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The diversity of life on earth dazzles all of us – the rich profusion of its designs, the wide size range of its orga-
nisms, the complexities of its hierarchical levels, and so forth. Undaunted, we life scientists seek broadly applicable 
rules, common patterns of organizations, and order beneath the perceptual chaos; we look for alternatives to the 
easy answers of revealed truth. 
 Biology, no less than the physical sciences, treads this bumpy path – indeed the overt diversity of life puts  
especially bad bumps in its way. Perhaps its special difficulty underlies the gradual estrangement of biology 
from the more obviously successful physics of the post-Newtonian era and its awkward reintegration into the 
larger world of science in the twentieth century. That process remains incomplete; blame, if leveled, rests on the 
untidiness and distinctiveness of the subject. The tidy formulas of Newtonian physics work even less well for us 
than they do for, say, practicing engineers. Life directs its chemistry with sets of governing molecules and carries it 
out with the aid of catalysts of breathtaking specificity. And biology enjoys a strange organizing principle, 
evolution by natural selection, barely hinted at elsewhere in science. 
 No aspect of this reintegration has been (and continues to be) more successful than what we have come to call 
molecular biology – a statement at once fashionable and incontrovertible, one with which I have no grounds to 
take issue. What matters here, indeed the entire justification for the essays that begin with the one here, comes 
down to the following. The very success of this chemically-reductionist biology too easily diverts us from other 
conjunctions of physical science and biology. 
 This series will explore aspects of biology that reflect the physical world in which organisms find themselves. 
Evolution can do wonders, but it cannot escape its earthy context – a certain temperature range, a particular 
gravitational acceleration, the physical properties of air and water, and so forth. Nor can it tamper with mathe-
matics. The baseline they provide both imposes constraints and affords opportunities. I mean to explore both. 
 And I will take what other biologists might find an unfamiliar approach – one, by the way, that I have found 
productive enough to recommend. Instead of asking about the physical science behind a specific biological sys-
tem, I will consider aspects of the physical world and ask what organisms, any organisms, make of each, both 
how they might capitalize on them and be in some fashion limited by them. In effect, this will be a search for com-
monalities and patterns, the only unusual feature being the physical rather than biochemical or phylogenetic 
bases. If this approach to science were a dart game, I would be thrown out – for throwing darts at a wall first and 
only subsequently painting targets around the points of impact. 
 The series will concern itself mainly (but not exclusively) with organisms rather than ecosystems or organ-
elles. It will follow the author’s bias and personal experience toward mechanical matters, doing less than equal 
justice to radiations and electrical phenomena. It will be speculative, opinionated, and idiosyncratic, aiming to 
stimulate thought and perhaps even investigation, to open doors rather than just describing them. 
 When I began to do science, over forty years ago, I wondered first whether and then where I would get ideas 
worth pursuing. Now, on the cusp of retirement, I wonder what I am going to do with my accumulated head- 
and notebooks-full of questions. Maybe we need something like a patent expiration date – if one does nothing 
with a hypothesis for some number of years, it should somehow revert to the public domain. I am not an unequi-
vocal advocate of a strict rule, inasmuch as I have, on occasion, resurrected one of my old ideas, applying some 
additional insight or new tool in my experimental armamentarium – or just responding to a renewed interest. 
Still, these essays should, if nothing else, provide an opportunity to air untested ideas with some hope that others 
might care to pursue them. 
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Living in a physical world I. Two ways to move material 
 
“No man is an island, entire of itself,” said the English 
poet John Donne. Nor is any other organism, cell, tissue, 
or organ. We are open systems, continuously exchanging 
material with our surroundings as do our parts with their 
surroundings. In all of these exchanges, one physical process 
inevitably participates. That process, diffusion, represents 
the net movements of molecules in response to thermal 
agitation and place-to-place concentration differences. On 
any biologically-relevant scale, it can be described by 
exceedingly precise statistical statements, formulas that 
take advantage of the enormous numbers of individual 
entities moving around. And it requires no metabolic ex-
penditure, so it is at once dependable and free. 
 But except over microscopic distances diffusion proceeds 
at a glacial pace. For most relevant geometries, a doubl-
ing of distance drops the rate of transport per unit time by 
a factor, not of two, but of four. Diffusive transport that 
would take a millisecond to cover a micrometer would 
require no less than a thousand seconds (17 min) to cover 
a millimeter and all of a thousand million seconds (3 y) 
for a meter. Diffusion coefficients, the analogs of conven-
tional speeds, have dimensions of length squared per time 
rather than length per time. 
 Organisms that rely exclusively on diffusion for internal 
transport and exchange with their surroundings, not surpri-
singly, are either very small or very thin or (as in many 
coelenterates and trees) bulked up with metabolically 
inert cores. Those living in air (as with many arthropods) 
can get somewhat larger since diffusion coefficients in air 
run about 10,000 times higher than in water, which trans-
lates into a hundred-fold distance advantage. Beyond such 
evasions, macroscopic organisms inevitably augment diffu-
sion with an additional physical agency, convection, the 
mass flow of fluids. Circulatory systems as convention-
ally recognized represent only one version of a ubiqui-
tous scheme. 
 One might expect that good design balances the two phy-
sical processes. Excessive reliance on diffusion would 
limit size, slow the pace of life, or require excessively 
surface-rich geometries. Excessive reliance on flow would 
impose an unnecessary cost of pumping or require an un-
necessarily large fraction of body volume for pipes, 
pumps, and fluid. A ratio of convective transport to diffu-
sive transport ought, in other words, to have values around 
one for proper biological systems. Such a ratio represents 
nothing novel; one has long been used by chemical engi-
neers. This so-called Péclet number, Pe, is a straightfor-
ward dimensionless expression: 

D

vl
Pe =  , (1) 

where v is flow speed, l is transport distance, and D is the 

diffusion coefficient. (Confusingly, a heat-transfer version 
of the Péclet number may be more common than this mass- 
transport form; it puts thermal diffusivity rather than mo-
lecular diffusion coefficient in its denominator.) 
 Calculating values of the Péclet number can do more 
than just give a way to check the performance of the evo-
lutionary process. In particular, it can provide a test for our 
hypotheses about the primary function of various features 
of organisms. I think that justification can be put best as 
a series of examples, which will follow after a few words 
about the origin of this simple ratio. 
 One can view the ratio as a simple numerator, mv, for 
bulk flow, with a denominator representing a simplified 
form of Fick’s first law for transport (mass times distance 
divided by time) for diffusion, DSm/V, where S is cross 
section and V is volume. Using l2 for area and l3 for vol-
ume, one gets expression (1). Of course, the way we have 
swept aside all geometrical details puts severe limits on 
what we can reasonably expect of values of Pe. Only for 
comparisons among geometrically similar systems can 
we have real confidence in specific numbers. Still, living 
systems vary so widely in size that even order-of-magni-
tude values ought to be instructive. 
 From a slightly different viewpoint, the Péclet number 
represents the product of the Reynolds number (Re) and the 
Schmidt number (Sc). The first, 

µ
ρ vl

Re = , (2) 

where ρ and µ are fluid density and viscosity respecti-
vely, gives the ratio of inertial to viscous forces in a flow. 
At high values bits of fluid retain a lot of individuality, 
milling turbulently as in a disorderly crowd; at low val-
ues bits of fluid have common aspirations and tend to 
march in lock-step formation. In short, it characterizes 
the flow. The second, 

D
Sc

ρ
µ

=  , (3) 

is the ratio of the fluid’s kinematic viscosity (viscosity 
over density) to the diffusion coefficient of the material 
diffusing through it. It gives the relative magnitudes of 
the diffusivities of bulk momentum and molecular mass. 
In short, it characterizes the material combination, solute 
with solvent, that does the flowing. 
 A few cases where calculating a Péclet number might 
prove instructive. 

(i) The sizes of our capillaries and kidney tubules 

Consider our own circulatory systems, in particular the 
size of the vessels, capillaries, where function depends on 
both diffusion and flow. Do we make capillaries of pro-
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per size? After all, we devote about 6⋅5% of our body 
volume to blood and expend about 11% of our resting 
metabolic power pushing it around – so it ought to be 
important. And it appears that we do size them properly. 
For a capillary radius of 3 µm, a flow of 0⋅7 mm s–1, and 
a diffusion coefficient (assuming oxygen matters most) 
of 18 × 10–10 m2 s–1, the Péclet number comes to 1⋅2. If 
anything, the value turns out a bit better than one expects, 
given the approximations behind it (Middleman 1972). 
 Of course nature might pick different combinations of 
radius and flow speed without offending Péclet. (We ignore 
the side issue of fit of red blood cells, tacitly assuming 
that their size is evolutionarily negotiable.) Smaller ves-
sels would permit faster flow and lower blood volume, but 
the combination would, following the Hagen-Poiseuille 
equation, greatly increase pumping cost. Larger vessels 
require greater blood volume, the latter already fairly high, 
and slower flow, which would make the system less re-
sponsive to changes in demand. One suspects something 
other than coincidence for the similar blood volume (5⋅8%) 
in an octopus (Martin et al 1958). 
 Quite likely this choice of capillary size, based on Pé-
clet number and some compromise of volume versus cost, 
sets the sizes of much of the rest of our circulatory sys-
tems in an effective cascade of consequences. According 
to Murray’s law (LaBarbera 1990) the costs of construction 
and operation set the relative diameters of all vessels; 
thus if something sets diameter at one level in their hier-
archy, it ends up determining the diameters of all the rest. 
The rule is a simple one – branching conserves the cubes 
of the radii of vessels, so the cube of the radius of a given 
vessel equals the sum of the cubes of the vessels at some 
finer level of branching that connect with it. 
 What about the reabsorptive tubules of our kidneys, in 
particular those just downstream from the glomerular ultra-
filtration apparatus? Again, the system represents a far-
from-insignificant aspect of our physiology; 20 to 25% of 
the output of the heart passes through this one pair of 
organs. About 20% of the plasma volume squeezes out of the 
blood in the process, in absolute terms around 60 ml min–1 
per kidney. Each kidney consists of about 2,000,000 in-
dividual units, the nephrons. Thus each glomerulus sends 
on for selective reabsorption about 0⋅5 × 10–12 m3 s–1. 
 The sites of the initial phase of reabsorption are the pro-
ximal tubules, each about 40 micrometers in inside dia-
meter. Combined with the earlier figure for volume flow, 
that means a flow speed of 0⋅40 mm s–1. So we have speed 
and size. Diffusion coefficient can be assigned no single 
number, since the tubules reabsorb molecules spanning a 
wide size range, from small organic molecules and ions 
to small proteins with molecular weights of around 40,000. 
So coefficients most likely range from about 0⋅75 × 10–10 
to 40 × 10–10 m2 s–1. That produces Péclet numbers from 
2 to 100. At first glance these seem a bit high, but the 

story has an additional aspect. Those tubules reabsorb at 
least 80% of the volume of the filtrate, so by the time 
fluid leaves them, its speed has dropped by at least a fac-
tor of 5. That gives exit Péclet numbers a range of 0⋅4 to 
20, with an average number in between – quite reason-
able values, indicative (to be presumptuous) of good de-
sign. Flow in the tubules comes at a relatively low cost, 
at least relative to the power requirements of filtration 
and the kidney’s chemical activities. So one might specu-
late that the system contrives to bias its Péclet numbers 
so for most molecules over most of the length of the tu-
bule values exceed one, albeit not by much. 

(ii) The size of plant cells 

One can argue that the boundary between the cellular and 
the super- (or multi-) cellular world reflects the upper size 
limit of practical, diffusion-based systems, that getting 
above cell size takes some form of convective augmenta-
tion of transport. I like that view, which tickles my parti-
cular biases. But I have to admit that the notion cannot 
apply to plant cells. On average, the cells of vascular 
plants run about ten times the size of animal cells, with 
“size” taken as typical length. They are of the order of 
100 µm in length but somewhat less in width; 25 µm 
should be typical of the distance from membrane to cen-
ter. That increased size might have devastating conse-
quences for transport were it not for the internal convec-
tion common to such cells. Put another way, the size 
scale at which convective transport comes in does not 
correspond to the size of plant cells. 
 That bulk flow system within plant cells goes by the 
name “cyclosis.” We know quite a lot – but far from all –
about how microfilaments of actin (a key component of 
muscle) power it; only its speed matters here. That speed 
is around 5 µm s–1 (Vallee 1998). Focusing on oxygen pene-
tration and using a penetration distance of 25 µm gives a 
Péclet number of 0⋅07. That tells us that the system re-
mains diffusion dominated, that cyclosis does not reach a 
significant speed. Looking at carbon dioxide penetration, 
with a diffusion coefficient of 0⋅14 m2 s–1, raises that 
number too little to change the conclusion. 
 Perhap we should take a different view. Size, speed, and 
a presumptive Péclet number around one permit calculating 
a diffusion coefficient, which comes to 1⋅25 × 10–10 m2 s–1. 
That corresponds to a non-ionized molecule with a mole-
cular weight of about 6000. Thus the system appears con-
vection-dominated for proteins and other macromolecules 
and diffusion dominated for dissolved gases, amino acids, 
sugars, and the like. 

(iii) Sinking speeds of phytoplankton 

Diatoms plus some other kinds of small algae account for 
nearly all the photosynthetic activity of open oceans. 
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Paradoxically for light-dependent organisms, most of the 
time most of these phytoplankters are negatively buoyant. 
Not that they sink rapidly; 4 µm s–1 (a foot a day, in the 
antediluvian units used where I live) is typical. Accord-
ing to one commonly cited view, that sinking improves 
access to carbon dioxide by minimizing the depletion 
around a cell caused by its own photosynthetic activity. 
In effect, the cell walks away from its personal environ-
mental degradation. Still better, it walks away with no cost 
of locomotion. Of course it (or its progeny) may eventu-
ally suffer, as the sinking brings it down to depths at which 
net photosynthesis cannot be achieved. Somehow (and 
wave-induced water mixing comes into the picture) the 
cost-benefit analysis favours this slight negative buoyancy. 
 Calculating a Péclet number casts serious doubt on this 
view, doubt first raised (with an equivalent argument) by 
Munk and Riley (1952). For a diatom about 10 µm in 
diameter, that sinking rate of 4 µm s–1, and the diffusion 
coefficient of CO2, 14 × 10–10 m2 s–1, we get a value of 
0⋅03. Diffusion, in short, rules; convection, here due to 
sinking, will not significantly improve access to carbon 
dioxide. We might have chosen a slightly larger distance 
over which CO2 had to be transported to be available at 
adequate concentration, but even if a distance ten times 
longer were chosen, the conclusion would not be altered. 
 Why, then, should a phytoplankter sink at all? The cal-
culation tacitly assumed uniform concentration of dis-
solved gas except where affected by the organism’s activity, 
so it might be seeking regions of greater concentration, 
lowering sinking rate wherever life went better. In a 
world mixed by the action of waves that seems unlikely, 
even if (as appears the case) buoyancy does vary with the 
physiological state of a cell. Perhaps phytoplankters bias 
their buoyancy toward sinking so they are not likely to 
rise in the water column and get trapped by surface ten-
sion at the surface. If perfect neutrality can not be assured, 
then sinking may be preferable, as long as the speed of 
sinking can be kept quite low. Surface tension may be a 
minor matter for us, but it looms large for the small. In 
the millimeter to centimeter range a creature can walk on 
it – the Bond number, the ratio of gravitational force to 
surface tension force is low. Below that a creature may 
not be able to get loose once gripped by it – the Weber 
number, the ratio of inertial force to surface tension force 
drops too far (Vogel 1994). But that argument presumes 
that diatoms have hydrophobic surfaces, which, I am 
told, may not be the case. So another hypothesis would 
be handy. 

(iv) Swimming by microorganisms and growing roots 

More often we think of movement by active swimming 
than by passive sinking. Some years ago, the physicist 
Edward Purcell (1977) wrote a stimulating essay about 

the physical world of the small and the slow, looking  
in particular at bacteria. Among other things, he asked 
whether swimming, by, say, Escherichia coli, would im-
prove access to nutrients. By his calculation, a bacterium 
one µm long, swimming at 20 µm s–1 (see Berg 1993), 
would only negligibly increase its food supply, assumed 
to be sugar. To augment its supply by a mere 10%, it 
would have to go fully 700 µm s–1. Purcell’s answer to 
why swim at all turned on the heterogeneity of ordinary 
environments and the advantage of seeking the bacterial 
equivalent of greener pastures, as suggested above for dia-
toms. Otherwise the bacterium resembles a cow that eats 
the surrounding grass and then finds it most efficient to 
stand and wait for the grass to grow again. 
 The Péclet number permits us to cast the issue in more 
general terms. Sucrose has a diffusion coefficient of 5⋅2 × 
10–10 m2 s–1; together with the data above we get a Péclet 
number of about 0⋅04. Swimming, as Purcell found, should 
make no significant difference. But the conclusion should 
not be general for microorganisms. Consider a ciliated pro-
tozoan, say Tetrahymena, which is 40 µm long and can 
swim at 450 µm s–1. If oxygen access is at issue, the Pé-
clet number comes to 10, indicating that swimming helps 
a lot. Indeed it might just be going unnecessarily fast, 
prompting the thought that getting enough of some larger 
molecule might underlie its frantic pace. Or it might swim 
for yet another reason. 
 Growing roots provide a case as counterintuitive as the 
result for swimming bacteria but in just the opposite di-
rection (Kim et al 1999). A root can affect nutrient up-
take by altering local soil pH. Root elongation speed runs 
around 0⋅5 µm s–1, slower than the most sluggish tortoise. 
But it turns out to constitute a significant velocity, 
enough so that (at least in sandy soil) the Péclet number 
gets well above one. Values for the rapidly diffusing H+ 
ions for typical growing roots may exceed 30, using root 
diameter as length. That means motion affects the pH dis-
tribution in the so-called rhizosphere more than does dif-
fusion. 

(v) Flow over sessile organisms 

For sinking diatoms and swimming microorganisms we 
evaluated hypotheses about why creatures did what they 
did. In some loosely analogous situations we can test 
claims about their physical situations, in particular about 
flows. How fast must air or water flow over an organism 
to affect exchange processes significantly? To put the 
matter in sharper terms, can the Péclet number help us 
evaluate a claim that extremely slow flow matters? After 
all, neither producing nor measuring very low speed flows 
is the most commonplace of experimental procedures. 
 For instance, consider the claim that a flow of 0⋅2 to 
0⋅3 mm s–1, around a meter per hour, significantly increases 
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photosynthesis in an aquatic dicot, Ranunculus pseudo-
fluitans (Westlake 1977). The finely dissected, almost fil-
amentous leaves are about 0⋅5 mm across. Inserting the 
diffusion coefficient of CO2 gives a Péclet number 
around 100, which certainly gives credibility to the re-
port. One guesses that even slower flows should be signi-
ficant. 
 Another paper (Schumacher and Whitford 1965) re-
ports that a flow of 10 mm s–1 significantly increases 
photosynthesis in a green alga, Spirogyra, made up of 
filaments about 50 µm in diameter. A Péclet number of 
about 300 provides emphatic support, again suggesting 
that far slower flows should also matter. Conversely, it 
prompts one to ask whether so-called still water, the con-
trol in such comparisons, was still enough so flow was 
truly negligible. My own experience suggests that ther-
mal convection and persistence of filling currents can 
complicate attempts to prevent water from flowing – still 
water does not just happen. 
 A third paper (Booth and Feder 1991) looked at the 
influence of water flow on the partial pressure of oxygen 
at the skin of a salamander, Desmognathus. It found that 
currents as low as 5 mm s–1 increased that partial pres-
sure, facilitating cutaneous respiration. With a diameter 
of 20 mm, that flow produces a Péclet number of 50,000. 
A sessile Desmognathus may need flow, but it does not 
need much. Again, the quality of any still-water control 
becomes important. 

(vi) Two functions for gills 

Most swimming animals use gills to extract oxygen from 
the surrounding water. Whatever their particulars, gills 
have lots of surface areas relative to their sizes. Many 
aquatic animals suspension feed, extracting tiny edible 
particles from the surrounding water. Whatever their par-
ticulars, such suspension feeding structures have lots of 
surface areas relative to their sizes. While most suspen-
sion-feeding appendages look nothing like gills, some not 
only look like gills but share both name and functions. 
No easy argument implies that such dual function gills 
should balance those two functions. Quick calculations of 
Péclet number can tell us which function dominates their 
design and help us to distinguish respiratory gills from 
dual-function gills. 
 Consider a limpet, Diodora aspera, a gastropod that uses 
its gills for respiration. With gill filaments about 10 µm 
apart, a flow rate of 0⋅3 mm s–1 (J Voltzow, personal com-
munication), and the diffusion coefficient for oxygen, the 
Péclet number comes to about 2. A bivalve mollusk, the 
mussel Mytilus edulis, with dual function gills presents a 
sharp contrast. The effective distance here is about 200 µm 
and the speed about 2 mm s–1 (Nielsen et al 1993). That 
gives a Péclet number around 100 for oxygen access. 

Clearly the system pumps far more water than necessary 
were respiration the design-limiting function. 
 One can do analogous calculations for fish, where a 
few kinds use gills for suspension feeding as well as res-
piration. A typical teleost fish has sieving units 20 µm 
apart (Stevens and Lightfoot 1986) with a flow between 
their lamellae of about 1 mm s–1 (calculated from data of 
Hughes 1966). For oxygen transport, the resulting Péclet 
number is 5⋅5, not an unreasonable value for an oxyge-
nating organ. One gets quite a different result for a fish that 
uses its gills for suspension feeding. A somewhat higher 
80 µm separates adjacent filtering elements. but the main 
difference is in flow speeds. These run around 0⋅15 m s–1 
for passive (“ram”) ventilators (Cheer et al 2001), and 
0⋅55 m s–1 for pumped ventilators (Sanderson et al 1991). 
The resulting Péclet numbers, 6,500 and 20,000 (again 
using oxygen diffusion) exceed anything reasonable for a 
respiratory organ. 

(vii) Air movement and stomatal exchange 

All of the previous examples involve diffusion and con-
vection in liquids. The same reasoning ought to apply to 
gaseous systems as well – fluids are fluids, and diffusion 
and convection occur in all. 
 Leaves lose, or “transpire,” water as vapour diffuses out 
though their stomata and disperses in the external air. 
Transpiration rates depend on a host of variables, among 
them wind speed and stomatal aperture, the latter under 
physiological control. Immediately adjacent to a leaf’s sur-
face, the process depends, as does any diffusive process, 
on concentration gradient, from the saturated air at the 
stomata to whatever might be the environmental humid-
ity. The stronger the wind, the steeper the concentration 
gradient as the so-called boundary layer gets thinner. 
 Consider a bit of leaf 20 mm downstream from the 
leaf’s edge, with downstream indicating the local wind 
direction. And assume a wind about as low as air appears 
to move for appreciable lengths of time, as a guess, 
0⋅1 m s–1. The effective thickness of the velocity gradient 
outward from the leaf’s surface can be calculated (Vogel 
1994) as 

ρ
µ

δ
v

x
5.3=  , (4) 

where x is the distance downstream, and µ and ρ are the 
air’s viscosity and density, respectively, 18 × 10–6 Pa s 
and 1⋅2 kg m–3. The thickness comes to 6 mm. (This must 
be regarded as a very crude approximation; among other 
things, the formula assumes a thickness that is much less 
than the distance downstream.) With that thickness, that 
wind speed, and the diffusion coefficient of water vapour 
in air, 0⋅24 × 10–4 m2 s–1, the Péclet number is 25. So even 
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that low speed suffices to produce a convection-domina-
ted system. 
 What might that tell us? It implies, for one thing, that 
changes in wind speed should have little or no direct ef-
fect on water loss by transpiration. If water loss does 
vary with wind speed, one should look for something 
other than a direct physical effect, something such as 
changes in stomatal aperture. For another thing, it implies 
that a leaf in nature would not have adjacent to its surface 
very much of a layer of higher-than-ambient humidity. 
So-called “vapour caps” are not likely to mean much 
with even the most minimal of environmental winds. 

(viii) The sizes of morphogenetic fields and 
synaptic clefts 

A variant of the Péclet number may give some insight 
into such things as the development of animals. Much of 
pattern formation depends on the diffusion of substances, 
morphogens, whose concentration gradients establish em-
bryonic fields. Establishing larger fields not only means 
lower gradients (or higher concentrations of morphogens) 
but would take more time, a non-negligible resource in a 
competitive world. Breaking up velocity into length over 
time we get: 

Dt

l 2

 .  (5) 

(The reciprocal of this expression is sometimes called the 
mass transfer Fourier number.) 
 To get a situation in which diffusion is not relied on 
excessively, we might assume a value of one. A typical mor-
phogen has a molecular weight of 1000; its diffusion co-
efficient when moving through cells (a little lower than in 
water) ought to be around 1 × 10–10 m2 s–1. A reasonable 
time for embryonic processes should be a few hours, say 
104 s. The numbers and the equation imply embryonic 
fields of around 1 mm, about what one does indeed find. 
The argument for the size of embryonic fields (put some-
what differently) was first made by Crick (1970). 
 In effect, the calculation produces what we might con-
sider a characteristic time for a diffusive process. Con-
sider ordinary synaptic transmission in a nervous system. 
The most common transmitter substance, acetylcholine, 
has a molecular weight of 146 and a diffusion coefficient 
around 7 × 10–10 m2 s–1. With a 20 nm synaptic cleft, the 
corresponding time comes to 0⋅6 ms. That value is at 
most slightly below most cited values for overall synaptic 
delay, which run between about 0⋅5 and 2⋅0 ms, implying 
that much or most of the delay can be attributed to trans-
mitter diffusion. 
 Where else might calculations of Péclet numbers pro-
vide useful insight? We have not considered, for in-
stance, olfactory systems, either aerial or aquatic. Are the 
dimensions and flow speeds appropriate in general; are 

they appropriate for the specific kinds of molecules of 
interest to particular animals? What of the speeds and 
distances of movement of auxins and other plant hor-
mones? Might we learn anything from comparing sys-
tems in which oxygen diffuses within a moving gas with 
ones in which it diffuses in a flowing liquid, systems such 
as, on the one hand, the tubular lungs of birds and the 
pumped tracheal pipes of insects and, on the other, the 
gills of fish, crustaceans, and the like? 
 In fields such as fluid mechanics and chemical engineer-
ing, dimensionless numbers pervade have amply proven 
their utility. I argue here, as I did on a previous occasion 
(Vogel 1998) that they can help us see the relevance of 
physical phenomena to biological systems. Péclet number 
may be an especially underappreciated one, but (as I hope 
to illustrate in further pieces) far from the only one worth 
our consideration. 
 Who, incidentally, was this person Péclet? One does 
not normally name a number after oneself. Someone may 
propose a dimensionless index and then the next person 
who finds it useful names it after the first. Or the first to 
use one may name it for some notable scientist who worked 
in the same general area. Péclet number is a case of the 
latter. Jean Claude Eugène Péclet (1793–1857) was part 
of the flowering of French science just after the revolution. 
He was a student of the physical chemists (as we would 
now call them) Gay-Lussac and Dulong – names yet re-
membered for their laws – and a teacher of physical science. 
He did noteworthy experimental work on thermal pro-
blems and wrote an influential book, Treatise on Heat and 
its Applications to Crafts and Industries (Paris 1829). 
 Putting his name on a dimensionless number was done 
a century later, by Heinrich Gröber, in 1921, in another 
important book, Fundamental Laws of Heat Conduction 
and Heat Transfer. That thermal version of the Péclet 
number antedates the mass-transfer version used here. The 
latter, as far as I can determine, first appears in a paper 
on flow and diffusion through packed solid particles, by 
Bernard and Wilhelm, in 1950. They note its similarity to 
the dimensionless number used in heat-transfer work and 
call their version a “modified Peclet group, symbolized 
Pe’ ”. They shift, confusingly and deplorably, from an 
acute accent in “Péclet” to a prime (‘), now usually omit-
ted, at the end. Analogous indices for thermal and material 
processes is not unusual, but ordinarily the two carry dif-
ferent names – such as Prandtl number and (as earlier) 
Schmidt number. Amusingly, most sources mention one 
of the versions of the Péclet number with no acknowl-
edgement that there is any other. 
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