productivity; BNPP, below-

ground net primary productivity; NPP, net primary productivity; 

MR, microbial respiration; NEP, net ecosystem productivity.
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have resulted from the associated high physiological activity 

of the roots (Li et al 2002). The higher root respiration 

in early June in Community 1 may be due to higher root 

biomass (0.9 kg m-2) and the highest net photosynthesis 

rates. For Community 2, rapid increase of root respiration in 

late June was probably due to the higher specifi c respiratory 

activities of roots (15.65 mg C g-1 d-1) (fi gure 4d). 

The seasonal differences in pattern between microbial 

and root respiration may be resulting from the different 

sensitivity of microorganisms and roots to environmental 

factors (Kirschbaum 1995). Phenological processes are 

also likely to constrain the response of root growth and 

respiration to environmental changes (Oleksyn et al 2000). 

Root respiration rates have been reported to be correlated 

with tissue nitrogen concentrations (Kelliher et al 2004; Ryan

et al 1996) and nitrogen has the potential to alter whole-

plant source–sink relationships, and root and mycorrhizal 

biomass because of reduced allocation of carbon to roots 

(Ryan et al 2004). In addition, acclimation generally limits 

the response of autotrophic respiration to temperature and 

reduces carbon loss at sustained high temperatures (Bolstad 

et al 2003). However, because of the limited sampling 

frequencies (7 times) in our study, it is diffi cult to arrive

at a general conclusion about the dependence of root 

respiration on environmental factors. Our results toward this 

objective are preliminary, and need further investigation in 

the future.

4.5 Contribution of root to soil respiration

Contribution of root to soil respiration varies widely among 

different studies, ranging from 15% to 90% in grassland 

ecosystems (Norman et al 1992; Dugas et al 1999; Wang et 

al 2005; Li et al 2002). At our study site, the contribution in 

the growing season ranged from 38% to 76% and from 25% 

to 72% in Communities 1 and 2, respectively. Our estimate 

was consistent with the results obtained from a tallgrass 

prairie grassland in Missouri (40%, Kucera and Kirkham 

1971), a tropical grassland at Kurukshetra (42%, Gupta and 

Singh 1981) and a C
3
/C

4
 mixed grassland in Japan (31–51%, 

Wang et al 2005), but was higher than that in a semi-arid 

grazed grassland in China (15–37%, Li et al 2002). 

4.6 Annual soil respiration rate and grassland carbon 

sequestration

Our estimate (239.5–360.6 g C m-2 yr-1) of the annual soil 

respiration rate in the two communities (table 1) fell within 

the reported range (132–830 g C m-2 yr-1) for world temperate 

grasslands (Raich and Schlesinger 1992), and close to the 

value (271.3 g C m-2 yr-1) in a grazed L. chinensis grassland 

in Inner Mongolia (Li et al 2004). 

NEP is the difference between NPP and heterotrophic 

respiration, and is taken as a measure of sink or source 

strength (Schulze et al 2002). Using existing management 

conditions, most temperate grasslands worldwide are 

considered to be C sinks. Our estimate (104.6–224.7 g C 

m-2 yr-1) of NEP fell within the reported carbon sequestration 

rates of temperate grassland, ranging from 45 to 640 g C m-2 

yr-1 (Jones and Donnelly 2004). The amount of SOM retained 

in grassland soils is strongly infl uenced by management 

(Conant et al 2001; Zan et al 2001; Schuman et al 2002). 

Our results strongly suggest that degradation has decreased 

grassland carbon sequestration in the long term. The potential 

switching of the grassland ecosystem from its current

role as a carbon sink to a carbon source is critically dependent 

upon the degree of degradation. A net carbon release of

75.1 g C m-2 yr-1 was reported in a grazed L. chinensis steppe 

in Inner Mongolia (Li et al 2004). A decrease in soil C close 

to 60% was observed for the degradation induced by the 

transition from grassland to arable land (Guo and Gifford 

2002).

Although some evidence suggests that temperate grassland 

soils can sequester relatively large amounts of C, there is 

still uncertainty as to how long this can remain and whether 

there is an upper limit to C storage (Frank 2002). Grassland 

degradation infl uences both the above- and below-ground 

processes which drive the C cycle, and ultimately determine 

how much C is sequestered in grassland soils. Therefore, 

it is crucial to understand how degradation regulates these 

processes and affects the capacity to sequester amounts of C 

in grassland soils in the future. 

5. Conclusions

By comparing the seasonal changes in soil respiration, shoot 

and below-ground biomass, MBC and SOC between an 

undisturbed and a degraded community, we demonstrated 

that grassland degradation signifi cantly alters soil 

respiration rates and carbon sequestration. Such degradation 

signifi cantly decreases the productivity of grassland 

ecosystems (via shoot and below-ground production). No 

signifi cant change occurred for annual CO
2
 release from 

the soil to the atmosphere. Although the two communities 

at present serve as a carbon sink, our results strongly 

suggest that degradation will decrease grassland carbon 

sequestration in the long term. 
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