
1. Introduction

Metals are an integral part of all ecosystems, occurring in
both elemental as well as locked form. Some of them are
vital components of living systems known as essential
metal ions. Based on the requirement, a cell may employ
a specific and/or more broad-based non-specific uptake
pathway to accumulate these ions from the external envi-
ronment. We have studied the Ni2+-resistance mechanism in
Pseudomonas putida strain S4, a natural multimetal resist-
ant isolate. The biological importance of nickel and magne-
sium is evident by the fact that they may be associated with
many enzymes and thus play an important role in a wide
variety of cellular functions (Smith and Maguire 1998;
Mulrooney and Hausinger 2003).

While in natural environment, metal-microbe interac-
tions are very important, metal-metal interactions can also
be of great significance as metals generally occur in combi-
nations. Since the cellular metal binding sites are never
entirely specific for a single metal, metals with similar
structures and charge can often bind competitively. They
can therefore interfere with the metabolism of related
metals. Due to this, the cells have developed broad-based

metabolic pathways, like uptake or resistance machinery, to
take care of more than one metal. These systems are more
specific for major element and other less important metals
can enter or thrown out of the cell with lower efficiency.
In such situations, major ions play a crucial role in regula-
tion of other metal ions entry. It is reported that major
Mg2+ uptake pumps, such as, CorA, MgtA, and MgtB
(Smith and Maguire 1998; Chamnongpol and Groisman
2002) can be utilized by other divalent ions like Ni2+, Co2+,
Zn2+ and Mn2+ along with Mg2+ with different efficiencies
(Webb 1970a; Nelson and Kennedy 1971; Blackwell et al
1997). Thus, Mg2+ often regulates the entry of these diva-
lent ions. This may get reflected in the better growth
response of cells at toxic concentrations of some divalent
ions, such as Ni2+ and Co2+ in the presence of higher con-
centration of Mg2+, as reported in Escherichia coli (Webb
1970b). Magnesium transport by CorA system is virtually
ubiquitous in bacteria and archaea and this pump is strong-
ly inhibited by Cobalt (III) hexaammine [Co (III) Hex]
(Kucharski et al 2000).

In this paper, we report the regulation of Ni2+ accumula-
tion in P. putida strain S4. The maximum tolerable concen-
tration (MTC) for Ni2+ in this organism is 2 mM.
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2. Materials and Methods

2.1 Organism, culture conditions and chemicals

P. putida strain S4 was isolated from Khetri Copper Mines,
Rajasthan and described earlier (Saxena and Srivastava
1998). P. putida strain S4 and its mutants (M3, M6, M9,
M18 and M27) were maintained on gluconate minimal
medium (GMM) (Gilotra and Srivastava 1997) without and
with NiCl2 (at their respective MTC) at 37°C. As per the
requirement of an experiment, the media were supplement-
ed with the appropriate concentration of autoclaved metal
salt solutions and/or filter-sterilized inhibitor solution.
Liquid cultures were raised on Controlled Environment
Shaker Incubator (Kühner, Switzerland) at 200 rpm at 37ºC
for the required period of time. 

Metal induction (with Ni or Zn) was carried out by
exposing the cells to 0.1 mM NiCl2 or ZnCl2 in GMM
overnight and such cells were labelled as induced cells.
If no pre-exposure was given, the cells were referred as
uninduced.

NiCl2 and ZnCl2 were purchased from Merck (India)
and Co(III)hexaammine was purchased from Sigma-
Aldrich (USA). All other chemicals used were of analytical
grade.

2.2 Spheroplast isolation

Spheroplast isolation was done by the method described by
Wood (1978). For this purpose, cells (induced or uninduced
wild type or mutants) exposed to metal for 14 h were used.
Pellet of spheroplasts were resuspended in 0.1 M Tris-buffer
(pH 8.0) and used for Ni2+ estimation. 

2.3 Metal estimations

Metal-loaded cells/spheroplasts were harvested and washed
with saline. One part of the culture was boiled with 1 M
NaOH and protein estimation was done with the protocol
of Lowry et al (1951). Rest of the biomass was used for
metal estimations with atomic absorption spectrophotome-
ter (Perkin Elmer Model 3110) at 232 nm and 213.9 nm
for Ni2+ and Zn2+, respectively as described by Bhagat
and Srivastava (1993), and represented as µg metal. mg
protein–1.

2.4 Statistical analysis

All experiments were carried out as three independent sets
and the values represent mean along with the standard
errors.

3 Results

3.1 Effect of Mg2+ on growth

To begin with, the effect of Mg2+ on growth of S4 cells
(induced as well as uninduced) in the presence of Ni2+ (1.0
mM) and different external concentrations of Mg2+ (0, 0.25,
0.5, 1.0 and 2.0 mM) was checked. It was earlier observed
that lower (<1.0 mM) Mg2+ concentration did not affect the
growth profile of strain S4 in the absence of Ni2+ within the
experimental time frame. The results depicted in figure 1
show that while decreasing Mg2+ concentration reduced the
growth of induced cells in the presence of Ni2+, higher con-
centration of Mg2+ (2 mM) resulted in a better growth
response. Uninduced cells responded the same way, but the
extent of the effect at decreased Mg2+ concentrations was
more severe. Thus, it could be concluded that at the same
concentration of Ni2+, Mg2+ could modulate the growth
based on its external concentration.

Mg2+-mediated protection of S4 cells towards Ni2+ tox-
icity was further supplemented by checking the cell viabili-
ty under similar conditions. We observed that viability (in
terms of CFU.ml–1) showed similar trend, as there was a
clear sign of improvement (~2-folds) with corresponding
increase in Mg2+ concentration in the medium. 

3.2 Intracellular Ni2+ accumulation

As the strain S4 is resistant to Ni2+, we monitored the intra-
cellular accumulation of Ni2+ in the spheroplast fractions of
the induced cells and correlated the same with the different
Mg2+ concentrations. Results showed that intracellular con-
tent of nickel varied with the varying concentrations of
magnesium which also explains the growth response. It is
evident from figure 2 that lowering the Mg2+ concentration
in the medium led to increased intracellular Ni2+ accumula-
tion, but at increased concentration a threshold appeared to
have reached

3.3 Effect of Mg2+ on Ni2+-sensitive mutants

Some Ni2+-sensitive mutants (M3, M6, M9, M18 and M27
with MTC- 0.1 mM for each), isolated by UV mutagenesis
(Tripathi and Srivastava 2006), were also employed to deci-
pher the protective role of Mg2+, both through growth
responses and intracellular Ni2+ accumulation.

These mutants when exposed to an otherwise toxic con-
centration of Ni2+ (0.25 mM) along with 1.0 mM and 10
mM Mg2+, showed an improved net growth at higher Mg2+

concentration. Under similar conditions, a clear reduction in
intracellular Ni2+ content in each mutant was also seen at
high Mg2+ (figure 3).
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Figure 2. Effect of different Mg2+ concentrations (0, 0.5, 1.0 and 2.0 mM) on intracellular Ni2+ content of induced cells. 

Figure 1.  Growth response of strain S4 in presence of 1 mM Ni2+ with varying concentrations of Mg2+ [0.0 mM (�), 0.25 mM (�),
0.5 mM (�) , 1.0 mM (�) and 2. 0 mM (    )] under induced conditions.



3.4 Effect of Mg2+ uptake inhibitor on Ni2+ uptake

From these experiments, it was inferred that the protective
effect of magnesium is due to competitive inhibition of
nickel uptake in the cell. This also led us to assume that
Ni2+ might share the Mg2+ uptake pathway.

To substantiate the above assumption, the CorA
inhibitor, i.e. Co(III)Hex, was employed to study its
effect on Ni2+ accumulation. The concentration of inhi-
bitor (5 µM) where cells showed 50% reduction in intra-
cellular accumulation of Ni2+ was chosen for further
work.

In one experiment, accumulation of Ni2+ in the absence
and presence of Mg2+ (1.0 mM) was studied along with
inhibitor (5 µM) and nickel (1 mM) in the medium, keeping
the sets without inhibitor as control. Results presented in
figure 4 demonstrated that in contrast to the controls, where
absence of Mg2+ led to increased levels of intracellular
Ni2+, in the presence of inhibitor intracellular Ni2+ level
remained largely unaffected by Mg2+. In the absence of
magnesium, where Ni2+ accumulation was expected to be
higher, the inhibitor was able to control its entry. This result

strengthened our earlier proposition that Ni2+ may share the
broad Mg2+-pump. Moreover, Co(III)Hex functioned the
same way as the higher Mg2+ concentration, in reducing
Ni2+ uptake and protecting the cells from the toxic effects of
Ni2+ accumulation.

3.5 Effect of Zn2+ induction

Metal-metal interaction in strain S4 was further investigat-
ed by inducing the cells with Zn2+, as it was found that
Ni2+-mediated growth responses can be cross-induced by
Zn2+ (V N Tripathi and S Srivastava, unpublished results).
Intracellular levels of Ni2+ under Zn2+ induction with or
without Mg2+ and/or Co(III)Hex, was studied. Results sug-
gested that under Zn2+ induction, protective role of neither
magnesium nor the inhibitor is apparent (figure 4).
However, Ni2+ level did get substantially reduced almost
down to the level of inhibitor exposed cells. As a control,
one set was also exposed to Zn2+ (1 mM) and intracellular
Zn2+ accumulation was measured, which showed similar
levels under all conditions.
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Figure 3.  Modulation of intracellular level of Ni2+ by Mg2+ in different Ni-sensitive mutants in presence of 0.25 mM Ni2+ [1 mM
Mg2+(   ), and 10 mM Mg2+( ( )].



4. Discussions

Cellular requirements for various ions are highly variable;
depending upon the role they play in metabolic functions
(Gadd 1992). Cells, therefore, employ specific uptake
pumps for macronutrients, while the micronutrients may be
accumulated by one of the major pumps. Magnesium, an
absolutely essential ion (Smith and Maguire 1998; Maguire
and Cowan 2002) is accumulated by three uptake pumps,
CorA, MgtA and MgtB (Smith and Maguire 1998; Tao et al
1998; Chamnongpol and Groisman 2002; Kehres and
Maguire 2002; Maguire and Cowan 2002). CorA is a ubiq-
uitous and constitutive transporter in bacteria and archaea,
while the other two are inducible P-type ATPases (Snavely
et al 1991). These pumps are also reported to mediate the
entry of other ions, required in trace amounts, though with
much lower efficiencies (Hmiel et al 1986; Snavely et al
1989; Fu and Maier 1991; Blackwell et al 1997; Kehres and
Maguire 2002). This lower affinity suggests that uptake of
these ions by this pump is unlikely to be important physio-
logically (Kehres and Maguire 2002) in normal environ-
mental conditions, but in high metal stress conditions,
uptake through this pump may play a crucial role.

While investigating a Ni-resistant (MTC 2.0 mM) P.
putida strain S4, we observed that Mg2+ greatly influences
the strain’s Ni2+-mediated growth response. This effect was
more significant, when cells were not induced by Ni2+.
Improved cell viability in the presence of higher Mg2+ con-
centration further substantiated the role of Mg2+. The resist-
ant cells are expected to accumulate much higher amounts
of metals than the normal homeostatic pathway
(Krishnaswamy and Wilson 2000; Pradhan and Rai 2001).
Protective effect of Mg2+, attributed to a possible competi-
tive inhibition of Ni2+ uptake by Mg2+ (Nies and Silver
1989; Fu and Maier 1991; Blackwell et al 1997), thus may
serve a crucial purpose for cell survival. It was clear from
our results also that the intracellular Ni2+ accumulation gets
reduced in the presence of higher Mg2+ concentration.
Blackwell et al (1997) showed that in Saccharomyces cere-
visiae, cell viability and intracellular Mn2+ uptake varies
according to the Mg2+ concentration in the medium in the
presence of 5 mM Mn2+. In case of Bradyrhizobium japon-
icum JH, Ni2+ entry inside the cell was inhibited signifi-
cantly by Mg2+ and other ions like Zn2+, Co2+ and Mn2+,
which can be relieved by increasing the Ni2+ concentration
(Fu and Maier 1991). 
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Figure 4.  Intracellular accumulation of Ni2+ by strain S4 in presence of 1 mM Ni2+ with different Mg2+ and inhibitor [Co(III)Hex]
conditions. Ni2+-inducd cells [with Mg2+        , without Mg2+       ] and Zn2+-inducd cells [with Mg2+ (    ), without Mg2+(     )].( ) ( )



Ni2+-sensitive mutants of strain S4 further confirmed the
role of Mg2+ as they responded much better to the otherwise
toxic concentration of Ni2+ both in terms of growth (their
MTC is increased) as well as competitive inhibition of Ni2+

uptake. Nelson and Kennedy (1971) also reported that in E.
coli enhanced MTC for Co2+ was achieved when Mg2+ con-
centration was raised with corresponding decrease in the
Co2+ uptake in the cell, whereas corA mutant of E. coli
showed Co2+ resistant phenotype (Park et al 1976).
Similarly corA over-expressing S. cerevisiae strains showed
increased sensitivity to Co2+, Mn2+, Ni2+, and Zn2+

(MacDiarmid and Gardner 1998). 
These results pointed towards sharing of Mg2+ uptake

pump by Ni2+. The response of strain S4 to an inhibitor of
CorA (Mg2+ uptake pump), Co(III)Hex, also suggested the
same. Our premise was further substantiated as intracellular
Ni2+ level remained low irrespective of Mg2+, but when
exposed to the inhibitor, in comparison to the controls. It is
known that CorA has much higher affinity for Mg2+ than
Ni2+. Thus, in the presence of inhibitor, when CorA activi-
ty is expected to be low, it should preferentially transport
Mg2+, resulting in low accumulation of the related ions, as
observed by us in the case of Ni2+. This result is in agree-
ment with the results published by Kucharski et al (2000)

When Zn2+ was introduced as inducing agent, growth
responses of strain S4 in the presence of Ni2+ were better in
comparison to the Ni2+-induced cells, with lower intracellular
accumulation of Ni2+ (V N Tripathi and S Srivastava, unpub-
lished results). Ni2+ accumulation by Zn2+-induced S4 cells in
the presence of Co(III) Hex was expected to follow a pattern
similar to that of Ni2+-induced cells, but results showed a
totally different response. While the effect of neither the
inhibitor nor Mg2+ was apparent, Zn2+ was able to further reg-
ulate the entry of Ni2+. Maintenance of intracellular level of
metals may be due to the induction of the efflux pump, which
is reported to be main mechanism of Zn2+ resistance in strain
S4 (Choudhury and Srivastava 2001). Under such a condition,
the role of Mg2+ as well as the inhibitor may become redun-
dant. The similar pattern of Zn2+-accumulation by the Zn2+

induced cells consolidated our view.
We thus, concluded that in strain S4, Ni2+ entry into the

cytoplasm is mainly via CorA-Mg2+ uptake pump and
improved growth of Zn2+-induced, Ni2+-exposed cells may
be due to better regulation of the influx of intracellular Ni2+.
In resistance pathway, however, the role of Mg2+ in regulat-
ing the intracellular Ni2+ content may play a secondary role,
as most of the Ni2+ gets sequestered in the periplasm in
strain S4 (Tripathi and Srivastava 2006).
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