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1. Introduction

Cell volume regulation, both in invertebrates and vertebrates, 
is accomplished by activation of transmembrane fl uxes 
of ions and/or organic solutes in the direction necessary 
to reinstate proper volume. A relatively limited number 
of solutes seem to serve the function of osmolytes. Such 
solutes may be inorganic ions like K+, Na+, Cl¯ and possibly 

also some organic osmolytes (for reviews, see Goldstein and 
Perlman 1995; Häussinger 1996). Osmolytes need to be non-
perturbing solutes that do not interfere with protein function, 
even when occurring in high intracellular concentrations 
(Chamberlin and Strange 1989; Kwon and Handler 1995; 
Yancey 2005). Such a prerequisite may explain why only a 
few classes of organic compounds, viz. polyols like inositol 
and sorbitol, methylamines like betain and α-glycerophos
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phorylcholine, and certain amino acids like taurine, have 
evolved as osmolytes in living cells.

Most cells respond to acute increase in volume by 
releasing osmotically active cytoplasmic solutes via specifi c 
volume-dependent pathways, allowing the cells to undergo a 
regulatory volume decrease (RVD). The functional properties 
of these pathways as well as molecular mechanisms by 
which they are regulated are not yet fully understood. When 
cells are exposed to solutions of decreased osmolarity, they 
rapidly swell; this response is followed by a RVD, which 
occurs despite the continued presence of the hypotonic 
medium (Kimelberg and Frangakis 1986). The time taken 
to restore their initial volume varies from some minutes 
to several hours depending on the cell types (for review, 
see Häussinger 1996). Conversely, upon sudden exposure 
to hypertonic medium, the cells behave like more or less 
perfect osmometer and shrink, but display within minutes 
a regulatory volume increase (RVI), which brings back 
cell volume largely but not completely to the initial level. 
Looking at the enormous importance of osmoregulation 
in fi shes, some reports on this line are already available 
concerning the cell volume regulatory mechanisms in red 
blood cells (Fugelli and Thoroed 1986; Motais et al 1991; 
Haynes and Goldstein 1993; Cossins et al 1994), renal 
cells (Kanli and Terros 1997; Kanli and Norderhus 1998), 
intestinal cells (Lionetto et al 2001, 2002, 2005; Trischitta 
et al 2004), and few reports in fi sh liver cells (Bianchini et 
al 1988; Ballatori and Boyer 1992; Fossat et al 1997; Espelt 
et al 2003). 

Several varieties of freshwater air-breathing teleosts, 
such as singhi catfi sh (Heteropneustes fossilis), walking 
catfi sh (Clarias batrachus), cuchia (Amphipnous cuchia), 
climbing perch (Anabas spp.), snake heads (Channa spp.) are 
known to occur in Indian subcontinent, which live in slow 
fl owing, stagnant and polluted water bodies of ponds, lakes 
and swamps, and are reported to be more resistant against 
various environmental changes such as high environmental 
ammonia, hypoxic and desiccation stresses (for review, see 
Saha and Ratha 1998). Moreover, they frequently encounter 
with the problems of osmolarity changes during different 
seasons of the year, especially in the summer when the 
ponds and lakes dry up, and in the monsoon when the water 
in the same habitat gets diluted. Furthermore, these fi shes 
are known to bury themselves in the mud to avoid total 
dehydration arising out of such extreme environmental 
situations. Thus, looking at their extreme habitat, it would 
be interesting to elucidate the possible occurrence of volume 
regulatory mechanisms under anisotonic conditions in 
some of these Indian air-breathing fi shes. The present work 
examines the role of various ions and taurine in the volume 
regulatory responses of hepatocytes of one of the mentioned 
air-breathing catfi shes (Clarias batrachus) under anisotonic 
conditions. 

2. Materials and methods

2.1 Animals

Clarias batrachus, weighing 100 ± 15 g body mass, were 
purchased from commercial sources, and acclimatized in the 
laboratory approximately for 1 month at a room temperature 
of 28 ± 2ºC in plastic aquaria with 12 h:12 h light and 
dark photoperiod. Minced pork liver and rice bran (5% of 
body weight) was given as food, and the water (collected 
from a nearby natural stream) was changed on alternate 
days. No sex differentiation of fi sh was carried out during 
performing the experiments. Food was withdrawn 24 h prior 
to experiments.

2.2 Liver perfusion technique

The fi sh were anaesthetized in neutralized 3-aminobenzoic 
acid ethyl ester (MS222, 0.2 g/l) for 5 min before the 
operation to perform the perfusion of the liver. The liver
was perfused via the portal vein in a noncirculating manner 
with a haemoglobin-free medium following Saha et al 
(1995). The isotonic medium (265 mOsmol/l, determined 
by the freezing point depression method) contained 119 mM 
NaCl, 5 mM NaHCO

3
, 5.4 mM KCl, 0.35 mM Na

2
HPO

4
, 

0.44 mM KH
2
PO

4
, 0.81 mM MgSO

4
 and 1.25 mM CaCl

2

as a basic solution. The medium was gassed with O
2
/CO

2
 

(99:1, v/v) to yield a pH of 7.5 and the liver was perfused at 
a fl ow rate of 4 to 5 ml/g liver/min. The temperature of the 
medium was 30ºC. The hypotonic medium (–80 mOsmol/l) 
was prepared by removing an equivalent amount of NaCl, 
and hypertonic medium (+80 mOsmol/l) was prepared by 
adding NaCl to the standard perfusion medium as mentioned 
above. While measuring the effl ux and uptake of Na+ and Cl– 
under anisotonic conditions, initially a hypotonic medium
(–80 mOsmol/l) was prepared by omitting equivalent 
amount of NaCl from the above mentioned isotonic medium, 
followed by addition of equivalent amount of mannitol to 
adjust osmolarity to iso- and hypertonicity so that the Na+ 
and Cl– concentrations remain constant both under iso- and 
anisotonic conditions. 

To study the rate of K+, Na+ and Cl– fl uxes in the effl uent, 
livers were initially perfused for 20 min with isotonic 
medium, followed by infusion of hypo- (–80 mOsmol/l) or 
hypertonic (+80 mOsmol/l) medium. The K+ effl ux/uptake 
during anisotonic conditions from the perfused liver was 
also studied in the presence of various ion transporter 
blockers such as Ba2+ (1 mM), quinidine (1 mM), amiloride 
(1 mM) and ouabain (1 mM) individually. In experi-
ments with Ba2+, sulphate was omitted from the perfusion 
fl uid.

To study the rate of taurine effl ux/uptake under anisotonic 
conditions, the liver was initially perfused with isotonic 
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medium for 20 min, followed by infusion of hypo- (–80 
mOsmol/l) or hypertonic (+80 mOsmol/l) medium. During 
hypertonic perfusion condition, extra 0.2 mM taurine was 
added in the perfusion medium. In another set of experiments, 
4,4΄-di-isothiocyanatostilbene-2,2΄-disulphonic acid (DIDS, 
0.2 mM), an anion channel blocker, was infused in the 
perfusion medium through a precision pump. Effl uents 
were collected at 1 min interval for the determination of
the pattern of taurine effl ux/uptake by the perfused
liver. For the determination of anisotonicity induced
total effl ux/uptake of taurine, the total effl uents were 
collected for the period of anisotonic exposures and 
calculated from the control rate of effl ux under isotonic 
condition.

2.3 Analysis

The fl uxes of K+, Na+ and Cl– from the perfused liver were 
continuously monitored with K+, Na+ and Cl–-sensitive 
electrodes connected to an ion analyzer (Orion, USA). The 
net release or uptakes of these ions from the perfused liver 
under anisotonic conditions were determined by planimetry 
of areas under curves and calibrations were done by infusion 
of known amounts of KCl and NaCl with a precision pump 
(Lang et al 1989). For the measurement of changes in the 
effl uents of pH profi le, effl uents were collected at 1 min 
interval and the pH was measured with a pH-sensitive 
microelectrode (Orion, USA).

The taurine content in the tissue and in the effl uent was 
analysed with a Shimadzu HPLC (Model LC 4A) with a 
post-column derivatization method using opthaldehyde 
(OPA) reagent as a fl uorescent dye, following the method 
of Fujiwara et al (1987) with certain modifi cations (Saha et 
al 2000). The separation column used was a strong cation 
exchanger (Shim-Pack ISC-07 Li). The detector (Shimadzu 
RF-535 fl uorescent detector) was set at an emission of 455 
nm and an excitation of 365 nm, and was coupled to a data 
integrator (Shimadzu CR6A) for quantifi cation of the eluted 
peak area. The eluting mobile phase was a buffer of 0.16 
N Li-citrate containing 7% methyl cellusolve (pH 2.5); the 
fl ow rate was 0.4 ml per min, and the column temperature 
was 40ºC. After the taurine elution was complete, which 
normally takes place within 3–4 min, the column was 
re-equilibrated for 20 min with 0.2 N Li-hydroxide 
before subsequent injections. Hypochlorite reagent for 
on-line oxidation was prepared by adding 0.4 ml of the 
commercially available hypochlorite solution to 1000 ml of 
the buffer solution (pH 10.0) containing sodium carbonate 
(0.384 M), boric acid (0.216 M) and potassium sulphate 
(0.108 M). The fl uorescent reagent was prepared by adding 
2.0 g opthaldehyde (dissolved in 14 ml of ethanol, 4 ml 10% 
Brij 35 and 2 ml 2-mercaptoethanol in 980 ml of the alkaline 
buffer). 

Liver mass was also monitored in a separate set of 
experiment by placing the perfused fi sh liver on a specially 
constructed balance pan (Sartorius, Germany) (Lang et al 
1989), which allowed continuous drain of bile and extra-
hepatic fl uid.

The water content in the perfused liver was determined 
by oven drying method in a separate set of experiment 
(Goswami and Saha 1998).

2.4 Chemicals

Quinidine, amiloride, ouabain, taurine, DIDS and 
opthaldehyde were obtained from Sigma Chemical Co., St. 
Louis, USA. All other chemicals used were of analytical 
grade and obtained from indigenous sources. Deionized 
double glass-distilled water was used for all preparations.

2.5 Statistical analysis

The data collected from different replicates were 
statistically analysed and presented as mean ± SEM (n), 
where n equals the number of animals in the sample. 
Comparisons of the unpaired mean values between the 
experimental and respective controls were made using 
unpaired Student’s t-test and differences with P<0.05 were 
regarded as statistically signifi cant.

3. Results

3.1 Changes of cell volume and water content of the
perfused liver following anisotonic exposures

In a fi rst series of experiments, the effects of anisotonic 
exposures on liver cell volume were investigated. Exposure 
of walking catfi sh liver to hypotonic medium (–80 mOsmol/
l) evoked a rapid swelling of liver cells as evidenced from 
the increase of liver mass by 60 ± 5.5% within 5 min, 
followed by a gradual decrease of liver mass reaching a 
plateau almost after 25 min, but maintained a signifi cant 
(P<0.05) increase of liver mass by 12.6 ± 2.2% compared 
to isotonic control value as long as the liver was maintained 
at hypotonic perfusion medium. A representative tracing is 
depicted in fi gure 1A.

Hypertonic perfusion condition (+80 mOsmol/l) elicited 
a rapid decrease in liver cell volume as evidenced from the 
decrease of liver mass by 52 ± 5% compared to the control 
mass within 8 min, with a subsequent increase of liver 
mass, which reached a plateau almost after 30 min. Again 
a signifi cant (P<0.05) decrease in liver mass by 15.5 ± 
2.5% compared to isotonic control value was maintained at 
hypertonic perfusion medium. Figure 1B reports the tracing 
of a typical experiment.
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Furthermore, exposure of walking catfi sh liver to hypo- 
and hypertonic media resulted in signifi cant (P<0.05) 
increase and decrease of water content by 12.1 ± 1.5% and 
14.2 ± 1.7% , respectively.

3.2 Effl ux/uptake of K+ from the perfused liver following 
anisotonic exposures

As depicted in fi gure 2A, the perfusion of walking catfi sh 
liver with hypotonic medium (–80 mOsmol/l), after initial 
perfusion with isotonic medium, led to a transient increase 
of K+ effl ux, which lasted for a period of 12–15 min, 
thereafter returning back to the basal level. The extra effl ux 
of K+ during this volume regulatory process was calculated 
to be 9.45 ± 0.54 µmol/g liver (table 1). The K+ effl ux due 

to hypotonically-induced cell swelling was, however, partly 
blocked by the presence of Ba2+ (1 mM; fi gure 2B) and 
maximally by quinidine (1 mM; fi gure 2C); these inhibitors 
resulting to a K+ effl ux of only 3.32 ± 0.25 and 1.28 ± 0.09 
µmol/g liver, respectively. In comparison, the K+ effl ux due 
to hypotonically-induced cell swelling was not affected
by the presence of amiloride (1 mM) and ouabain (1 mM) 
(table 1, graphs not shown).

In contrast, perfusion of liver with hypertonic medium 
(+80 mOsmol/l), after initial perfusion with isotonic 
medium, resulted in a transient uptake of K+, which lasted 
for a period of 15–20 min, thereafter returning back to 
the basal level (fi gure 3A). The hypertonically-induced K+ 
uptake by the perfused liver was calculated to be 9.78 ± 
0.65 µmol/g liver, which remained largely unaffected by the 
presence of Ba2+ (1 mM) and quinidine (1 mM) (table 1). 
However, amiloride (1 mM) and ouabain (1 mM) drastically 
inhibited the hypertonically-induced K+ uptake to a level of 
only 1.21 ± 0.08 and 1.54 ± 0.10 µmol/g liver, respectively 
(fi gure 3B, C; table 1).

Figure 1.  Effects of hypotonicity (A) and hypertonicity (B) on 

liver mass of C. batrachus. Representative tracings from a series of 

3 similar experiments are shown.
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Figure 2. Effect of hypotonicity on K+ effl ux by the perfused 
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3.3 Effl ux/uptake of Na+ and Cl¯ from the perfused liver 
following anisotonic exposures

The perfusion of walking catfi sh liver with hypotonic 
medium (–80 mOsmol/l), after initial perfusion with 
isotonic medium, led to a transient increase of Na+ and 
Cl¯ effl ux, which lasted for a period of 2–3 min, thereafter 
returning back to the basal levels (fi gures 4A and 5A). The 
hypotonically-induced Na+ and Cl¯ effl uxes were calculated 
to be 3.68 ± 0.37 and 4.35 ± 0.25 µmol/g liver, respectively 
(table 1). Conversely, upon exposure to hypertonic perfusion 
condition, a transient uptake of Na+ and Cl¯ by the perfused 
liver was induced, which lasted again for a period of 2–3 
min (fi gures 4B and 5B), thus leading to a total uptake of 
Na+ and Cl¯ of 3.72 ± 0.25 and 4.17 ± 0.47 µmol/g liver, 
respectively.

3.4 Changes of pH profi le in the effl uent following
perfusion of liver with anisotonic media

As shown in fi gure 6A, the exposure of walking catfi sh liver 
to hypotonic (–80 mOsmol/l) medium, following an initial 
perfusion with isotonic medium, resulted in an increase of 
pH of the effl uent by 0.2 pH unit, which later diminished to 
an increase of about 0.15 pH unit throughout the period of 
hypotonic exposure. In contrast, hypertonic (+80 mOsmol/l) 
exposure of liver resulted in an initial decrease of pH by 
about 0.2 pH unit, which later restricted to a decrease of 
0.17 pH unit throughout the period of hypertonic exposure 

Table 1. Extra effl ux/uptake of K+, Na+, Cl¯ and taurine (µmol/g liver) in the presence/absence of different inhibitors from the 

perfused liver of C. batrachus following anisotonic exposures.

Conditions K + Na + Cl¯ Taurine

Hypotonic (–80 mOsmol/l) + 9.45 ± 0.54 + 3.68 ± 0.37 + 4.35 ± 0.25 + 5.68 ± 0.38

Hypotonic + Ba 2+ (1 mM) + 3.32 ± 0.25 – – –

Hypotonic + Quinidine (1 mM) + 1.28 ± 0.09 – – –

Hypotonic + Amiloride (1 mM) + 8.94 ± 0.38 – – –

Hypotonic + Ouabain  (1 mM) + 8.19 ± 0.42 – – –

Hypotonic + DIDS (0.2 mM) – – – + 0.41 ± 0.05

Hypertonic (+80 mOsmol/l) – 9.78 ± 0.65 –3.72 ± 0.25 –4.17 ± 0.47 –6.38 ± 0.45

Hypertonic + Ba 2+  (1 mM) – 9.02 ± 0.32 – – –

Hypertonic + Quinidine (1 mM) – 8.98 ± 0.28 – – –

Hypertonic + Amiloride (1 mM) – 1.21 ± 0.08 – – –

Hypertonic + Ouabain (1 mM) – 1.54 ± 0.10 – – –

Hypertonic + DIDS (0.2 mM) – – – – 5.74 ± 0.35

–, Not determined

Values are expressed as  mean ± SEM (n=3).

Figure 3. Effect of hypertonicity on K+ uptake by the perfused 

liver of C. batrachus in the absence (A), and in the presence of 

amiloride (1 mM) (B) and ouabain (1 mM) (C). Representative 

tracings from a series of 3 similar experiments are shown.
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(fi gure 6B). Thus, hypo- and hypertonic exposures resulted 
in alkalization and acidifi cation of effl uents, respectively, 
which were coming out of the perfused liver.

3.5. Effl ux/uptake of taurine from the perfused liver
following anisotonic exposures

As shown in fi gure 7A, the perfusion of liver with hypotonic 
medium (–80 mOsmol/l), following initial perfusion of 
liver with isotonic medium, caused a transient increase of 
taurine effl ux from the perfused liver for a period of 10–15 
min. The total effl ux of taurine during hypotonic exposure
was calculated to be 5.68 ± 0.38 µmol/g liver (table 1). 
However, the hypotonically-induced taurine effl ux was 
inhibited almost completely by the presence of DIDS
(0.2 mM), which is an anion exchanger blocker, thus 
restricting the taurine effl ux of only 0.41 ± 0.05 µmol/g liver 
(table 1).

In contrast, when the liver was perfused with hypertonic 
medium (+80 mOsmol/l) in the presence of taurine (0.2 
mM), there was a continuous uptake of taurine, which lasted 
for about 30–40 min (fi gure 7B). This uptake of taurine was 
calculated to be 6.38 ± 0.45 µmol/g liver (table 1). However, 

the hypertonically-induced uptake of taurine could not be 
inhibited by the presence of DIDS (0.2 mM) (fi gure 7B; 
table 1).

4. Discussion

Cell-volume regulation is critical for aquatic species in 
dealing with variations in the external environment as well as 
with changes in the composition of extracellular body fl uids. 
An important aspect of these volume regulation mechanisms 
appears to be to control the net transport of the intracellular 
solutes across the cell membrane (Fugelli and Rohrs 1980). 
The present study demonstrates that the perfused liver of 
walking catfi sh (C. batrachus) spontaneously undergoes 
RVD or RVI following exposure to continued hypo- or 
hypertonic stress, respectively. Hypotonic exposure (–80 
mOsmol/l), by lowering the osmolarity of the perfusion 
medium, caused a transient increase of liver mass, followed 
by gradual decrease of liver mass within a period of
20–25 min (fi gure 1A). This was accompanied by the 
transient release of K+, Na+ and Cl¯ from the perfused liver 
(fi gures 2, 4, 5; table 1) almost parallel to the time required 
for restoration of liver cell volume near to the basal level 

Figure 4. Effects of hypotonicity (A) and hypertonicity (B) 

on Na+ effl ux/uptake by the perfused liver of C. batrachus. 

Representative tracings from a series of 3 similar experiments are 

shown.
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Figure 5. Effects of hypotonicity (A) and hypertonicity (B) on
Cl¯ effl ux/uptake by the perfused liver of C. batrachus. 
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by releasing excess of water. Marked blunting of K+ release 
by the perfused liver during hypotonic perfusion condi-tion 
was achieved in the presence of Ba2+ and more blunting in 
the presence of quinidine (fi gure 2; table 1). In contrast, 
amiloride and ouabain had no effect on K+ release (table 1). 
Thus, hypotonicity appears to activate the quinidine- and 
Ba2+-sensitive K+ channel as a means of RVD as noticed 
in other cell types (Larson and Spring 1984; Welling et al 
1985; Haddad and Graf 1989), and more recently in the 
isolated intestinal cells of a euryhaline teleost (Gobius 
niger) (Trischitta et al 2004). Another possibility of loss 
of K+ and Cl¯ from the liver cell following hypotonicity 
could be by activation of K+-Cl¯ co-transporter similar to 
the observations made in trout hepatocytes (Bianchini et al 
1988) and the erythrocytes of many species (Häussinger and 
Lang 1991). However, it needs to be confi rmed by using a 
specifi c inhibitor for K+-Cl¯ co-transporter.

Conversely, upon hypertonic exposure, there was transient 
decrease of liver mass (fi gure 1B), which was accomplished 
by the transient uptake of K+, Cl¯ and Na+ ions across the 

cell membrane as a means of RVI (fi gures 3–5; table 1). The 
striking transient uptake of K+, however, was predominantly 
inhibited by amiloride and ouabain with no affect of Ba2+ 
and quinidine on K+ effl ux by the perfused liver. This was 
accompanied with acidifi cation of effl uents, which was 
coming out from the perfused liver. All these observations 
are clearly indicative of possible involvement of Na+/H+ 

antiporter and Na+-K+-2Cl¯ symporter systems, and possibly 
also the Na+ conductance system in the RVI process in
this fi sh hepatocytes during at least high increase of extra-
cellular osmolarity (+80 mOsmol/l). In rat hepatocytes,
RVI is mainly achieved by the activation of only Na+/H+ 
antiporter system during a small increase of extra-cellular 
osmolarity, but during high increase of extra-cellular 
osmolarity, all the three transporter systems were reported 
to get activated (Wehner and Tinel 2000). However, it is 
diffi cult to say at this moment whether the same strategies 
have been evolved in our fi sh, since the uptake of various 
ions was studied only during high increase of extra-cellular 
osmolarity. 

Figure 6. Changes of pH profi le in the effl uent following 
perfusion of C. batrachus liver with hypotonic (A) and hypertonic 
(B) media. Values are plotted as mean ± SEM (n = 3).
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Volume regulation is often associated with changes 
in intracellular pH (Gleeson et al 1990), as various ion 
transports, involved in volume regulation, are also of 
importance for the control of pH. Our observations indicated 
that following hypotonocity, the pH profi le in the effl uent 
showed an increase (fi gure 6A), causing alkalinization
of the effl uent and possibly also acidifi cation of intracellular 
fl uid, similar to earlier reports in trout hepatocytes 
(Krumschnabel et al 2003). Part of this could be due to 
release of bicarbonate parallel to K+ release as has been 
suggested in rat liver (Häussinger et al 1990), as well as 
could be due to decreased pyruvate and lactate release as 
a result of inhibition of glycolytic fl ux (Goswami and Saha 
1998).

On the other hand, hypertonicity resulted in decreased 
pH of the effl uent (fi gure 6B), thus causing intracellular 
alkalinization possibly by the activation of coupled
Na+/H+ and Cl-/HCO

3
- co-transporters. Such mechanisms 

have been reported in urodele (Amphiuma) erythrocytes
(Cala 1985), dog erythrocytes (Parker 1983), human 
lymphocytes (Grinstein et al 1984), rat hepatocytes (Graf
et al 1988; Corasanti et al 1990), Ehrlich ascites tumour cells 
(Pederson et al 1996), and trout hepatocytes (Krumschnabel 
et al 2003). As already stated, uptake of K+ ions was inhibited 
by amiloride and ouabain following hypertonicity with 
possible involvement of Na+/H+ antiporter, thus suggesting 
that Na+/H+ exchange is the main mechanism involved
in intracellular alkalinization under hypertonicty, along
with increased effl ux of lactic acid (Goswami and Saha 
1998).

In addition to inorganic ions, ability to use amino acids 
such as taurine in volume regulation has been demonstrated 
in many species, both invertebrates and vertebrates (for 
review, see Perlman and Goldstein 1999). In walking
catfi sh, the hepatic taurine concentration was recorded 
to be 15.61 µmol/g wet wt. and 9.80 µmol/g wet wt., 
respectively, in the fresh liver (Saha et al 2002), and in 
the liver after perfusion with isotonic medium for 30 min 
(Saha et al 2000), thus constituting about 35–40% of 
total free amino acids. Such a high physiological hepatic 
taurine concentration as reported earlier, and our present 
investigation on taurine effl ux/uptake by the perfused liver 
during anisotonicity suggest that taurine plays an important 
role in cell volume homeostasis in walking catfi sh. Hypotonic 
cell swelling caused prompt transient release of taurine
(5.68 µmol/g liver) from the perfused liver within a period 
of 10–15 min, and hypertonic cell shrinkage caused a 
transient uptake of taurine (6.38 µmol/g liver) from the 
extra-cellular fl uid within a period of 30–40 min (fi gure 7; 
table 1). The role of taurine in cell volume regulation has
been greatly emphasized in skate (Raja erinacea) 
(Ballatori and Boyer 1992) and trout (Oncorhynchus 
mykiss) hepatocytes (Michel et al 1994), and it has been 

suggested that taurine effl ux plays more signifi cant role 
in cell volume regulation rather than K+ during hypotonic
cell swelling. However, in the walking catfi sh liver, in 
addition to taurine, various ions also appear to play equal 
roles in cell volume regulation. The taurine effl ux by the 
perfused liver of walking catfi sh due to hypotonicity was 
found to be sensitive to DIDS, an anion channel blocker 
(fi gure 7A), however, the taurine uptake due to hypertonicity 
was unaffected by the presence of DIDS (fi gure 7B). In 
contrast, in skate erythrocytes, both the effl ux and uptake 
of taurine, due to hypo- and hypertonicity, respectively, 
were reported to be sensitive to DIDS (Goldstein and 
Brill 1991). Perlman and Goldstein (1999) suggested that 
the fl ux of taurine under anisotonic conditions could be 
bidirectional and takes place through Na+-independent 
process. However, in the walking catfi sh liver, both the 
effl ux and uptake of taurine during hypo- and hypertonicity, 
respectively, appear to be unidirectional, i.e., the effl ux 
presumably via the activation of a specifi c volume regulated 
anion channel (band 3 protein) (Goldstein and Brill 1991), 
and the uptake presumably via the activation of a specifi c 
taurine transporter, similar to the observation made in rat 
hepatocytes (Warskulat et al 1997). A detailed investigation, 
however, is needed to be carried out to clarify further the real 
mechanism(s) of transport of taurine and the mechanism(s) 
of regulation of transporters under anisotonic conditions in 
this walking catfi sh.

In conclusion, it appears that via the involvement of 
inorganic ions and organic osmolytes, the walking catfi sh 
liver possesses various volume regulatory mechanisms. 
These help it to adapt under anisotonic conditions, and 
possibly also under other extreme conditions. This is in 
contrast to the situation in goldfi sh, which do not possess
the proper volume regulatory mechanisms, and try to 
maintain intra-cellular ionic homeostasis under various 
extreme environmental conditions including that of 
anisotonic and hypoxic/anoxic conditions (Espelt et al 
2003). Although the hepatic cells of the walking catfi sh 
possess volume regulatory mechanisms, cells remain in a 
partly swollen or shrunken state as long as they are exposed 
to anisotonic conditions. As reported earlier, this causes 
signifi cant metabolic changes related to carbohydrate 
metabolism and oxidative stress under anisotonicity 
(Goswami and Saha 1998; Goswami et al 2004; Saha and 
Goswami 2004).
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