Series

Living in a physical world
VII.
Gravity and life on the ground

STEVEN VOGEL
Department of Biology, Duke University, Durham, NC 27708-0338, USA

(Fax, 919-660-7293; Email, svogel @duke.edu)

1. Introduction

Unless some energy-demanding process counteracts its
effect, gravity inevitably makes aerial life descend. For ter-
restrial life, gravity acts less obviously, less immediately,
and less consistently. Sometimes it matters; sometimes
other agencies eclipse its effects. Sometimes it acts as
impediment or nuisance; sometimes it plays a crucial posi-
tive role. In short, gravity has more diverse consequences
and has €licited a wider range of biological devices for
organisms that live on the ground.

For one thing, much more depends on the distinction
between gravity, thus weight, and inertia, thus mass.
Steadily lift an object, and you work against gravity; pull
downward, and you enlist gravity’s assistance. Sliding an
object steadily sideways may entail no irreduceable resist-
ance, but the frictional force you do feel still comes from
gravity, from the press of the object against the substratum.
But accelerate an object, and you work against its mass. Big
Neanderthal thrusting spears put gravity to use, working
best with heavy bodies that |eaned forward over well-plant-
ed feet to get sufficient purchase on the ground. Lighter,
thrown spears depended more on inertial mass — a running
body, in effect no purchase at al, could aid a launch.
Similarly, alighter person hasto lean further outward when
opening a substantial door. The lesser weight needs to be
more effectively applied to produce the sideways force that
will accelerate the mass of the door. Muscularity is a sec-
ondary matter.

For another, organisms consist of both solids and liquids.
In practice the two phases of matter face gravity in slightly
different guisesthat reflect the difference between compres-
sive stress and hydrostatic pressure. Both variables have
dimensions of force per unit area, but in a specific direction
for stress while omnidirectional for pressure. Stack solid
bricks ever higher (with pads between to ensure uniform
force transfer), and eventually the lowest will crush. That
crushing point is reached when the compressive strength of
brick, or force-resistance relative to cross section, of about
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20 MPa (or MN m—2), equals the weight of the column rel-
ative to cross section. If made of bricks whose density is
2000 kg m3, the column will be about 1000 m high. Taper
changes the picture — a column tapering upward can extend
farther; one expanding upward will not reach as far. With
similar reasoning, Weisskopf (1975) estimated the maxi-
mum height of a mountain as 10 km, about 10% higher than
our present highest; in his analysis, plastic flow rather than
crushing set the limit, so taper mattered little.

Extend a pipe of liquid water upward in the air, and the
pipe eventually bursts at ground level. The column of water
extending upward stresses (in the sense above) the material
of the pipe, but it does so in proportion only to the height of
the column — cross section and contained volume have no
direct relevance. The pressure difference, Ap, across the
walls of the pipe will be the product of the liquid's density,
p, gravitational acceleration, g, and the column’s height, h,
in the familiar equation for both manometry and conver-
sions of pressure units:

Ap = pgh. 1)
Transforming that pressure to tensile stress (oy) in the wall
of the pipe depends, obviously, on the thickness of the wall
of the pipe (Ar, assumed well below the radius r) and, less
obvioudly, on its size, here the radius:

o, =207 _ Pl @
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This last equation is prescient with biological implica
tions. For a given pressure and a wall material of a given
tensile strength, a narrower pipe (lower r) will manage with
athinner wall (Ar). For example, your capillaries withstand
pressures about 1/3 of that in your aorta despite having
walls 2000X thinner. They manage that apparently paradox-
ical feat (convenient for material exchange) because their
diameters are about 4000X less than that of the aorta. As
one can see from eq. (2), they feel about 6X less tensile
stress in their walls rather than the many times more that
one might guess (Zweifach 1974; Caro et al 1978). Or,
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anticipating just a bit, since neither cardiac blood pressure
(4Ap) nor maximum muscle stress (o) changes with body
size, the thickness of the ventricular wall (Ar) will remain a
constant fraction of heart radius itself (r) (Seymour and
Blaylock 2000).

Here | will examine three situations in which gravity
plays arole, asking what sets blood pressures for animals of
different sizes and with what consequences; what deter-
mines the gait transition speeds for legged animals; and
what sets the heights of trees and forests.

2. Circulation and hydrostatics

The scaling of the circulatory components of vertebrates,
especially mammals, has come in for renewed attention in
recent years. Heart mass and total blood volumeincrease in
direct proportionality to body mass (< my*1). Capillary
length goes up slightly with mass (e my,*1/5), while capil-
lary density (e« m;~Y6) and maximum heart rate (< m,;~15)
go down. Maximum oxygen consumption and cardiac out-
put go up but not as fast as body massitself (both o< my,*7/8).
But not al variables vary with mass; in particular, blood vis-
cosity, capillary and red blood cell diameters, aortic flow
speed, and average arterial blood pressure remain nearly the
same. (Exponents from Baudinette 1978, Calder 1984 and
Dawson 2005.)

In looking for gravity’s consequences, we ought to take
a closer look at that size-independence of blood pressure.
That constancy, first noted over half a century ago, has
become ever better supported. For mammals, the average of
systolic peaks and diastolic minima (often taken as a third
of systalic plus two-thirds of diastolic to get closer to atrue
time-averaged mean), is about 12,900 Pa (97 mm Hg). So
we humans are typical, with our systolic pressure of about
16,000 Pa (120 mm Hg) and diastolic pressure of 10,500 Pa
(80 mm Hg). For birds average pressure runs somewhat
higher, 17,700 Pa (133 mm Hg) (Grubb 1983).

From our present viewpoint, constancy of blood pressure
seems paradoxical. Terrestrial animals amount to ambul ato-
ry manometers, obeying eg. (1), with a blood density of
about 1,050 kg m3 for p, and thus with a pressure gradient
of 10,300 Pa m1 from head to toe. Without auxiliary
pumps, blood pressure at head height has to drop as body
height increases. Thus anormal human has a diastolic blood
pressure of about 5,300 Pa (40 mm Hg) in the head and
20,000 Pa (150 mm Hg) in the feet (Schmidt-Nielsen 1997).
While gravity cannot be turned off, the relatively high pres-
sure gradient needed to keep blood flowing through the
resistive vessels ordinarily exceeds that gravitational gradi-
ent. Health care people learn to cuff the arm at heart height
when taking blood pressures, although (by my informal sur-
vey) almost none of them know just why or what error an
improper height introduces. With that 5,300 Pa (a little
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lower if hypotensive) we manage to keep blood flowing
steadily and our brains decently supplied with oxygen —|
have seen no claim that mental agility decreases with body
height. Roughly 4,000 to 6,000 Pa (diastolic) appears suffi-
cient to keep a mammalian brain in business.

An animal with its head a meter above its heart should be
in serious trouble at standard mammalian cardiac output
pressure — during diastole, blood will cease flowing at all.
Half a meter should be about the limit, with gravity drop-
ping diastolic pressure by 5,100 Pa (almost 40 mm Hg).

In fact, animals that hold their heads high do not have
normal mammalian blood pressure. Most sources of scaling
exponents include some parenthetical remark such as
“excluding the giraffe” (Calder 1984) after noting the stan-
dard and its nearly size-independent scaling. That exclusion
represents not some special case but a necessary threshold
for gravitational compensation. We might view the situation
with the aid of adimensionlessratio, a*“ gravitational hazard
index” (GHI). Such an index puts the height of animal in
pressure units, that is, as if it were a blood-filled manome-
ter obeying eg. (1); it divides this “manometric height”
(pgh) by average arteria (heart-high) blood pressure:

GHI = p;g_h. ©)
Ap

Figure 1 considers average blood pressures relative to
this GHI. (One should recall just how labile a variable is
one’'s own pressure and recognize the limitations of data
from animals of even less certain disposition.) Two limits
on blood pressure can be discerned. A lower horizontal line
must represent the minimum average arterial pressure need-
ed to overcome the resi stance of the systemic system of con-
duits; it has a value of about 10,000 Pa (75 mm Hg). A ver-
tical line to the right of the data points represents the limit
set by the need to supply abrain at some minimum pressure
after gravity exacts its tax on cardiac output. It appears to
have a value (dimensionless) of about GHI = 1.7. Bear in
mind the use of overall height instead of heart-to-head
height and zero rather than some necessary minimum cra-
nial pressure.

Small mammals can ignore gravity, while large (at least
tall) ones most definitely must care. In effect, mammalstol-
erate the gradual diminution of cranial blood pressure with
increasing height — up to a point. That point corresponds to
animalsonly dlightly taller than ourselves. (And thus dight-
ly hypotensive or unusually tall humans manage quite well.)
Whilewe havetoo few reliable datafor mammalstaller than
ourselves, we have no reason to suppose that their blood
pressure does anything other than tracking the sum of two
components, that set by the resistance of the system and that
set by the need to raise blood against gravity.

The perceptive reader may think of a simple evasion of
this problem of getting blood up to the head —in a word,
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Figure 1. Blood pressures of mammals, with names of the larger ones, plotted against gravitational hazard index (GHI). Most of the
pressure data come from Seymour and Blaylock (2000), with afew additions and confirmations from www.ivis.org; heights have been esti-

mated from the photographs and shoulder heights in Nowak (1991).

siphoning. Since vessels are full, descending blood could
draw blood upward, reinvesting the energy of decent to
raise blood. The issue of siphoning has provoked no small
amount of controversy; at present the weight of evidence
opposes it (Pedley et al 1996). Tal mammals do generate
the high pressures needed to raise blood without siphoning
—one of the incentives for work on giraffes. Blood vessels
in the head appear reinforced against conventional outward
aneurysms rather than inward collapse. And the descending
veins are all too collapsible, so blood commonly descends
in boluses rather than a continuous stream. Of course one
should not rule out the possibility that at least some siphon-
ing still occurs under some circumstances, perhaps during
vigorous aerobic activity.

At the same time, blood vessels in the legs must be
strong enough to take both the higher cardiac pressure and
the extra gravitational component. Which, not surprisingly,
they are. In addition, the entire legs must be wrapped with
an especialy inextensible integument lest the extracellular
space become oedematous. Which they are as well. In
giraffesin particular, the vessels of head and neck need sim-
ilar reinforcement, almost certainly important in preventing
aneurysms when an animal lowers its head to drink.

Between their higher average blood pressures and lack of
very tall extant members, birds should never hit an equiva
lent limit. One does wonder about giant moas, extinct for the

past 800 years—the wall thickness of some miraculously
preserved artery would probably allow reasonable estima-
tion of their blood pressure. By contrast, reptiles (or “other
reptiles’ to some) present a much more interesting issue.
Blood pressures run about a third of those of mammals, so
the vertical limit line of figure 1 should occur at athird of
the equivalent mammalian body height — about 0.57 rather
than 1.7. Most extant reptiles are either small or lie low to
the ground and should have no problem with gravitational
pressure loss even so. Not al, though; in particular, some
fairly long snakes climb trees and go over obstacles, mak-
ing “fairly long” into “fairly tall.” In fact, the average heart-
level blood pressures of long snakes vary widely, from
about 3,300 Pa (25 mm Hg) in aquatic species to around
10,500 Pa (80 mm Hg) in terrestrial climbers. More remark-
ably, terrestrial climbers position their hearts substantially
closer to their anterior ends— in a comparison of a python
and afile snake of about equal length, about 25% of snout-
vent distance versus 37%. In addition to these differences,
climbers have reinforced body walls in their posterior
regions and especially well-developed baroregulatory
reflexes (Seymour and Arndt 2004).

No basic inferiority of reptilian heart muscle should rule
out the giraffe'strick. More likely, their basic lung-shunting
scheme, dividing cardiac output between interconnected
systemic and pulmonary circulations, presents a barrier. We
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mammals (and birds) have no such connection and an
unalterably serial circulation. Volume flow (Q) through the
lungs must exactly equal volume flow through the systemic
circulation, depriving us of the ability to reduce pulmonary
flow during, for instance, diving. But we gain the ability to
run the pulmonary circuit at a different pressure (Ap) (typi-
caly afifth or sixth) than that elsewhere. In effect, we keep
the cost (ApQ) of pulmonary pumping low with a reduced
Ap; reptiles keep the cost low with a reduced Q.
(Crocodilian reptiles, with optional shunting, may have the
best of both worlds; but they live in a severely horizontal
world so the problem is moot.)

Extant reptiles may mainly keep their heads down, but
one must wonder about dinosaurs, those famously tall
reptiles. To take an extreme case, Brachiosaurus may have
carried its head as much as 8 m above the heart, with an
overal height of 12 m (Gunga et al 1995). A GHI limit of
1.7 suggests an average heart-level blood pressure of 73,000
Pa (550 mm Hg). Recognizing the atypically low heart and
using (10,000 + pgh) instead gives a pressure of 92,000 Pa
(690 mm Hg). Either far exceeds that of a giraffe. One must
assume that Brachiosaurus kept its head up —as Carrier et
al (2001) pointed out, carrying a head so far in front of the
center of gravity would have severely impeded turning, and
the vertebrae certainly permit such posture. Still, we can
imagine a variety of solutions or evasions. Brief cranial
anoxia may have been tolerated. Or perhaps these creatures
had subambient cranial blood pressures, driving flow by the
pull of siphonsrather than the push of pumps. A partial solu-
tion may not be especialy obscure. Birds evolved from (or
are) dinosaurs, and birds have fully serial circulatory sys-
tems. That dinosaurs did likewise thus involves no great
stretch of any evolutionary scenario, according to one of
their intimates, Kevin Padian (personal communication).

3. Towalk or torun

Almost al our terrestrial vehicles move on rotating wheels.
Occasionaly we even use temporary, axle-less wheels,
moving heavy objects on rollers by shifting them from rear
to front as they emerge, one by one. Physics imposes no
irreducible minimum cost —only imperfect stiffness of
wheels and path, friction of wheel bearings, accelerations,
slopes, and air resistance impede motion. Railroads, with
metal wheels and level, metallic tracks, could provide eco-
nomic transport with the inefficient steam engines of two
centuries ago, long before road vehicles could shift from
draft animals. Whedls, especially with axles, are splendid
devices.

No terrestrial animal goes from place to place on wheels
and axles. One can argue (as did Gould 1981) that evolu-
tionary constraints preclude their appearance. Or one can
argue (as did LaBarbera 1983) that we easily overrate the
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utility of wheels, that they lack versatility and, in particular,
work badly on either soft or bumpy surfaces. That latter
argument receives at least tacit endorsement by recent
attention (mainly military) to legged robots for off-road
use, emulating the general arrangements of animals such as
ourselves.

The use of legs may be widespread but it cannot be
described as energetically efficient. However many legs an
animal uses, it faces a basic difficulty that rolling wheels
circumvent. Legs work by reciprocating rather than rotat-
ing, which means that any leg of finite mass must waste
work accelerating at the start of a cycle and then decel erat-
ing again at the end. Of course an evasion comes immedi-
ately to mind — bank the decelerative work for reuse in the
subsequent acceleration. What kind of short-term battery,
then, might store that work? Electrochemical storage could
be used, like the regenerative brakes of some hybrid auto-
mobiles, but no natural examples have yet come to light. Or
inertial storage might serve, asin aflywheel. Again we can
point to no obvious natural case, although bicycles, passive
locomotory prostheses, make some use of the scheme.

Two kinds of brief batteries do find widespread use—
lifting and then lowering masses against and with gravity,
and straining and then releasing springs. Interestingly, ani-
mal s cannot be dichotomized by their use of one or the other
of these fundamentally different ways to store energy.
Instead, most legged terrestrial animals depend on both,
shifting from one to the other at a specific speed. At low
speeds, gravitational energy storage does the job in what we
call walking gaits; at higher speeds elastic energy storage
serves in the various running gaits. It would be a rare cul-
ture that lacks specific words for at least these two gaits, so
obvious is the distinction.

Quite recent — surprisingly recent — is the recognition that
this shift from gravitational to elastic energy storage under-
lies the abrupt transition. Traditionally, walking gaits have
no fully aerial phase while running gaits include at least a
brief aeria phase. True enough, except for elephants (at
least), which trot without an entirely aerial phase, but that
classic distinction holds far less prescience. The redlizations
both that the basic game consisted of offsetting the ineffi-
ciency of legged locomotion and of the role of gait shifting
we owe to R McNeill Alexander and his associates
(Alexander 1976; Alexander and Jayes 1983 and other
papers and books). In addition they have done as much per-
haps as everyone else put together in working out its impli-
cations. The crux of the matter takes few words. In walking
gaits, whether bipedal or polypedal, gravitational storage
does the job, and almost the entire body mass contributes to
the functional weight. In running and hopping gaits (trotting,
galloping, cantering, skipping, bounding, etc.) stretched ten-
don does most of the work of elastic storage, with substan-
tially lesser contributions from muscle and bone.
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How gravitational energy storage can ease a task can be
easily demonstrated. Swing alower leg back and forth while
sitting on the edge of a desk and measure the period. Plug
that time, t, into the standard equation for a pendulum,

t= 271'\/7, 4
g

and you get an effective length, |. My 1.1 s swing predicts a
length of 30 cm, a reasonable measure of the distance from
kneeto theleg's center of gravity. The exerciseisnot entire-
ly trivial —it illustrates the ease with which one's neuro-
muscular system phases its output to maintain that frequen-
c¢y. Put on a heavy shoe, and you swing with a longer peri-
od, again with no initial awkwardness. Try to change swing-
ing frequency and you find yourself working a lot harder.
Similarly, when you walk, you immediately adopt a ‘ natu-
ra’ pace, increasing or decreasing speed as much by chang-
ing stride length as by changing frequency. A pendulum
length for a normal adult pace of 1.4 s per stride is about
50 cm, not unreasonable for hip to center of gravity of aleg
—ignoring some hias and complications from the con-
strained motion of aleg in contact with the ground. About
the location of the pendulum, though, the extrapolation
from leg swing to walking misdirects us.

Just how gravitational storage operates in walking gaits
turns out to be less easily specified; indeed it operatesin a
distinctly odd manner — perhaps the reason it escaped analy-
sis for so long. Were our walking to resemble the swinging
of an ordinary pendulum, we would reach greatest speed
and our centers of gravity would be lowest in mid-step. In
fact, we are highest, not lowest, and slowest, not fastest, in
mid-step, as we vault over relatively extended legs. In addi-
tion, as we walk, we sway dlightly side to side at half the
frequency at which we move up and down.

Walking, again whether bipedal or polypedal, is common-
ly described in terms of the motion of an inverted pendulum.

The head and torso provide amost all the relevant mass
whose center of gravity matters, rather than the mass of the
legs, despite their more rapid motion. As shown in figure 2,
head and torso travel in aseries of arcs, convex upward rather
than downward, as in a conventional pendulum. One gets
some idea of the way kinetic and gravitational energies inter-
change by thinking of an egg rolling end-over-end down a
sope—speed and height of center of gravity peak at opposite
phases of its motion. While an inverted pendulum does not
correspond to an intuitively obvious physical model, the anal-
ogy has proven analytically powerful.

One might think of walking as a process of lifting one's
center of mass and then allowing it to fall forward, the com-
bination forming an arc. Gravity then imposes a distinct
limitation by setting the downward acceleration of that
forward fall. That allowed Alexander and Jayes (1978) to
estimate the maximum speed of walking, using only a few
empirically-supported assumptions. First, in walking, at
least one leg must aways be on the ground —that is, the
“duty factor” or temporal ground contact fraction cannot be
less than 0.5. And second, relative stride length — stride
length over hip-to-ground length — should peak at the same
value for walkers of any size. Finally, the walkers should be
similarly proportioned and walk with similar maximum arc
angles for their strides. They predicted that the limit on
downward acceleration would limit walking speeds to a
value no more than about 0.4 or 0.5 times a particular
dimensionless ratio, v2/gh. The latter is the quotient of for-
ward speed, v, squared to gravity times a height, h, taken as
that of the hip joint from the ground.

The ratio happens to have the same arrangement of vari-
ables asthat between kinetic energy and gravitational poten-
tial energy,

m’ Vv
= (54)

mgh _E’

Figure 2. The motions of the body in a half-step of walking. At mid-stride the body is highest and the speed (indicated by distances
between spots at standard intervals) is lowest. Changes in both have been exaggerated. (Adapted from Vogel 2003; see also Biewener

2003.)
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where mis body mass and the factor of 2 in kinetic energy
has been ignored. It also appears if inertial force is divided
by gravitational force,

ma V2
o Fr (5b)

mg gh ’

noted as the Froude number, Fr, in the last essay (Vogel
2006) — the ratio introduced by William Froude in the 19th
century as a scaling rule for models of the hulls of ships. In
this last guise, it will reappear in the next essay. It can also
be derived by ignoring the constant factor and squaring
what is left of both sides of eq. (4), which itself can be
obtained by simple dimensional analysis.

The ratio provides a specific rule for the relationship
between animal size and maximum walking speeds, a rule
with both explanatory and predictive value. And the rule
workswell for avery wide range of walkers, which hit max-
imum speeds at Froude numbers between 0.3 and 0.5
(Biewener 2003). Above that range of size-adjusted dimen-
sionless speeds, animals switch to other gaits —we begin to
jog, adog begins to trot, a crow begins to hop. The greatest
distance covered per unit energy expenditure occurs at
about Fr = 0.25, the size-independent optimum walking
speed. Had Alexander not pointed out Froude's precedence
(albeit in relating at the wave lengths and speeds of surface
waves), we would now be talking about the Alexander
number. The diversity of organisms that follow the rule
makes it a remarkable generaization. It stands as the
classic illustration of how dimensionless ratios can serve
biomechanics just as they serve mechanical (mostly fluids)
engineering.

Animals of whatever size stress their bones to similar
maxima when moving — about twice standing during walk-
ing and about five times standing in running —but do not
exceed 50-100 MPa (Biewener 1990). With this range of
maximal bone stress and the transition range of Froude
numbers we can ask about the speeds of dinosaurs. The
combination implies that the largest theropods such as
Tyrannosaurus ran gingerly if at all (Alexander 1976;
Hutchinson and Garcia 2002); conversely, they could walk
exceedingly fast. And from the skeletal dimensions and
trackways the walking speed of the 3-million year old
Laetoli (Tanzania) hominids can be estimated. They were
about a third shorter than modern humans and should have
been slower by a similar factor (Alexander 1984).

We can also ask what might happen were the value of
gravitational acceleration atered. Greater g should give a
higher transition speed; lower g should give alower transi-
tion speed. Humans on the moon, with a sixth of terrestrial
g, found that hopping was a better way to get around than
walking, which would have been (ignoring the effect of
space suits) less than half as fast as on earth. Skipping, as
done by children here on earth, was a useful gait as well
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(Minetti 2001). When walking on a (terrestrial) treadmill,
partly supported by a traveling overhead harness, humans
maintained the characteristic exchange of kinetic and poten-
tial energy of walking (Griffin et al 1999). And in brief
exposures to truly altered gravity in maneuvering aircraft,
maximum walking speed increased with the value of g, as
expected from eg. (5) (Cavagna et al 2000).

One of the benefits of a rule is how it directs attention to
apparent exceptions. Emperor penguinswalk long distances at
an especidly high cost for their size. Their short legs mean
that they are not geometrically similar to other birds—for their
size, they make especialy quick strides. That may preclude
the usua arrangement for energy interchange, but they have
another, side-to-side waddling. The high cogt, then, does not
come from abandonment of the interchange, but from the high
rates at which the muscles running their short legs must gen-
erate force (Griffin and Kram 2000). Penguin walking appears
to be close to a model developed by Coleman and Ruina
(1998), a bipedal toy or robot (a “passive-dynamic walker”)
that goes down a slope with a side-to-side pendulum motion —
a description of an easily-built model can be found at
http: //ruina.tam.cornell.edu/research/topics/locomotion_and
roboticy.

Bear in mind that on alevel path, the entire cost of loco-
motion (ignoring drag) represents inefficiency. Although
walking costs energy, the relative (mass specific) cost of
body transport decreases as the size of animal increases.
Most likely, its cost traces to a basic disability of muscle,
the need to expend energy to produce force, even when
moving nothing. The more rapidly we ask a muscle to
develop force, the greater the cost, as just mentioned for
penguins; the smaller the animal, the greater its stride fre-
guency, and the greater the cost of level walking relative to
its mass.

If the path slopes upward, walking incurs an additional
cost, that of working against gravity, which scales with body
mass. Combining the cost of level walking with the addi-
tional price of going upward explains a curious but familiar
phenomenon. The relative difficulty of ascent depends on
an animal’s size. A horse walks more efficiently on the level
than does a dog, but even aslight slope extracts agreat frac-
tional increase in demand for energy — quite familiar where
animal-drawn vehicles provide transport. A small rodent
handles slopes more easily than any dog, and those ants that
construct roadways do so with magnificent indifference to
slope, caring only about overall path length. Minetti (1995)
applied treadmill data to predict the optimum slope of
mountain paths, assuming a goal of gaining altitude cheap-
ly. The slopes of pathsin the Italian Alps corresponded nice-
ly to the predictions, with switchbacks wherever the critical
steepness would be exceeded. In theory, at least, one could
predict the size of an unknown animal (perhaps ayeti) from
the slopes of its paths.
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4. Totrot or to gallop

We bipeds have only afew variants on walking, such as
flexed-leg rather than stiff-legged walking, race-walking
and goose-stepping. To these we add several gaits that
depend on elastic energy storage, such as running, hopping
and skipping. Quadrupeds have a considerably wider range
of possibilities for gaits that use elastic storage; of these the
two most common are trotting and galloping. In trotting
each of four legs strike the ground in a left-right symmetri-
cal sequence —front-left plus hind-right, front-right plus
hind-left. In galloping amost paired front and amost
paired hind legs alternate, ‘almost’ because a leading side
and thus some minor asymmetry is typical. Like trotting,
galoping mainly stores energy from stride to stride as
stretched tendon.

Several questions immediately occur. First, why gallop?
Simply because by doing so an animal can go faster. Among
other things, galloping permits recruitment of an additional
mass of elastic in the back and elsewhere for energy storage
(Alexander 1988). Moreover, after rising as trotting speed
increases, cost relative to distance drops again following the
shift to a gallop. The speeds of this second gait transition
raise a second and more peculiar question. Among
quadrupeds that gallop, the trot-to-gallop transition occurs
within afairly specific Froude number range, between 2 and
3 (Biewener 2003). Froude number, again, represents aratio
of inertial to gravitational force. In this second transition,
oddly, both gaits use elastic energy storage and neither
uses gravitational storage. So why should Froude number
matter?

Perhaps we need to reverse the argument that explained
the first transition. What determined that one was the upper
practical speed for walking. Here, by contrast, what matters
may not be an upper limit of trotting but a lower limit of
galoping, a limit set by the maximum practica aeria
period. Trotting has (elephants, again, excepted) only short
periods when no foot makes contact with the ground, while
galloping involves considerably longer aerial periods. And
while airborne, an animal must fall earthward —with gravi-
tational acceleration. Too long a fall, and an animal will
not be easily able to position one or more feet on the
ground beneath its torso. What can we make of that intu-
itively argument?

Assume an animal can fall a fixed fraction of leg
length,

d o o< gt’, (6)

where d is distance fallen, h is leg length, and t is the time
in free fall. What we need to know is how the speed at tran-
sition, v, varies with leg length. Heglund and Taylor (1988)
report that it varies as one might expect, with leg length
divided by stride time—basically all gallopers galop in

about the same way at the transition point. So

v ht. @

Combining the two proportionalities to eliminate t and tak-
ing the reciprocal (if you are constant, so isyour reciprocal)
yields, in fact, the Froude number:
2
Fr= V— ®
gh

Can we go a step further and rationalize the particular
value (or range) of Froude number a which transition
occurs? We might assume that value and estimate the frac-
tion of leg length that a galloper drops while airborne.
Breaking speed into length per stride (I) and time per stride
(1), we get
12

Fr=——.
ot €)

Heglund et al (1974) reported a minimum galloping
speed for a particular horse of 5.6 m s at a frequency of
2.0 Hz. Alexander et al (1980) found that the stride length
of a galloping horse is about 5 times its hip height.
Adjusting that down from average to minimum speed (using
the speeds of Heglund et al 1974 and Heglund and Taylor
1988) gives 3.4 times hip height, the later about 1 m (from
a skeleton). The final item needed is the fractional duration
of the airborne periods at minimum galloping speed. Here
specific data seems lacking — people care far more about
how rapidly than how slowly horses can gallop! | will
assume two periods, each of 25% of stride duration, noting
that relative time airborne will be at its lowest at minimum
galloping speed.

These data give a stride duration of 0.69 s and thus air-
borne periods of 0.172 s each. During each period, gravity
will make the horse fall 0.145 m, about 15% of the hip to
ground distance. That does seem a practical maximum for
getting feet positioned for the next stride, again noting the
very rough character of the estimate.

5. Theheight of trees

Surely trees provide the paradigmatic examples of gravita-
tionally responsive organisms. Each is a tall column that
keeps a crown of photosynthetic structures elevated in the
face of a gravitational force that would prefer otherwise. It
does so to win access to sunlight in competition with other
trees — greater height cannot bring it significantly nearer the
sun. Each of the lineages in which tree-like organisms have
evolved from shrubbier or herbaceous ancestors has used
the same basic material, wood. In each tree or tree-like sys-
tem, water must be extracted from the substratum and lifted
to leaf level, typically through evaporation at the top and
consequent suction below. Despite considerable structural
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and developmental diversity among the lineages, their
tallest members have achieved about the same maximum
heights, roughly 25 to 100 m (Niklas 1997). Explaining
such consistency tests our understanding of the biological
consequences of gravity.

Perhaps the column of stacked bricksinvoked at the start
of this essay might provide an instructive analogy. Wood
has a compressive strength of about 50 MPa and a density
of about 500 kg m—3 — better specifications than brick, inci-
dentally. A column (as in figure 3a) could extend 10 km
upward even with no taper, ahundred times the height of the
tallest contemporary tree. Clearly resistance to compressive
crushing imposes no limit.

But crushing mainly afflicts short, wide columns. A more
likely failure mode is so-called Euler buckling, the sudden
collapse that occurs when the middle of a column bows ever
further outward (as in figure 3b). Elastic modulus, rather
than compressive strength, now becomes the operative
material property. For fresh wood we can assume a value of
5 GPa (Cannell and Morgan 1987), noting that the compres-
sive moduli run dlightly lower than the tensile (Young's)
moduli but that trees compensate for the difference with
some tensile prestressing. Trunk thickness becomes relevant
because buckling stretches one side and compresses the
other. The standard equation for Euler buckling (see Vogel
2003 or standard handbooks for mechanical engineers) gives
aheight of well over 100 m for atrunk diameter of 1 m. This
assumes that the tree does not taper and that its entire weight
is concentrated at the top —an unredlistically harsh scenario.
Offsetting (at least in part) those biases, trunks are assumed
straight and their basesfirmly fixed. Even admitting the sm-
plifications, though, it appears that gravitational loading
through buckling imposes no practical limit.

(a) (b)

Figure 3.

We might ook at the tree in yet another way, asimplified
version of Greenhill’s (1881) classic analysis. Consider a
brief lateral perturbation near the top of atree from wind or
some other cause. That will move the center of gravity lat-
erally, tending to make the tree topple. At the same time, it
will generate an opposing elastic restoring force in the
wood. In effect, this treats the tree as a self-loaded can-
tilever beam (as in figure 3c), albeit one extending upward
rather than outward. If lever arm and restoring force scale
linearly with deflection distance, then that distance drops
out. Young's modulus also drops out since in practice it
varies directly with the density of the wood. Again adopting
standard equations and the standard relationship between
Young's modulus and density, our 1 m tree can extend
upward about 120 m before the wood of the tree reaches
maximum tolerable stress. Again, trees rarely approach that
value. And, again, more realistic assumptions would raise
the limiting height — I have once more assumed that the tree
does not taper, which raises the center of gravity, and | have
assumed that it pivots at the bottom rather than bending,
which moves its mass too far outward.

Still, while both views — a column subject to Euler buck-
ling and a cantilever beam —give unreadlistically great
heights, both say that height will scale with diameter?3. The
girth of the taller tree will be disproportionately great,
something easily observed. Quite a few sources note that
particular scaling rule, going back at least to Greenhill’s
(1881) prediction and including McMahon's (1973) compi-
lation from data on 576 trees in the United States, each of
either record height or record girth for its species. The argu-
ments for the rule have become much more sophisticated, in
particular accounting for taper and crown weight (Niklas
1992 has a good discussion).

(c)

(a) A column failing by simple compressive failure — crushing. (b) A column, also end-loaded, failing by “Euler buckling,” a

mode in which, paradoxically, one side experiences tensile loading. (c) A column loaded sideways asif a cantilever beam, in which, once

bent, its own weight generates a turning moment about the base.
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That each of severa starting assumptions yields the same
scaling rule gives little help in choosing among them.
Worse, we should not place great confidence in that expo-
nent of 2/3, however often it gets cited. For few biological
systems can we find so much data to test such a rule—for
obvious reasons, books on practical silviculture, forest men-
suration, and so forth pay gresat attention to the height and
girth of trees. | tried afew regressions on published data and
was rewarded with exponents ranging from about 1/3 to 4/3.
Unsurprisingly, practical people concerned with timber pro-
duction rely on other, more complex formulations — see, for
instance, Johnson and Shifley (2002).

Moreover, many sources question the whole notion that
the strength, density, and elastic moduli of wood determine
the maximum heights and proportions of trees. The most
common alternative views the limit as hydraulic, the prob-
lem of lifting water from the roots to such biologically
prodigious heights. Our hearts develop systolic pressures
during exercise of perhaps 25,000 Pa, and tall mammals
when running probably approach twice that. Just working
against gravity, a 100 m tree has to move water against a
pressure difference of 1,000,000 Pa, 40 times better than our
personal best. Worse, the main pump depends on suction
from above rather than pushing from below, that is, on neg-
ative rather than positive pressure.

The main mechanism for raising water needs afew words,
especially because at first encounter nearly every physica
scientist expresses skepticism or outright incredulity.
Evaporation across tiny interfaces in the feltwork of fibers of
the cell walls of cellswithin leaves draws water out of the soil
and up through alarge number of small conduits (xylem) just
benesath the bark. Surface tension at these interfaces (around
0.1 um across) should have no trouble keeping air from being
drawn in at the top —the surface tension of pure water can
sustain a pressure difference of nearly 3,000,000 Pa, almost
30 atmospheres, across such atiny interface (Nobel 1999).

But then things get decidedly unconventional.
Atmospheric pressure can push water up to a maximal
height, defined by eg. (1), that corresponds to a pressure dif-
ference of 101,000 Pa at sea level —the difference between
that of the atmosphere and a full vacuum. For water (or
xylem sap), with a density of 1,000 kg m-3, that height is
10.3 m. Evacuate a vertical tube and place the open end in
water, and the water will rise to that height, with a vacuum
above. Of course if a clean pipe a bit longer than 10.3 mis
initialy fully filled with water containing little dissolved
gas, one may have to bully the system a bit for the water
level to drop and the vacuum to appear. In the interim, the
water column will have developed a pressure below 0 Pa, a
dlight and brief negative pressure.

Even if water isfreely available at ground level and can
be raised without frictional loses, trees should be able to
grow no higher than 10.3 m — unless they can capitalizeto a

fabulous degree on such negative pressure. Before taking
offence at the notion of negative pressure, pause to observe
that the water in question is liquid, not gaseous. The inter-
nal intermolecular cohesion that makes a liquid a liquid
rather than a gas should render it perfectly capable of with-
standing tension, the more sanitary term for negative pres-
sure. The difficulty comes from containing a liquid while
subjecting it to tensile stress. Not only must its intermolec-
ular cohesion withstand the stress, but the adhesion of the
liquid to the walls of the container must do the same —nei-
ther grip can fail or avacuum will appear. In addition, very
little gas or other impurities can be dissolved in the water,
so ordinary soil water must be pre-processed before enter-
ing the main conduits.

Trees apparently meet these demanding conditions and
raise sap despite severely negative pressures. A field-usable
device (a so-called Scholander bomb — see Scholander et al
1965) makes possible routine measurements of negative
pressures in plants by indicating the positive pressures
required to counterbalance them. —1 or —2 MPa (=10 or —20
atm) pressures are common, and values as extreme (one
hesitates to say ‘high’) as —12 MPa. (-120 atm) have been
reported (Schlesinger et al 1982). In laboratory tests,
macroscopic quantities of water have resisted tensile stress-
es of hundreds of atmospheres, so the picture does not rely
solely on calculated intermolecular forces.

Other things being equal, the taller the tree, the more
extreme the negative pressures. And the more extreme the
pressures, the greater the danger that liquid within some
conduit will cavitate, interrupting the process and putting
that conduit out of action as if it were an unprimed pump.
Cavitation does occur with some regularity —this is no
hypothetical hazard —with alarge fraction of the conduitsin
anormal tree sometimes embolized. In practice, the greater
the diameter of the conduits running up the tree, the greater
the likelihood of cavitation (Ellmore and Ewers 1986;
Maherali et al 2006). But recent work (see, for instance
Holbrook and Zwieniecki 1999 and other papers by each of
these authors) has revealed specific devices to minimize the
propagation of embolisms and to repair embolized conduits.

Trees face a curious balancing act. Their demands for
water vary over awide range, low in conifers, for instance,
and high in many broad-leaved trees. Beyond the gravita-
tional loss of 9,800 Pa m~1 (from eq. 1), making the water
move raises another kind of loss, that due to the fluid-
mechanical resistance of the conduits. The general rule for
pressure drop per unit length (Ap/l) due to laminar flow in
circular conduits is the Hagen-Poiseuille equation (here
given in terms both of total flow, Q, and maximum, axial,
flow speed, Vinay):

Ap BUO _ Apv, w0
—=—= o
/ r r
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u is the fluid's viscosity and r the radius of the conduit.
Whether one considers total flow or flow speed, the smaller
the conduit the worse the pressure drop. In addition, passage
of sap between adjoining conduits entails additional losses —
see, for instance, Lancashire and Ennos (2002). One might
argue that atree should move water in pipes large enough to
keep the cost of flow low but not so large that embolizing
becomes an excessive risk. And in enlarging pipes to reduce
losses from flow, trees must meet diminishing returns — after
all, that gravitational loss of 9,800 Pam-! remains.

Thus we expect conduit sizes will strike a balance, large
enough to keep flow losses down to the same order as grav-
itational losses but not much larger. What do we find?
Maximum flow speeds in vivo can be measured by heating
atrunk locally and then timing the interval before a ther-
mocouple located somewhat higher detects a temperature
change. | calculated pressure drops per unit length for a
variety of trees (and aliana) from avariety of sources, using
measured averages of maximum speeds and conduit diame-
ters from Milburn (1979), Zimmermann (1983), Gartner
(1995) and Naobel (1999). The data cover a 10-fold range of
diameters and a 100-fold range of speeds; the resulting
pressure drops range from 1,300 to 20,000 Pa m1, that is,
from 13% to 200% of the gravitational drop, with little evi-
dent regularity. But the data is highly heterogeneous,
reflecting spread in conduit diameters within individua
trees, uncertainty about which ones happen to be active and
not embolized at a particular time, variation in flow speeds
with time of day and wetness of season, and so forth.

Nonetheless, the values do not disagree with the notion
that trees balance the diminishing returns and increasing
risk of enlarging conduits, keeping a fairly fixed relation-
ship between flow and gravitational losses. Put another way,
why should a tree risk making conduits large enough to
reduce flow loss much below the unavoidable gravitational
pressure [0ss? At the same time, the values provide at least
indirect support for the idea that the difficulty of lifting
water imposes a general limitation on forest height.

That, though, is hard to reconcile with lots of data show-
ing that gravitational pressure drops and the flow losses
predicted from the Hagen-Poiseuille equation commonly
do not represent the largest part of the overal negative
pressures measured at tree-top heights. A further pressure
drop come from extracting water from less-than-saturated
soil (“matrix potential” sometimes), osmotic processes in
roots, and (as noted) flow through the pits and plates that
divide the ascending tubes of xylem. Trees 20 or 30 meters
high often develop pressures of —2 MPa or more, far above
atwice gravitational drop of —0.4 to —0.6 M Pa. For that mat-
ter, the record of —12 MPa mentioned earlier comes from
measurements on a desert shrub, not a tree, and mainly
results from the scarcity of soil water. By contrast, Koch
et al (2004) measured an extreme pressure of —1.8 MPa4 M
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below the top (112 M) of the tallest known tree, a redwood
(Sequoia sempervirens). They found in the laboratory that a
pressure of —1.9 M Paimposes serious | oss of hydraulic con-
ductivity on such material and therefore argued that
hydraulics limits height. The skeptic wonders if the close-
ness of those figures, —1.8 and —1.9 MPa, merely tells us
that such trees conduct and utilize water no better than they
have to.

We also face the awkward fact that especially wide con-
duits occur in woody vines (lianas), with diameters some-
times exceeding 300 um. But vines, unlike trees, need not
support themselves; their dry densities are concomitantly
low. Xylem, we remind ourselves, is wood, both a conduc-
tive and a supportive tissue. One suspects that relaxation of
their supportive function at least in part underlies the size of
these conduits. And that suspicion points back to mechani-
cal support as the main limitation on height.

Before dismissing hydraulics, though, we should note
another way it might bear relevance. Recently Niklas and
Spatz (2004) have related both maximum tree height and
the basic 2/3-power scaling to the problem of supplying an
ever-increasing overall leaf area with water —an argument
based on supply rather than pumping cost. | liketheir ration-
ale but remain bit skeptical. The quantities of water that
trees raise and transpire are almost as impressive as the
pressures against which they do so. But these quantities far
exceed the amounts used in photosynthesis and vary wide-
ly. Nobel (1999) notes a 40-fold range in water use effi-
ciency — rate of carbon fixation divided by rate of water use.
Furthermore, just as with pressure, the most extreme values
(here high ones) come from plants living in dry habitats
rather than from especially tall trees.

In short, the original question remains without a satisfac-
tory resolution. We may even be looking at the wrong vari-
ables. In trying to choose between two different routes
through which gravity might affect tree height, we pre-
sumed a gravitational limit. Even that presumption may be
suspect. First, healthy trees rarely fail by gravitationally
driven mechanical collapse. (Occasional windless ice
storms where | live do cause trees to fail gravitationally.)
Second, the correspondence between conduit size and flow
speed and acceptance of a considerable rate of cavitation
suggests that still wider conduits could be tolerated — con-
duits such as those of lianas. Finally, the fact that negative
pressures at tree top level exceed, sometimes by large
factors, the sum of both gravitational and flow-induced
pressure drops suggests that still greater losses from these
|atter quarters could be tolerated.

Perhaps the limit on height, paradoxically, might some-
times come from something other than gravity. Trees blow
over in storms, most often by uprooting, less often by snap-
ping of their stems near their bases, still less by shear-
induced snapping higher up. Whichever way, failure most
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likely results from drag, acting on the crown; the taller the
tree, the longer the lever arm and the greater the turning
moment. In such a scenario, the lateral drag of the crown,
mainly dueto its leaves, imposes the critical disadvantage of
height. Severa structural features of leaves and trees (and
bamboo culms, etc.) make functional sense as devices to
reduce vulnerability to drag, often termed “wind throw”, and
their ubiquity argues that drag surpasses gravity as a hazard.

The commonness of uprooting, in particular, implies that
much of the problem of atree must come from a peculiarity
of tree substratum, the limited resistance of soil to tensile
forces. Shear and compression soil can resist, and its weight
above buried roots may assist, but many trees may not be
able to pull on the ground with particular effectiveness. At
onetime, perhaps somewhere still, large stumps were pulled
directly upward by teams of horses solely with the aid of
simplewindlasses that could be moved from stump to stump.

Trees may stay upright in winds in several ways (Vogel
1996):

(i) With along, stiff taproot that extends the trunk down-
ward atree can take advantage of the shear and compression
resistance of soil. If lateral roots near ground level fix the
location of the base of the tree, blowing the trunk one way
asks that the taproot be forced the other way, compressing
and shearing soil. The array of smaller, vertical ‘sinker’
roots from larger horizontal ones may work the same way,
as well as providing significant resistance to uprooting ten-
sion through shear numbers and area covered. That combi-
nation of tap root, laterals, and sinkers seemsto be central to
the support system of many trees (pines, paradigmatically)
of temperate and boreal forests, trees whose trunks obvi-
ously bend in winds.

WIND

Drag
lever
arm

——l

(if) Some tension resistance in the most superficial soil layer
can come from the tangle of roots of surrounding vegetation,
something many tropical trees take advantage of with large,
thin, upwind buttresses. These act like diagonal cables from
trunk to roots rather than the compression-resisting buttress-
es of Gothic architecture —the misleading linguistic analogy
confused things until recently (Smith 1972; Ennos 1993).
Again, sinker roots assist. Trees with such tensile buttresses
tend to be thin relative to their heights.

(iii) Ground level lateral extensions of the trunks of many
big temperate-zone broad-leaved trees are lower and thick-
er; they most likely work as conventional downwind but-
tresses that take advantage of soil’s reliable compression
resistance—as well as providing attachment points for
sinker roots. Trees with these wide, heavy bases (‘plates
sometimes) typically have thick trunks of dense wood that
do not bend noticeably in winds. The arrangement comes

into use as a tree matures and shifts from system (i).

The wide bases and stiff trunks of system (iii) may con-
vey another message. | have argued that the vulnerability of
trees to wind-throw shows that gravity need not always be
the physical agency that limits height. Compressive but-
tressing and thick, stiff trunks suggest that gravity may at
times operate on the other side of the equation, assisting a
tree in staying erect. When trees such as large oaks blow
over, the bases of the trunks often lie 1 or 2 m above the
ground; by contrast, pine trunks lie directly on the ground.
Thus in uprooting, compressively buttressed trees pivot
around a horizontal axis well to the side of the axis of the
trunk, as in figure 4. To make a tree uproot, the turning
moment must exceed the stabilizing moment — the product
of drag times the height of the center of the crown must

(b)

Center of
gravity

Pivot

‘ P Pivot
- =,
Weight A
lever arm
Y
Weight

Figure4. Thedrag of awind loads atree not as a column but as an end-loaded cantilever beam. A tree with stiff trunks and basal, com-
pression-resisting buttresses, will suffer “wind-throw” when the turning moment from drag and the height of the crown (a) exceeds the

opposing moment from its weight and the width of the buttressing (b).
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exceed the product of the weight of the tree times the dis-
tance from trunk axis to turning axis. That simple view
ignores any contribution from soil around the roots, of
sinker roots, and so forth. But it exposes the possibility that
such a tree might use its weight to stay upright with its
sinker roots to keep from dliding sideways.

Does such a model survive quantification? Consider a
tree with 30 m of cylindrical trunk, 0.7 m in diameter, of a
density of 1000 kg m=3, a pivot point 1.5 m to one side of
thetrunk’svertical axis, an otherwise weightless basal plate,
and a weightless, spherical crown of branches and leaves.
Using symbols for the variables described in figure 4, the
stabilizing moment will be

ptree ”rrreezhgrbase' (11)
The tipping moment will be the drag of the crown times the
height of the tree,
V2h, (12)

OSCd pair mcrown
Assuming a drag coefficient, Cy, of 0.1, appropriate for a
large sphere in fast flow, an air density of 1.2 kg m=3, and a
speed of 35 m s1, we equate (11) and (12) and solve for the
radius of the crown. It comes to aimost 5 m, and thus a
diameter of nearly 10 m. While perhaps alittle smaller than
one observes in nature, it comes close enough to suggest
taking this model of an oddly detached tree seriously.

Stll, I must emphasize its crudeness. We have distress-
ingly little information on the real drag of this kind of
broad-leaved tree in high winds. | did some work on the
drag of individual leaves and small clusters (Vogel 1989),
enough to undermine confidence in any extrapolation or
estimate for whole crowns, something Ennos (1999) has
reemphasized. Besides the obvious logistical problems,
people who run sufficiently large wind tunnels do not take
kindly to tests of items expected to fail by detaching pieces
just upwind from valuable and vulnerable fans and motors.

Note, though, what the model says about the relevant
variables. First, wind speed has a severe effect on the result.
Second, height does not directly matter, since it equally
affects the weight of the tree and the moment arm of its
drag. Greater height does, though, require that the trunk be
wider to have the additional flexura stiffness needed to
minimize latera movement of its center of gravity. Of
course wider means heavier and thus gives further improve-
ment of atree's stability. Finally, gravity itself aids stability,
asin eg. (11), so if gravity were greater, such a tree might
be able to grow taller — unless, as suggested in the last essay
(Vogel 2006) air density (and thus drag) were thereby also
increased. But whatever the specific value of g, in this
model the tree depends on gravity to stay erect.

Whatever the limitation on height, it must most often
operate through the competitive interactions of individua
trees. If height does scale with diameter to the 2/3 power
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and thus cross section to the 1/3 power, then successive
increments in height demand making ever increasing
amounts of wood. Better access to sunlight than one's peers
extracts an ever increasing constructional penalty.
Furthermore, growing significantly above canopy level
should disproportionately increase peak wind speeds and
thus drag. So any cost-benefit analysis ought to include
competitive interactions and growth. And growth depends
on a host of other factors; thus the dipterocarp forests of
Southeast Asia, growing on rich, volcanic soils, achieve
greater canopy height than tropical forests elsewhere on
earth. Givnish (1995) expands on this kind of argument,
noting the ever-decreasing ability of a tree in a forest to
compensate for cost with increased leaf area.

| must admit some attachment to a picture that empha-
sizes the lateral force of wind, a bias stemming from my
own interest in air flow and drag. So | hasten to remind the
reader (and myself) of the old adage that when one'stool is
a hammer, all problems resemble nails. It well may be a
case, as said of raccoon- and opossum-hunting dogs in this
part of the world, of barking up the wrong tree.

6. Thediverserolesof gravity

In aerial systems, gravity impels dense bodies down-
ward, with only the relationship between size and descent
speed at all negotiable. In terrestrial systems gravity may be
less insistently intrusive, but it plays a wider range of roles.
Here we moved from cases where the role of gravity was
straightforward to ones in which it played increasingly sub-
tleroles — clearly important, but in ways that challenged our
analyses. But | conclude with a mild caution, noting that
many other cases might have been considered as well asthe
present ones, that this essay just scratches the surface. The
present essay might have compared impact loading with
gravitationa loading in various forms of locomotion. It
might have noted the shift in mammalian posture from
flexed-legged to straight-legged, alikely consequence of the
way body weight scaled with volume, while postural mus-
cle force scaled with cross-section. Or it might have sug-
gested that an alteration gravity’s strength (or wood's
strength-density relationship) would affect the length and
taper of branches more than it would the overall height of
trees.

In these essays | have made much of scaling rules and
their particular exponents; the way blood pressure depends
on body size illustrates one hazard of the approach —areal
threshold effect that would be missed by the normal regres-
sion-based scaling analysis. For gait transitions we do have
a scaling rule, based on Froude number, but here the rule
itself appliesto thresholds. For tree height, we examined the
near constancy of forest heights over space and time, sug-
gestive of mechanical (solid or hydraulic) limitation. Not



Living in a physical world VII. Gravity and life on the ground 213

only could we not pinpoint the limitation, but we could not
either confirm or discredit a scaling rule — or even convince
ourselves fully that gravity contributed to the limit.
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