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Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor pro-
teins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein 
kinases, protein phosphatases, Ca2+ and calmodulins, results in appropriate gene expression. A variety of genes 
are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in 
major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating 
their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. 
Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose trans-
porter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sen-
sor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated 
on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are be-
ing used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar 
signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like 
fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usu-
ally impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes 
are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized. 

[Gupta A K and Kaur N 2005 Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants; 
J. Biosci. 30 761–776] 

1. Introduction 

Many environmental stresses like drought, cold and salinity 
lead to major alternations in carbohydrate metabolism 
(Hare et al 1998; Thomashow et al 1999; Wanner and 
Junttila 1999; Kaur et al 2000) and the sugar signalling 
pathways interact with stress pathways to modulate meta-
bolism. Indirectly, the sugars play an important role dur-
ing plant growth and development under abiotic stresses 
by regulating carbohydrate metabolism. A large number 
of stress responsive genes have been reported to be in-
duced by glucose, indicating the role of sugars in envi-

ronmental responses (Price et al 2004). The regulation of 
31 genes corresponding to enzymes of carbohydrate meta-
bolism in Arabidopsis under cold, drought and salt 
stresses (Seki et al 2002), differential regulation of car-
bohydrate content and enzymes of carbohydrate metabo-
lism (Castrillo 1992; Pelleschi et al 1997) and role of 
sugars as signalling molecules in gene expression under 
abiotic stresses (Ho et al 2001) prompted us to write this 
review. 
 Sugars produced during photosynthesis are the sub-
strates of carbon and energy metabolism and are used in 
the biosynthesis of polysaccharides like starch and cellu-
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lose in plants. The sugar status of plant cells is sensed by 
sensor proteins. Sugar sensing is the interaction between 
a sugar molecule and a sensor protein in such a way that a 
signal is generated. The signal then initiates signal trans-
duction cascades that result in cellular responses such as 
altered gene expression and enzymatic activities. Sugars 
as signalling molecules affect the plants at all stages of 
growth starting from seed germination to seed develop-
ment. Sugars, like hormones, can act as primary messen-
gers and regulate signals that control the expression of 
various genes involved in sugar metabolism. 

2. Sugar sensing and signalling 

Two systems for hexose sensing have been suggested. 
One is hexokinase (HXK)-dependent and the other HXK-
independent pathway. The HXK-dependent system re-
quires the phosphorylation of sugars while the independ-
ent one senses sugars as such (Smeekens 2000). Sugars 
also act as regulatory signals that control the expression 
of various genes involved in many processes (Koch 1996; 
Jang and Sheen 1997; Smeekens 1998; Lalonde et al 
1999; Roitsch 1999). Plants have both HXK-dependent 
and HXK-independent sugar signalling pathways. The 
evidences in the favour of HXK dependent signalling came 
from the observations that those sugar analogues that can 
be phosphorylated by HXK were able to trigger repres-
sion of photosynthetic genes (Jang and Sheen 1994). 
Secondly, further metabolism of sugar phosphates was 
not necessary to cause repression because 2-deoxy glucose 
(2-DG) and 2-deoxy mannose that cannot be metabolized 
after phosphorylation could also cause severe repression. 
These findings suggested that sugar signalling pathways 
donot overlap with downstream glucose metabolic path-
ways. The possibility of glucose being converted to other 
derivatives that could trigger repression without undergo-
ing phosphorylation was also ruled out (Jang and Sheen 
1994). Glucose-6-phosphate (G-6-P) was shown to act as 
repression signal (Brun et al 1993). Direct delivery of 
sugar phosphates into maize cells via electroporation did 
not trigger repression of photosynthetic genes (Jang and 
Sheen 1997). Based on the intracellular concentration of 
G-6-P which did not increase upon treatment with glu-
cose, it was suggested that glucose is a direct signal. Fur-
thermore, mannoheptulose, a competitive inhibitor of HXK 
blocked the severe repression caused by 2-DG. These 
observations indicated that HXK is the sensor in mediat-
ing the repression signal. It was further supported by the 
fact that 3-oxy-methyl-glucose (3-o-MG) could not re-
lieve the repression caused by 2-DG because, 3-o-MG 
cannot be phosphorylated by HXK. The evidence for 
HXK-independent signalling pathways came from the 
observations that glucose analogue 6-deoxy glucose (6-

DG), which can be transported across the plasma mem-
brane but cannot be phosphorylated by HXK, activated 
the expression of genes encoding cell wall invertase 
(CIN), sucrose synthase (SuSy) and phenylalanine am-
monia lyase (Roitsch et al 1995; Godt and Roitsch 1997; 
Ehness et al 1997) as shown in figure 1. Similarly 3-o-
MG which cannot be phosphorylated but activated patatin 
class-1 promoter, thereby suggested the existence of HXK- 
independent sugar signalling pathways (Roitsch 1999). 
 Three glucose signal transduction pathways in plants 
have been suggested (Xiao et al 2000). These are 
AtHXK1-dependent pathway in which gene expression 
was correlated with the AtHXK1-mediated signalling 
function. Second was glycolysis-dependent pathway that 
was influenced by catalytic activity of both AtHXK1 and 
heterologus yeast HXK2. Third is the HXK-independent 
pathway in which gene expression is independent of 
AtHXK1. However, by using two independent knockout 
mutations for HXK1 isoform, it was concluded that G-6-P 
metabolism is uncoupled from HXK1-dependent signal-
ling (Moore et al 2003). A mechanism for glucose sens-
ing by HXK1, wherein a change in conformation by 
substrate binding initiates a signalling cascade, has been 
proposed (Harrington and Bush 2003). It still remains 
unclear if HXK senses glucose in a linear concentration 
dependent manner or it is flux sensor. Hexose sensing 
and signalling functions are, however, dependent on sub-
cellular localization, translocation and interactions with 
down stream effectors of HXK (Rolland et al 2002). The 
possible sites for sugar signalling are shown in figure 2. 
Multiple glucose signal transduction pathways that con-
trol diverse genes and processes are intimately linked to 
developmental stages and environmental conditions (Xiao 
et al 2000). 
 A signalling function for sucrose was also suggested as 
it repressed m-RNA levels and transport activity of the 
proton-sucrose symporter (Barker et al 2000). The dual 
function of sugars as a nutrient and a signalling molecule 
complicates the analysis of mechanisms involved in sig-
nal transduction pathways (Rolland et al 2001). 

3. Signal transduction cascades 

Very little is known about the effect that sugars have on 
expression of genes involved in sugar signalling cascade. 
The sugar sensors feed information (sugar signalling) 
into signal transduction cascades that result in various 
types of plant responses. The signal transduction cas-
cades involve mitogen-activated protein kinases, protein 
phosphatases, Ca2+ and calmodulin (Barker et al 2000). It 
has been reported that a putative sugar signalling compo-
nent (AtSR2) that belongs to the SNF 1-related protein 
family is induced by sucrose, glucose and fructose (Chi-
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kano et al 2001). Expression level of several genes in-
volved in ABA biosynthesis and in the glucose post ger-
mination response is also modulated by glucose (Cheng et 
al 2002). During the characterization of gin 6 mutant, 
(abscisic acid insensitive 4) ABI4 transcript accumulated 
when plants were grown in the presence of glucose, sug-
gesting a possible regulation of this gene by sugars (Are-

nas-Huertero et al 2000). ABI5 transcript also accumu-
lates in response to stress (Arroyo et al 2003). 
 Sugar-mediated signalling in sweet potato and Arabio-
dopsis genes encoding β-amylase and the small unit of 
ADPglucose pyrophosphorylase (AGPase) has been de-
monstrated (Mita et al 1995; Ohto et al 1995). Specific 
inhibitors of protein-Ser/Thr phosphatases have been re-

 
Figure 1. Sugar sensing and signal transduction pathways in higher plants based on Lalonde et al
(1999) and Rolland et al (2002). A, hexokinase-independent pathway; B, hexokinase-dependent pathway, 
CAB, chlorophyll A binding protein, HXK, hexokinase; AGPase, ADP glucose pyrophosphorylase; 
SuSy, sucrose synthase; and INV, invertase. 
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ported to block the sugar induction of these genes in 
sweet potato as well as reporter gene expression in β-
amylase promotor-iudA (Amy-Gus) fusion genes in to-
bacco. Inhibitor of Ser/Thr protein kinase, staurosporine 
inhibited sugar induction of the Amy-Gus gene in tobacco 
(Ohto and Nakamura 1995). Sugar-induced calcium-de-
pendent (calmodulin domain) Ser/Thr protein kinase 
(CDPK), associated with the plasma membrane in leaf 
tissues of tobacco, has also been reported (Ohto and  
Nakamura 1995). 
 In Chenopodium rubrum cell culture system, source-
specific RUBISCO gene was repressed by sugars whereas 
the sink specific CIN gene and the pathogen induced PAL 
gene were sugar inducted (Ehness et al 1997). These genes 
were found to be coordinately regulated by glucose in an 
HXK independent pathway. Four different protein phos-
phatase inhibitors were able to mimic the glucose-media-
ted regulation of these genes (Smeekens 2000). Thus 
protein dephosphorylation is involved in transducing the 
sugar signal. Sucrose nonfermenting (SNF) kinase in ad-

dition to coupling sugar perception to altered gene ex-
pression has also been found to control the activity of 
enzymes leading to changes in metabolism (Smeekens 
2000). The phosphorylation of proteins by SNF-1-like 
and other kinases followed by binding of 14-3-3 proteins 
results in rapid adaptation of enzymatic activities and 
metabolic pathways to changing condition. A family con-
sisting at least ten 14-3-3 genes has been cloned from 
Arabidopsis (Wu et al 1997). 
 A single enzyme can be a target for different protein 
kinases that regulate its activity in opposite direction e.g. 
sucrose phosphate synthase (SPS) can be both activated 
and repressed by a site-specific protein phosphorylation 
(Toroser and Huber 1997). Diurnal regulation of SPS is 
controlled by ser 158 phosphorylation through activity of 
SNF like kinase that leads to its inactivation. This control 
is overridden by stress induced activation via a calcium 
dependent protein kinase (CDPK) mediated Ser-424 
phosphorylation (Toroser and Huber 1997). The SPS and 
SuSy enzymes can also be phosphorylated by CDPK 

 
Figure 2. The possible sites for sugar signal sensing by hexokinase based on Rolland et al (2002). HXK, hexokinase; Glc, glu-
cose; Suc, sucrose; Vac, vacuole; ER, endoplasmic reticulum; MITO, mitochondria; Fru, fructose; and FRK, fructokinase. 
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(Huber et al 1996). Phosphorylation of SuSy selectively 
activates the sucrose cleavage reaction (Huber et al 
1996). Various studies have shown that transcriptional 
regulation is not the only response to sugars, the sucrose 
regulated ATB2 gene is controlled at translation (Rook  
et al 1998) and modulating mRNA stability is a major 
control element for cereal α-amylase gene expression 
(Chan and Yu 1998a). 
 Translation of mRNA of Arabidopsis basic leucine 
zipper gene (ATB2) is repressed specifically by sucrose. 
Glucose and fructose individually and together were inef-
fective in this repression. The ATB2 mRNA has a com-
plex leader containing small open reading frames. Deletion 
of this leader abolishes sucrose repression, which shows 
that a sucrose-specific signal controls translation (Rook 
et al 1998). Repression of mRNA levels and transport 
activity of proton-sucrose symporter by sucrose has been 
shown in excised sugar beet leaves (Chiou and Bush 1998). 
 Role of sugar sensing has been established during 
germination in rice. When glucose level exceeded the 
demand, α-amylase gene expression was down regulated 
by a process that involves sugar sensing. For Ramy3D 
gene it was found that HXK was most likely involved in 
transmitting the glucose signal. The HXK substrate 2-DG 
induced signalling was inhibited by HXK inhibitor glu-
cosamine. 3-o-MG and 6-DG were not effective in sig-
nalling (Umemura et al 1998). α-amylase expression was 
inhibited in the barley seed germination by hexoses that 
are substrates for HXK but not by other hexoses (Perata 
et al 1997) 

 Sugars affect the expression of α-amylase genes in the 
presence of gibberellic acid (GA). Induction of α-amylase 
in the scutellum and aleurone layer of germinating barley 
seeds and de-embryonated cowpea cotyledons has been 
found to be repressed by sugars (Morita et al 1998; Kaur 
et al 2005). The sugar and GA responsive elements in the 
promoter of the Ramy gene appear to overlap, which in-
dicate that the two signal transduction pathways commu-
nicate at a point upstream of the promoter elements 
(Morita et al 1998). 
 The role of sugars during different stages of seed de-
velopment has been demonstrated on the expression of 
genes encoding sucrose metabolizing enzymes and hex-
ose and sucrose transporters (Weber et al 1997; Tegeder 
et al 1999; Loreti et al 2001). However, sugars must act 
in concert with other factors and phytohormones. HXK, a 
hexose sensor, is able to determine the flux of hexoses 
entering glycolysis, while sucrose transporters act as di-
saccharide sensors and may sense the apoplastic sugar 
concentration and/or the flux of sugars crossing the plasma 
membrane (Lalonde et al 1999) as shown in figure 1. 
Fructokinase may represent an additional sensor that by-
pass HXK phosphorylation, particularly if sucrose degra-
dation occurs via SuSy (Pego and Smeekens 2000). 

4. Mutants for studying sugar sensing and signalling 

Sugar response mutants have been isolated based on the 
effects caused by high or low sugar levels during germi-
nation or early seedling growth (Rolland et al 2002). 
Other mutants have been selected by screening transgenic 
plants with altered expression of sugar-inducible promoters. 
Reporter-based screening protocols in which promoters 
of sugar induced or sugar repressed genes are linked to 
reporters like β-glucuronidase (GUS) or luciferase (LUC) 
genes are being used for isolating relevant mutants. 
These constructs are introduced into plants and used as 
tools to select sugar-unresponsive and suger-hyperres-
ponsive mutants. The plastocyanin (PC) gene of Arabi-
dopsis can be repressed by sugars (Dijkwel et al 1996) 
and a seedling carrying a PC-promoter luciferase reporter 
gene construct is similarly repressed by sugars. Mutants 
defective in sucrose repression were identified on the 
basis of normal luminescence when grown on sucrose 
(Dijkwel et al 1997). 
 A similar strategy was used to select for mutants in 
sugar induction. The patatin class-1 (B33) promoter is in-
duced by sugars and signalling mutants were selected by 
using transgenic Arabidopsis plants harbouring the Pat 
(B33)-indA constructs (Martin et al 1997). In this way, 
reduced sugar response (rsr) mutants were identified in 
which sucrose-induced expression of patatin is perturbed. 
 The Arabidopsis β-amylase gene is induced by sugars 
and mutants that display either an increased or a reduced 
sugar sensitivity have been isolated in amylase activity 
screens (Mita et al 1997a,b). A mutant showing elevated 
β-amylase expression (hba1, high level β-amylase) and 
low level β-amylase (lba) independent of the presence of 
sugars in the medium was isolated (Mita et al 1997b). 
Mutant seedlings that develop more or less normally in 
the presence of 6% glucose have been isolated and named 
glucose insensitive (gin) mutants (Zhou et al 1998). 

5. Sugars and regulation of carbohydrate  
metabolism under environmental stresses 

Sugar sensing and signalling are involved in the control 
of growth and development during the entire plant life 
cycle starting from germination (Gazzarrini and McCourt 
2001; Eastmond and Graham 2001). High sugar accumu-
lation during early seedling development may reflect un-
desirable growth conditions at a crucial developmental 
period (Lopez-Molina et al 2001) resulting in reversible 
developmental arrest that acts as a protection mechanism. 
Sugars regulate growth activities by modulation of gene 
expression and enzymes activities in both carbohydrate 
exporting (source) and importing (sink) tissues. This en-
sures optimal synthesis and use of carbon and energy 
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resources (Stitt and Krappe 1999; Coruzzi and Bush 2001). 
In general low sugar status enhances photosynthesis, re-
serve mobilization and export, whereas the abundant 
presence of sugars promotes growth and carbohydrate 
storage (Koch 1996) as shown in figure 3. Accumulation 
of sugars in source tissues downregulates photosynthesis 
thus maintaining homeostasis. The differential source 
sink effects allow the adaptation of carbon metabolism to 
changing environmental conditions and to the availability 
of other nutrients (Rolland et al 2002). The effect of 
abiotic stresses on metabolic events in source and sink 
tissues has been summarised in figure 3. 
 Independent glucose and disaccharide sensing proc-
esses modulating α-amylase in barley embryos have been 
reported (Loreti et al 2000). Fructose moiety in the non-
metabolizable disaccharide like palatinose, turanose and 
fluoro sucrose plays an important role in modulating the 
expression of α-amylase (Loreti et al 2000). Sucrose de-
rivatives though had no effect on RbcS expression but 
resulted in transient induction of extra cellular invertase; 
and transient activation of MAP kinases (Sinha et al 
2002). In contrast the metabolisable sugars resulted in 
repression of RbcS; induction of extracellular invertase; 
and failed to activate MAP kinase activity. The differen-
tial effects were also reported in transcript stability of α-
amylase (Loreti et al 2000). The existence of an extracel-
lular sugar-sensing mechanism has been proposed, since 
palantinose, which is not taken up by the cells, exerts the 
same response in potato tubers as sucrose. Application of 
palatinose to discs of potatoes increased the invertase 
activity which resulted in a shift in favour of starch syn-
thesis (Fernie et al 2001). 
 Down-regulation of photosynthetic enzymes by changes 
in metabolite pool size has been suggested (Foyer 1988). 
A model for sugar repression of photosynthetic gene 
transcription in higher plants is represented in figure 4. 
Increased soluble acid invertase activity on dehydration 

has been reported in maize leaves (Pelleschi et al 1997). 
It was correlated with higher hexose content. Increased 
invertase activity was also reported in mature bean leaves 
(Castrillo 1992) and in pigeonpea (Keller and Ludlow 
1993). The observed changes in source leaf in response to 
water deficit differed from those in sink organs. Cell wall 
invertase activity was inhibited under water stress in maize 
ovaries (Zinselmeier et al 1995). The upregulation of 
extracellular invertase was suggested to be a common 
response to various biotic and abiotic stress related stim-
uli like pathogen infection and salt stress (Roitsch et al 
2003). A marked accumulation of hexoses was correlated 
with an increase of vacuolar invertase activity in mature 
maize leaves under drought but it did not affect the cell 
wall invertase activity (Pelleschi et al 1999). In vegeta-
tive sink and source organs of water stressed maize 
plants, organ specific induction of acid invertase was 
correlated with an increase in Ivr2 gene transcripts and in 
the vacuolar invertase proteins (Kim et al 2000; Roitsch 
et al 2003). 
 Another important component of carbohydrate metabo-
lism in source leaves is SPS. A decrease in SPS activity 
in leaves of plants subjected to drought/mild water stress 
has been reported (Castrillo 1992; Pelleschi et al 1997). 
 The changes in enzyme activities resulted in increased 
sucrose content and accumulation of soluble carbohy-
drates which could be due to decreased export or reduced 
demand of sink organs under stress (Daie 1988; Gupta  
et al 1993a,b; Kaur et al 1998). The signal for these 
changes in metabolism could be induced by alterations in 
the balance between source and sink organs. An artificial 
increase in leaf carbohydrate content modified the gene 
expression for enzymes of photosynthetic metabolism 
(Krapp and Stitt 1995). Simple sugars, such as sucrose 
and glucose, are efficient modulators of gene expression 
(Koch et al 1992). Sugar-regulated genes have been iden-
tified and the functions of the encoded polypeptides range 
from an involvement in plant metabolism to light percep-
tion and cell cycle control (Jang and Sheen 1997; Lalonde 
et al 1999). In many plants, the genes for sucrose syn-
thase and invertase are subjected to sugar regulation (Eh-
ness et al 1997). Some genes required for carbon meta-
bolism are regulated by glucose repression (Jang and 
Sheen 1997; Smeekens and Rook 1997). The plant cells 
have independent sensors for sucrose and glucose. Cells 
sense changes in the ratio between sucrose and glucose 
and feed this information into markedly different signal 
transduction pathways. 

6. Effect of sugars on gene expression 

No common or conserved cis-acting element for the 
sugar-regulated expression has been reported in the pro-

 
Figure 3. Differential effects of source-sink activities depend-
ing upon the availability of nutrients based on available infor-
mation in literature. ñ, induction; ò, repression; L, low sugar 
content; and H, high sugar content. 
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moters of sugar-regulated plant genes (Lu et al 1998; 
Kim and Guiltinan 1999; Sheen 1999). However, genes 
under the common sugar signalling pathways may share 
common cis-acting elements to which a transcription fac-
tor binds coordinately. Kim and Guiltinan (1999) have 
reported that a subset of sugar-regulated genes share con-
served motifs in their promoter. 
 Expression of genes for sporamin (spo) and β-amylase 
(β-Amy) is inducible in vegetative tissues such as stem, 
leaf and petiole by high levels of sucrose or other meta-
bolizable sugars (Nakamura et al 1991; Hattori et al 
1991). Sugar inducible expression of these genes responds 
similarly to various inhibitors of the signal transduction 
components (Ohto et al 1995). These results suggest that 
expression of β-Amy and spo is regulated by similar 
mechanisms. Analysis of the expression of a fusion gene, 
which consisted of the 5 upstream sequence of the gene 
for β-amylase and in the light is regulated at the level of 
transcription. Analysis of a short-inducible promoter de-
rived from β-Amy indicated that TGGACGG element 
plays an important role in sugar inducible expression of 
both of the truncated promoters of spo and β-Amy (Maeo 
et al 2001). 
 The activation of gene expression by sugars has been 
studied with the promoters of genes encoding patatin, β-
amylase and vegetative storage protein (Ishiguro and  
Nakamura 1994; Sadaka et al 1994; Martin et al 1997). 
Both positive and negative cis-elements were found. A 
conserved sucrose responsive element (SURE) and its 

binding factor have been identified (Ishiguro and Naka-
mura 1994). Glucose repression of rice α-amylase gene 
promoters has revealed multiple cis-elements important 
for sugar-regulated gene expression (Chan and Yu 1998b; 
Hwang et al 1998; Lu et al 1998; Morita et al 1998). 
Hexokinase is proposed to be the sensor mediating the 
sugar repression of α-amylase gene (Umemura et al 
1998). In the promoter of a rice α-amylase gene αAmy3, 
major sugar response sequence (SRS) was located be-
tween 186 and 82 base pairs upstream of transcriptional 
site (Lu et al 1998). The SRS converted a sugar-insen-
sitive rice actin gene promoter into a sugar-sensitive 
promoter in a dose-dependent manner. Three essential 
motifs: namely the GC box, G Box and TATCCA ele-
ment within the SRS have been identified. Sequences con-
taining either the GC box plus G box, or the TATCCA 
element, each mediated sugar response. The TATCCA 
element is also an important component of gibberellin 
response complex of the α-amylase gene in germinating 
cereal grains, suggesting that regulation of α-amylase 
gene expression by sugar and hormonal signal may share 
common regulatory mechanism (Lu et al 1998). 
 Specific regulatory elements involved in glucose re-
pression have also been identified in the promoters of 
bean RBCS2 (Urwin and Jenkins 1997) and cucumber 
malate genes (Sarah et al 1996). Sucrose-specific induc-
tion of gene expression has been reported for patatin 
promoter and phloem-specific rolC promoter (Jefferson 
et al 1990; Kim et al 1994; Yokohama et al 1997). Glu-

 
 
Figure 4. Model showing repression of photosynthetic gene transcription by 
sugars in higher plants based on Smeekens (1998), Sturm and Jang (1999), Barker
et al (2000) and Rolland et al (2002). A, transcriptional activator; C, chloroplast; 
N, nucleus; V, vacuole; INV, invertase, R, transcriptional repressor; HXK, 
hexokinase; HIP, hexokinase interacting protein; G, glucose; and F, fructose. 
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cose analogue 3-o-MG is an effective inducer of the pata-
tin promoter (Martin et al 1997). Sucrose responsive 
elements are found in patatin class promoter (Kim et al 
1994). Sucrose-responsive sequences are also found in 
several sucrose-inducible sucrose synthase genes (Fu et 
al 1995). A gene coding for a DNA-binding protein, 
which recognizes the SP8 motif in sweet potato sporamin 
and potato β-amylase gene promoter, SPF1, has been 
cloned. It encodes a negative regulator that is not tran-
scribed in presence of sucrose (Ishiguro and Nakamura 
1994). 
 The core sequence of WRKY-binding element (W-
box) is found in promoters of wheat, barley and oat α-
Amy2 gene (Rushton et al 1995). W-boxes are also found 
in many Arabidopsis genes involved in plant defense  
(Du and Chen 2000; Maleck et al 2000). G-box motif 
(CACGTC) is found on several sugar-regulated promot-
ers and is involved in the transcriptional control of phy-
tochrome-mediated control of gene expression (Martinez-
Garcia et al 2000). B-box motif is similar to the 
CCACGTGG ABA-responsive element (Pla et al 1993). 
β-amylase transcript is induced by ABA (Ohto et al 
1992) and induction of β-phaseolin promoter by exoge-
nous ABA in tobacco embryo is modulated by external 
sucrose (Bustos et al 1998). It appears that sugar signal-
ling may converge in the transcriptional control of W- 
and G-boxes in diverse promoters (Rolland et al 2002). 
 A computer analysis of the promoter of grape VvHT1 
(Hexatransporter 1) revealed the presence of several sugar 
boxes. Glucose and sucrose doubled the β-glucuronidase 
activity conferred by the VvHT1 promoter whereas fruc-
tose has no effect. Possibly VvHT1 promoter activity 
may be stimulated by two independent signalling i.e. 
hexose as well sucrose pathway (Atanssova et al 2003). 
 Sugars can also regulate the gene expression by affect-
ing the mRNA stability through specific 3′ untranslated 
sequences (Chan and Yu 1998a). Sugars can enhance the 
stability of transcripts encoding rice alcohol dehydro-
genase and glyceraldehyde-3-phosphate dehydrogenase 
(Ho et al 2001). 
 A proton-coupled sucrose symporter mediates phloem 
loading. Antisense expression of the SUT1 in transgenic 
plants inhibits assimilate partitioning leading to elevated 
levels of soluble carbohydrates and starch in their leaves, 
reduced sucrose transport activity and impaired growth 
(Riesmeier et al 1994; Kühn et al 1996). Sucrose sym-
porter is regulated by changing levels of sucrose in the 
leaf and sucrose dependent transduction pathway is an 
important regulatory step in resource allocation (Chiou 
and Bush 1998). Sucrose transporters are the key proteins 
in carbon partitioning and are localized at strategic posi-
tion, thus being an important target for regulation. Su-
crose transport and metabolism are highly regulated at 
the transcriptional and post transcriptional levels (Kühn 

et al 1999). A correlative evidence for the role of sucrose 
transporters in sucrose accumulation and starch biosyn-
thesis in barley endosperum has been proposed (Weschke 
et al 2000). 
 SUT genes have been identified in number of plants 
(Smeekens 1998). SUT genes encode highly hydrophobic 
proteins. They consist of 12 membrane-spanning domains 
and are distantly related to hexose transporter family 
found in yeast and plants (Ward et al 1998; Rentsch  
et al 1998). Studies conducted in tobacco, potato and 
tomato by using immunolocalization techniques have 
shown that sucrose transporter (SUT1) is involved in 
phloem loading and are present in plasma membrane of 
sieve elements (Kühn et al 1997). Sucrose controls the 
expression of number of genes. Examples include an 
Arabidopsis zipper gene, ATB2, RolC promoter from 
Agrobacterium and SUT1 (Yokohamo et al 1997; Chiou 
and Bush 1998). Sucrose obviously has two functions one 
as a source of carbon and other affecting expression of 
some important genes. 

7. Fructans in stress tolerance 

Fructans are polyfructose molecules that are produced by 
many plants and bacteria and furthermore these may play 
a role in adaptation to osmotic stress due to their high 
soluble nature (Gupta and Kaur 2000). Meer et al (1994) 
modified non-fructan storing potato plants by introducing 
the microbial fructosyl transferase gene. Constructs were 
created in which fructosyl transferase gene of Bacillus 
subtilis (SacB) was fused to vacuolar targetting sequence 
of yeast carboxypeptidase Y (cpy) gene. These constructs 
were placed under the control of the constitutive cauli-
flower mosaic virus 35S promoter and introduced into 
potato tissue. The regenerated potato plants accumulated 
fructans (Meer et al 1994). Drought treatment resulted in 
33% more fresh weight in transformed fructan-accumu-
lating plants than in the control plants (Pilon-Smits et al 
1995). 
 A cDNA from Helianthus tuberosus which encodes 1-
sucrose: sucrose fructosyl transferase (1-SST) was cloned 
into plasmid pPG5 harbouring the bialaphos resistance 
gene (pat). The resulting plasmid pSST507 containing 
both 1-sst and pat sequences was used to transform 
stomatal guard cell protoplast of sugarbeet. The plants 
regenerated from transformed protoplasts stored low mo-
lecular weight fructans in their tap roots (Sevenier et al 
1998). Such fructan-storing transgenic sugar beet plants 
performed better compared to control plants during de-
hydration stress (Pilon-Smits et al 1999). The molecular 
mechanisms behind how fructans protect against abiotic 
stresses are unclear. However, on the basis of some in 
vitro experiments, it was proposed that fructans could 
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protect lipid bilayers from stress by virtue of the ability 
of fructans to interact with phospholipids (Damel et al 
1998). Fructans are also inserted in bilayers and thereby 
protect the lipid bilayers from undergoing phase transi-
tion (Vereyken et al 2001). It appears that during cold 
stress, phase transition of lipids is responsible for most of 
the damage caused from increased membrane permeabil-
ity. Further it was shown that lipid bilayer vesicles be-
came less leaky upon freeze-drying treatment in presence 
of fructans (Hincha et al 2000). 

8. Trehalose in stress tolerance 

Trehalose, a non-reducing disaccharide of glucose, is 
known as a reserve metabolite in yeast and fungi. Treha-
lose has been shown to stabilize proteins and membrane 
lipids. Tobacco plants were transformed with the gene for 
trehalose-6-phosphate synthase (TPSI) driven by the 
promoter of the rbcs gene from Arabidopsis. The TPS1 
positive plants accumulated trehalose and exhibited an 
improved drought tolerance (Holmstrom et al 1996). 
When tobacco was transformed with otsA and otsB genes 
from Escherichia coli which encode trehalose-6-phos-
phate synthase and trehalose-6-phosphate phosphatase, 
the leaves of the transgenic plants had a better photosyn-
thetic efficiency and a higher dry weight accumulation 
under drought stress than controls (Pilon-Smits et al 
1998). Expression of the yeast gene for TPS1 in tobacco, 
driven by the drought-inducible promoter of RD29 and 
by 35S promotor of CaMV in potato led to improved tol-
erance in these transgenic plants (Yeo et al 2000; Zhao  
et al 2000). 
 The regulated overexpression of E. coli trehalose bio-
synthetic genes (otsA and otsB) as a fusion gene for ma-
nipulating stress tolerance in rice has been reported (Garg 
et al 2002). The fusion gene has the advantage of  
necessitating only a single transformation event and a  
higher net catalytic efficiency for trehalose formation 
(Garg et al 2002). 

9. Raffinose oligosaccharides in stress tolerance 

Raffinose family oligosaccharides (RFO) are α-galacto-
syl derivatives of sucrose. These are raffinose, stachyose 
and verbascose and form components of the carbohydrate 
reserves of seeds. These rank second to sucrose in abun-
dance as soluble carbohydrates. RFOs may play a role in 
desiccation tolerance during seed maturation. Their role 
in protecting plants under water-deficit stress has been 
reported by Taji et al (2002). Drought, high salinity and 
cold-treated Arabidopsis plants accumulate a large amount 
of raffinose and galactinol, but not stachyose. However, 
raffinose and galactinol were not detected in unstressed 

plants, suggesting their role in tolerance to stresses (Taji 
et al 2002). Transgenic plants constitutively expressing 
galactinol synthase 2 (GolS2) exhibited improved stress 
tolerance (Taji et al 2002). The SIP1 gene encodes a pro-
tein of unknown function that has 81% similarity to a 
putative cucumis raffinose synthase (Anderson and  
Kohorn 2001). Arabidopsis mutants with inactive SIP1 
had reduced drought tolerance (Anderson and Kohorn 
2001). Galactinol synthase (GolS) catalyses the first step 
in the biosynthesis of RFOs and plays a key regulatory 
role in carbon partitioning between sucrose and RFOs 
(Saravitz et al 1987). Three stress-responsive galactinol 
synthase (GolS) genes (AtGolS 1, 2 and 3) among seven 
Arabidopsis GolS genes were identified (Minorsky 2003). 
GolS catalyses the first step in the biosynthesis of RFO 
from UDP-galactose. GolS activity in seeds increased by 
cold and desiccation (Liu et al 1998; Dowrie et al 2003). 
Expression of GolS genes was induced by cold stress in 
Arabidopsis and Ajuga reptans plants (Liu et al 1998; 
Sprenger and Keller 2000). AtGolS1 and AtGolS2 were 
induced by drought and high salinity stresses. The over 
expression of AtGolS2 caused an increase in endogenous 
galactinol and raffinose and reduced transpiration thus 
acting as osmoprotectants during drought stress in plants. 
It was established that an unidentified gene belonging to 
a group of ABA-independent, desiccation stress-inducible 
genes isolated from rice (Oryza sativa) encodes the rice 
homolog, the GolS gene (Liu et al 1998). Utilization of 
raffinose series oligosaccharides was delayed under water 
deficit stress in chickpea seedlings (Gupta et al 1993b). 
 The acquisition of tolerance to heat stress is correlated 
with induction of heat shock protein expression. In 
Arabidopsis, 21 different heat shock transcription factors 
(HSF) genes have been identified (Nover et al 2001). 
GolS1 is one of the genes that is heat-inducible in wild 
type Arabidopsis but showed constitutive m-RNA levels 
in transgenic plants expressing heat shock factor 3 
(HSF3) gene (Panikulangara et al 2004). The conclusion 
that GolS1 is a true target of HSF regulation was con-
firmed by the investigation of transgenic plants carrying 
GolS-promoter GUS-reporter constructs. It appears that 
HSFs may be involved in drought- and salinity-induced 
GolS1/GolS2 expression whereas the expression of cold-
inducible GolS3 is regulated by DREB1/CBF (Paniku-
langara et al 2004). 
 The tomato (Lycopersicon esculentum) Lea-Gal gene 
under the control of Figwort mosaic virus promoter was 
introduced into petunia in the sense and antisense ori-
entations using Agrobacterium tumefaciens-mediated 
transformation (Pennycooke et al 2003). RNA gel blots 
confirmed that α-galactosidase (α-Gal) transcripts were 
reduced in antisense lines compared with wild type 
whereas sense plants had increased accumulation of α-
Gal mRNA. Down-regulating α-Gal in petunia resulted 
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in an increase in freezing tolerance at the whole-plant 
level whereas over expression of the α-Gal gene caused a 
decrease in endogenous raffinose and impaired freezing 
tolerance (Pennycooke et al 2003). 

10. Sugar alcohols in stress tolerance 

The studies on the role of sugar alcohols in tolerance to 
salt stress in terrestrial species are mainly correlative. 
Their levels show increase in higher plants, for example, 
mannitol in celery (Stoop and Pharr 1994) and glucitol in 
Plantago (Briens and Larher 1983) under salt stress. In 
celery, salt treatments increased mannitol and mannitol-
6-phosphate reductase (Everard et al 1994). Arabidopsis 
and tobacco plants, which donot usually contain manni-
tol, with mt1D gene for with mannitol-1-phosphate dehy-
drogenase from E. coli, produced mannitol at all stages of 
leaf development and showed considerable resistance to 
salt stress though the level of mannitol was very low 
(Tarczynski et al 1992). Wheat was transformed with 
mt1D gene of E. coli. The ecotopic expression of mt1D 
gene for biosynthesis of mannitol in wheat improved tol-
erance to water stress and salinity (Abebe et al 2003). 
 Tobacco plants were transformed with a construct in 
which the mt1D gene was targetted to chloroplast. The 
resulting transgenic plants accumulated mannitol which 
resulted in their enhanced resistance to oxidative stress 
(Shen et al 1997). Similarly seeds of transgenic mt1D 
expressing Arabidopsis plants were able to germinate in 
medium supplemented with 400 mM NaCl, where control 
seeds ceased to germinate at 100 mM NaCl (Thomas et al 
1995). Similarly in mannitol accumulating transgenic 
plants, 150 mM NaCl had no effect on growth where it 
reduced biomass of wild plants by 44% (Karakas et al 
1997). The available information on expression of certain 
sugars and sugar alcohols in transgenics leading to en-

hanced tolerance against different kinds of stresses has 
been summarized in table 1. 

11. Crosstalk between stress signalling pathways 

A number of genes have been reported to be up-regulated 
under water stress. Many of these belonged to enzymes 
of carbohydrate metabolism like glyceraldehyde-3-phos-
phate dehydrogenase, SPS, SuSy and PEP carboxylase. 
Many of the genes corresponding to enzymes involved 
during sugar signalling cascades were also up-regulated 
(Ingram and Bartels 1996). These findings indicate that 
enzymes of sugar metabolism are critical in stress toler-
ance. Increasing sucrose synthesis and SPS activity is not 
only a drought response of desiccation tolerant plants such 
as Craterostigma plantigineum but also of plants that 
cannot withstand extreme drying such as spinach (Quick 
et al 1989). Seki et al (2002) monitored the expression 
profiles of 7000 Arabidopsis genes under drought cold or 
high salinity stress using a full length cDNA-micro array. 
In total 277 drought and 194 high salinity inducible genes 
were identified. Out of these total genes identified under 
cold, drought and salinity stresses, 20 genes belonging to 
enzymes of carbohydrate metabolism were up-regulated 
and 11 down-regulated (table 2). The number of cold 
stress-inducible genes were much lesser in comparison to 
drought and salinity thereby showing that water stress is 
the most severe limiting factor of plant growth. The role 
of sugar metabolism under abiotic stress is very impor-
tant in modulating plant development as sugars are in-
volved in signal transduction pathways as discussed 
earlier in this review. The induction of genes of regula-
tory protein like protein kinases, phosphatases and calmo-
dulin-binding proteins which are thought to function in 
further regulating functional genes under stress condi-
tions further support the role of sugars in signal transduc-
tion cascades. The existence of crosstalk between drought 

Table 1. Transgenic plants engineered to produce different sugars/sugar alcohols for enhanced tolerance to stress. 
          
Sugar/sugar  
alcohol 

 
Gene 

 
Host plant 

 
Enhanced tolerance 

 
References 

          
Fructan  SACB  Tobacco  Drought Pilon-Smits et al 1995 
  SACB   Sugarbeet  Drought Pilon-Smits et al 1999 
Mannitol  Mt1D  Arabidopsis  Salt Thomas et al 1995 
  Mt1D  Tobacco  Salt Tarczynski et al 1992; Tarczynski et al 1993; 

Karkas et al 1997 
  Mt1D  Wheat  Drought and salt Abebe et al 2003 
Sorbitol  S6PDH  Persimmon  Salt Gao et al 2001 
Trehalose  TPS1  Tobacco  Drought Zhao et al 2000 
  TPS1  Potato  Drought Yeo et al 2000 
  Ots A, Ots B  Tobacco  Drought Pilon-Smits et al 1998 
  Ots A, Ots B  Rice  Drought and salt Garg et al 2002 
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and high salinity stress signalling processes in plants is 
shown in figure 5. 

12. Conclusions 

Sugars have dual role in plants. They are involved in 
various metabolic events and also regulate various genes 

especially those involved in photosynthesis, sucrose me-
tabolism and synthesis of osmoprotectants. Sugars like 
fructans, raffinose series oligosaccharides and trehalose 
also act as protectants against abiotic stresses. Transgenic 
plants expressing these sugars have more tolerance to 
abiotic stresses, but a number of times they have reduced 

Table 2. The genes of enzymes involved in carbohydrate metabolism that are up- and down-regulated under various 
abiotic stresses in Arabidopsis (Seki et al 2002). 
    
Genes up-regulated Genes down-regulated 
    
Cytosolic glyceraldehyde-3-phosphate dehydrogenase Phospho ribulokinase (one gene) 
Sucrose phosphate synthase Glyceraldehyde-3-phosphate dehydrogenase (three genes) 
Sucrose synthase Aldolases (two genes) 
Phosphoenol pyruvate carboxylase Fructose bisphosphatases (two genes) 
Betaine aldehyde dehydrogenase  
(involved in glycine betaine biosynthesis) 

β-glucosidase (three genes) 

∆-pyrroline-5-carboxylase synthase (proline biosynthesis)  
S-adenosyl-L-methionine synthetase  
Lipoxygenase  
Ca2+-dependent, calmodulin independent protein kinase  
Protein kinase  
Phosphatidyl inositol specific phospholipase C  
Cytosolic ascorbate peroxidase  
Cytosolic copper zinc superoxide dismutase  
Glutathione S-transferase  
L-isoaspartyl methyl transferase  
  
  

 
Figure 5. Crosstalk among sugar signal transduction, enzyme activities and gene regulation based on Kaur 
et al (1998), Umemura et al (1998), Lalonde et al (1999), Seki et al (2002) and Price et al (2004). Ç, induction; 
È, repression; C, cotyledons; Sh, shoot; IP3, inositol triphosphate; DAG, diacyl glycerol; SuSy, sucrose syn-
thase; SPS, sucrose phosphate synthase; Suc, sucrose; and HXK, hexokinase. 
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growth and lower yield. Future efforts should be in two 
directions. One based on traditional wisdom to identify 
germ plasm which has inbuilt high content of abiotic 
stress tolerant markers and can be straightforward in-
cluded in the breeding programme of evolving abiotic 
stress-tolerance crops. The other to have transgenics which 
express the desired characters only at the time of expo-
sure to abiotic stresses so that they can give good yield 
along with capability to tolerate stresses. 
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