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Macromolecular assemblies containing multiple protein subunits and having masses in the megadalton (MDa) range 
are involved in most of the functions of a living cell. Because of variation in the number and masses of subunits, 
macromolecular assemblies do not have a unique mass, but rather a mass distribution. The giant extracelular 
erythrocruorins (Ers), ~ 3⋅5 MDa, comprized of at least 180 polypeptide chains, are one of the best characterized 
assemblies. Three-dimensional reconstructions from cryoelectron microscopic images show them to be hexa-
gonal bilayer complexes of 12 subassemblies, each comprised of 12 globin chains, anchored to a subassembly of 
36 nonglobin linker chains. We have calculated the most probable mass distributions for Lumbricus and Riftia 
assemblies and their globin and linker subassemblies, based on the Lumbricus Er stoichiometry and using accu-
rate subunit masses obtained by electrospray ionization mass spectrometry. The expected masses of Lumbricus 
and Riftia Ers are 3⋅517 MDa and 3⋅284 MDa, respectively, with a possible variation of ~ 9% due to the breadth 
of the mass distributions. The Lumbricus Er mass is in astonishingly good agreement with the mean of 23 
known masses, 3⋅524 ± 0⋅481 MDa. 

[Hanin L, Green B, Zal F and Vinogradov S 2003 Mass distributions of a macromolecular assembly based on electrospray ionization mass 
spectrometric masses of the constituent subunits; J. Biosci. 28 557–568] 

1. Introduction 

Most of the functions in a living cell are carried out by 
“molecular machines”, large macromolecular assemblies 
comprised of numerous and different proteins, with 
masses in the MDa range (Alberts 1998; Nogales and 
Grigorieff 2001). The variation in the number and masses 
of the constitueent subunits imply that large protein  
assemblies do not have a unique mass, but rather a mass 
distribution. The extracellular erythrocruorins (Ers) of 

annelids are giant, ~ 3500 kDa, complexes which were 
among the first protein assemblies investigated by ultra-
centrifugation (Svedberg 1933) and electron microscopy 
(EM) (Levin 1963; Roche 1965). Their characteristic EM 
and scanning transmission electron microscopy (STEM) 
appearances are those of an hexagonal bilayer (HBL) 
with diameter ~ 30 nm and height ~ 20 nm (Roche 1965; 
Terwilliger et al 1976; Vinogradov et al 1982; Boekema 
and van Heel 1989; Gotoh and Suzuki 1990; Lamy et al 
1996). Extensive small angle X-ray scattering (SAXS) 
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studies have shown the molecular shapes and dimensions 
of different Ers to be very similar (Stöckel et al 1973; Pilz  
et al 1980, 1986, 1988; Wilhelm et al 1980; Messer-
schmidt et al 1983; Terwilliger and Terwilliger 1985; 
Theuer et al 1985; Krebs et al 1998). More recently, 
three-dimensional (3D) reconstructions using cryoelec-
tron microscopy (cryoEM) have demonstrated that all the 
quaternary structures are virtually identical at a resolution 
of ~ 2 nm (Cejka et al 1989, 1991, 1992; De Haas et al 
1996a, b, c, d, 1997; Taveau et al 1999; Jouan et al 2001). 
 Concurrent electrospray ionization mass spectrometric 
(ESI-MS) studies provided accurate masses for the con-
stituent globin and linker chains and the disulphide-
bonded globin dimer/trimer/tetramer subunits (Green  
et al 1995; 1998a, 1999; Weber et al 1995; Martin et al 
1996; Zal et al 1996, 1997a, b, 2000). The very recent 
low resolution crystallographic structure of Lumbricus Er 

(Royer et al 2000) established the stoichiometry to be 
144 globin chains arranged as 12 dodecamers tethered to 
36 linker chains, in agreement with the model proposed 
earlier (Vinogradov et al 1986) and the cryoEM 3D re-
constructions (De Haas et al 1996a, b, c, d, 1997; Taveau 
et al 1999; Jouan et al 2001). In sharp contrast to the evi-
dence for very similar molecular dimensions and quater-
nary structures, the over 60 known Er masses, obtained 
by several experimental techniques from the early work 
of Svedberg to the present, exhibit a surprisingly wide range, 
i.e. ranging from 2400 to 4470 kDa (Lamy et al 1996). 
 Because the 144 globin chains consist of 4 to 11 dif-
ferent proteins with masses from 16 to 19 kDa, and the 
36 linker chains also consist of 2 to 7 different proteins 
with masses from 24 to 32 kDa (Lamy et al 1996), Ers, 
like all large molecular assemblies, are expected to have 
a mass distribution rather than a unique mass. There are 
four levels of mass distribution possible: the dodecamer 
subassembly of globin chains; the complex of 12 dodeca-
mer subassemblies; the linker subassembly of 36 linker 
chains which are required for HBL structure formation  
(Kuchumov et al 1999); and finally the overall mass dis-
tribution of the complete assembly. We report below the 
results of calculations of mass distributions for the sub-
assemblies and complete assemblies of the two Ers which 
differ in the subunit nature of their dodecamer subassem-
blies: from the earthworm Lumbricus; and, from the 
deep-sea polychaete Riftia. 
 

2. Methods 

2.1 Mass distributions for a single dodecamer  
subassembly 

2.1a Lumbricus: Each dodecamer subassembly consists 
of 3 monomers which are randomly chosen from 3 differ-

ent globin chains d1, d2, d3 and 3 trimers randomly  
selected from the observed 4 trimers t1-t4 (Martin et al 
1996). We assume that the monomeric and trimeric sub-
units are incorporated in a dodecamer independently of 
each other. Let p(di), i = 1, 2, 3, and p(tj), j = 1, 2, 3, 4, 
be the probabilities that the corresponding monomer 
chains and trimers are present in a dodecamer. Let 
D = (D1, D2, D3) be the vector of random numbers of 
monomers d1, d2, d3 present in a dodecamer, subject to 
the condition D1 + D2 + D3 = 3. The random vector D 
takes 10 values that correspond to the following com-
binations of monomer subunits: 3d1, 3d2, 3d3, 2d1d2, 
2d2d1, 2d1d3, 2d3d1, 2d2d3, 2d3d2, d1d2d3. Conse-
quently, the random vector D has the multinomial distri-
bution B[3; p(d1), p(d2), p(d3)], i.e. 
 

Pr(δ) := Pr(D = δ) 
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where δ = (δ 1, δ 2, δ 3) is a vector of nonnegative inte-
gers such that δ 1+ δ 2 + δ 3 = 3. 
 Similarly, let T = (T1, T2, T3, T4) be the vector of 
random numbers of trimers t1–t4 contained in a dode-
camer. Obviously, Tj, 1 ≤ j ≤ 4, are nonnegative integer-
valued random variables such that Σ4

j =1 Tj = 3. The  
random vector T takes 20 values that correspond to the 
following combinations of trimer subunits: 3t1, 3t2, 3t3, 
3t4, 2t1t2, 2t2t1, 2t1t3, 2t3t1, 2t1t4, 2t4t1, 2t2t3, 2t3t2, 
2t2t4, 2t4t2, 2t3t4, 2t4t3, t1t2t3, t1t2t4, t1t3t4, t2t3t4. 
Consequently, the random vector T follows the multi-
nomial distribution B[3; p(t1), p(t2), p(t3), p(t4)], i.e. 
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where τ = {τ j : 1 ≤ j ≤ 4} is a vector of nonnegative inte-
gers such that  Σ4

j =1 τj = 3. Thus, the number of different 
Lumbricus dodecamer subassemblies is equal to 10 × 20 
= 200. Each of them is determined by the two integer 
vectors δ and τ described above, and its probability is 
equal to the product of probabilities (1) and (2). The mass 
of a randomly assembled dodecamer is given by: 
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where h = 12 × 616⋅5 = 7398 Da is the total heme mass, 
and the observed electrospray ionization mass spectro-
metric masses of monomers and trimers are m(d1) = 
15993 Da, m(d2) = 15978 Da, m(d3) = 15962 Da and m(t1) 
= 52923 Da, m(t2) = 52760 Da, m(t3) = 52599 Da, m(t4) = 
52435 Da, with probabilities derived from the observe 
intensities of the peaks, p(d1) = 0⋅55, p(d2) = 0⋅28, p(d3) 
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= 0⋅17, p(t1) = 0⋅24, p(t2) = 0⋅40, p(t3) = 0⋅08, p(t4) = 
0⋅28 (Martin et al 1996). In particular, if D = δ and T = τ, 
the mass of the dodecamer is, 
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From (3), the expected mass of a dodecamer is: 
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and the standard deviation σL of the mass distribution (4) 
is given by: 
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2.1b Riftia: Each dodecamer subassembly is assumed 
to consist of a random number D of dimers d and random 
numbers A and B of monomers a and b with A, B, D ≥ 0 
and 2D + A + B = 12. The electrospray ionization mass 
spectrometric masses of the dimer d and monomers a, b 
(including heme) are md = 32954 Da, ma = 16750 Da and 
mb = 17422 Da and the monomer probabilities derived 
from the peak intensities are pa = 0⋅75 and pb = 0⋅25 (Zal 
et al 1996). We proceed using the following two-stage 
model of random assembly of a dodecamer. In the first 
stage, each dimer is included in a dodecamer indepen-
dently of other dimers with some probability pd. This  
implies that the distribution of the number of dimers in a 
dodecamer is binomial B(6, pd). The expected number of 
dimers in a dodecamer is therefore 6 pd, and the expected 
number of dimers in the entire HBL is 72 pd. Since the 
observed mean number of dimers in HBL is 48, we set 
pd = 2/3. Suppose the number D = k, 0 ≤ k ≤ 6, of dimers 
is selected. Then the remaining 12 – 2k monomers a and 
b are chosen randomly according to their frequencies. 
Hence, given that D = k, the number A of monomers a 
follows the binomial distribution B(12 – 2k, pa), and 
similarly the number B of monomers b follows the  
binomial distribution B(12 – 2k, pb). Given that D = k, 
0 ≤ k ≤ 6, the number of possible combinations of 
monomers a and b is 12 – 2 k + 1 and the total number of 
possible dodecamer compositions is, 
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Each dodecamer is characterized by the number k of 
dimers and the number i of monomers a, where k, i ≥ 0 
and 2k + I ≤ 12, with the number of monomers b being 
12 – 2k – i. The probability of each dodecame composi-
tion is given by: 

p(k, i) := Pr(D = k, A = i) = Pr(D = k)Pr(A = i|D = k) 
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 The mass of randomly assembled dodecamer with D 
dimers, A monomers a and B monomers b is mdD + maA 
+ mbB. The expected dodecamer mass is, 

µR = mdED + maEA + mb(12 – 2ED – EA)  

  = 12mb + (md – 2mb)ED + (ma – mb)EA, (9) 

where E indicates expectation; thus, ED = 6 pd = 4 and 
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Hence the expected dodecamer subassembly mass is, 

µR = 12mb + 4(md – 2 mb) + 3(ma – mb)  

  = 3ma + mb + 4md, (11) 

with the standard deviation,
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2.2 Mass distribution for 12 dodecamer subassemblies 

 
We assume that the 12 dodecamer subassemblies are inclu-
ded in the HBL structure independently of each other 
from the pool of all possible dodecamers described above 
(200 for Lumbricus and 49 for Riftia) according to their 
probabilities. Let ξ1, . . . , ξ12 be the individual masses 
of the dodecamer subassemblies and let ξ = ξ1 + . . . 
+ ξ12 be the total mass of 12 subassemblies. It follows 
from our assumptions that the random variables ξ1–ξ12 
are independent and identically distributed. Denote by µ 
and σ their expected value and standard deviation, res-
pectively. The random variable ξ has a discrete distribu-
tion which may contain up to 20012 ≈ 4⋅1 × 1027 points 
for Lumbricus and 4912 ≈ 1⋅9 × 1020 points for Riftia. To 
make the distribution of ξ more tractable, we approximate it, 
on the basis of the central limit theorem (Taylor and Kar-
lin 1998), by the normal distribution N(12µ, )32 σ  with 
the probability density function 
 











 −
−=

2

2

24

)12(
exp

62

1
)(

σ
µ

πσ

x
xf D .  (13) 



J. Biosci. | Vol. 28 | No. 5 | September 2003 

Leonid Hanin et al 

 

560

2.3 Mass distribution for 36 linker chains 

 
Both Lumbricus and Riftia Ers have 4 types of linkers, 
L1–L4. Let K = (K1, K2, K3, K4) be a random vector 
describing the number of linkers. K1–K4 are nonnegative 
integer-valued random variables such that K1 + K2 + 
K3 + K4 = 36. Consequently, the distribution of the  
random vector K is multinomial B (36; p1, p2, p3, p4), 
that is, 

4321 4321
!4!3!2!1

!36
)( kkkk pppp

kkkk
kKPr == ,  (14) 

where k = (k1, k2, k3, k4) is a vector of non-negative  
integers such that k1 + k2 + k3 + k4 = 36. The expected 
total mass of linkers η and its standard deviation will be 
36ν and 6s, respectively, where ν = m1p1 + m2p2 + 
m3p3 + m4p4 is the expected mass of a single linker with 
the corresponding standard deviation, s2 = (m1 – ν)2p1 + 
(m2 – ν)2p2 + (m3 – ν)2p3 + (m4 – ν)2p4. The random 
variable η has a discrete distribution which contains  
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Again, by the central limit theorem (Taylor and Karlin 
1998), η can be approximated by the normal distribution 
N(36ν, 6s) with the probability density function 
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The electrospray ionization mass spectrometric masses of 
Lumbricus linkers are: mL1 = 27607 Da, mL2 = 32104 Da, 
mL3 = 24913 Da, mL4 = 24090 Da and their observed 
probabilities based on the intensities of the peaks are 
pL1 = 0⋅24, pL2 = 0⋅16, pL3 = 0⋅4, pL4 = 0⋅2, respectively 
(Martin et al 1996). The corresponding data for Riftia 
are: mR1 = 23505 Da, mR2 = 23851 Da, mR3 = 26342 Da, 
mR4 = 27426 Da, and pR1 = 0⋅35, pR2 = 0⋅32, pR3 = 0⋅16, 
pR4 = 0⋅17 (Zal et al 1996). 
 

2.4 Mass distribution of the HBL structures 

The total HBL mass is equal to ξ + η, where ξ and η are 
defined by equations (13) and (15), respectively, and are 
considered to be independent random variables. The  
expected total HBL mass is 12ξ + 36η and its standard 
deviation is )3(32 22 s+σ . The distribution of the  
total HBL mass is approximately normal, N[12ξ +  
36η, ])3(32 22 s+σ  and can be represented by the 
probability density function 
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All computations were carried out using MAPLE (Adams 
1998). 

3. Results 

Figure 1a shows the mass distributions for the total mass 
of the 36 linker subassemblies from Riftia and Lumbricus 
Ers calculated from the probability density function, eq. 
(14). Figure 1b shows plots of the mass distribution for 
the total masses of the 12 dodecamer subassemblies of 
Riftia and Lumbricus Ers determined by the probabi- 
lity density function given by eq. (12). Figure 1c shows 
the total mass distributions of the two complete assem- 
blies calculated from the probability density function 
given by eq. (16). Note that if an absolutely continuous 
random variable is measured in units L, then its proba- 
bility density function has units 1/L; therefore, the units 
for probability density functions of the mass distributions 
are MDa–1. Table 1 shows the expected masses together 
with their standard deviations, for the dodecamer sub-
assemblies, the complex of 12 dodecamer subassemblies, 
the 36-linker subassemblies and the complete assemblies 
of Lumbricus and Riftia Ers. The two assemblies differ in 
the subunit compositions of their globin dodecamer sub-
assemblies, monomers and disulphide-bonded trimers of 
globin chains in Lumbricus (Martin et al 1996) and 
monomers and disulphide-bonded dimers in Riftia (Zal  
et al 1996). In the latter case, a dodecamer subassembly 
can, in principle, vary from 12 monomers to 6 dimers and 
include all the intermediate combinations with a corres-
pondingly broad mass distribution. 

4. Discussion 

The 3D reconstructions obtained by cryoEM at resolu-
tions of ~ 2⋅0 nm provide overwhelming evidence in  
favour of a common quaternary structure for seven dif-
ferent Ers (De Haas et al 1996a, b, c, d, 1997; Taveau  
et al 1999; Jouan et al 2001): 144 globin chains within 12 
dodecamer subassemblies, arranged in two hexagonal 
layers, with each globin dodecamer subassembly anchored 
to 3 linker chains (Royer et al 2000) forming a central 
subassembly of 36 linker chains. 
 It is obvious that the mass of a protein assembly–
consisting of 12 dodecamers of 4 to 11 different globin 
chains, which vary in mass from 16 to 19 kDa, combined 
with 36 linker chains which consist of 2 to 7 linker chains 
and which vary in mass from 24 to 32 kDa (Lamy et al 
1996) – can only be represented by a mass distribution.  



J. Biosci. | Vol. 28 | No. 5 | September 2003

Mass distribution of a macromolecular assembly 

 

561 

 
 
Figure 1. Plots of the normal approximations to the distribu-
tions of the total mass of globin and linker subassemblies and 
complete hexagonal bilayer structures of Riftia (left) and Lum-
bricus (right) erythrocruorins: 36 linker chains (a), 12 dodeca-
mers (b) and complete hexagonal bilayer assembly (c). Note 
that if an absolutely continuous random variable is measured in 
units L, then its probability density function has units 1/L; 
therefore, the units for the probability density functions of the 
mass distributions are MDa–1. 
 

(a) 
 

(b) 
 

(c) 
 

 

The combinatorics of a multisubunit complex such as 
Lumbricus Er are very complex (Hanin and Vinogradov 
2000). There are four levels of mass distribution possible: 
(i) the dodecamer of globin chains; (ii) the HBL complex 
of 12 dodecamer subassemblies; (iii) the linker subas-
sembly of 36 linker chains which are required for HBL 
structure formation (Kuchumov et al 1999); and (iv) finally 
the overall mass distribution of the complete assembly of 
12 dodecamers and 36 linker chains. Although the two 
Ers are presumed to have the same globin to linker 
stoichiometry, they differ in the subunit nature of their 
dodecamer subassemblies i.e. in Lumbricus Er they are 
comprised of 3 monomer globin chains and 3 disulphide-
bonded trimers (Martin et al 1996); while in Riftia, the 
globin subassemblies consist of monomer and disulphide-
bonded dimer subunit (Zal et al 1996). Table 1 shows the 
expected masses, their standard deviations (SD) and the 
range of possible masses for randomly assembled sub-
assemblies corresponding to each of the foregoing four 
levels calculated for Lumbricus and Riftia Ers. The calcu-
lated mass distributions for the 36 linker complex, the 12 
dodecamer subassembly, and the complete assemblies are 
illusrated in figure 1. The percent variation in the mass of 
each subassembly, defined as range × 100/expected mass, 
differs substantially from Lumbricus to Riftia. The Lum-
bricus dodecamer and linker subassemblies have very 
disparate variations, 0⋅73 and 30⋅2, respectively com-
pared to 5⋅7 and 15⋅9 for Riftia. Nevertheless, the percent 
variation for the complete assembly is similar for both 
Ers, 8⋅7 and 8⋅4, respectively. 
 Table 2 compares the expected masses of Lumbricus 
and Riftia Ers (table 1) with the calculated means of the 
23 published masses of Lumbricus Er, the 28 masses of 
polychaete Ers, and of all the 67 known Er masses. The 
latter are provided in table 3 in the supporting informa-
tion section and are plotted in figure 2 as a function of 
the year of publication for oligochaete and leech Ers (top 
panel) and polychaete Ers (bottom panel). The crosses 
mark the values reported prior to 1950. Despite the scat-
ter in the 23 published masses for Lumbricus Er over a 
very broad range, from 2730 to 4470 kDa, which encom-
passes the published masses of the other Ers (Lamy et al 
1996) as can be seen in figure 2, the expected mass, 
3517 ± 16 kDa is in astonishingly good agreement with 
the calculated mean of known masses, 3524 ± 481 kDa 
(N = 23). It is also within 1% of the overall mean of all 
oligochaete Ers including other earthworms, 3481 ± 
434 kDa (N = 37). Furthermore, there was no significant 
asymmetry in the scatter of the published masses, since 
the recalculated means, omitting values outside ± 1 SD of 
the original mean, were 3577 ± 271 kDa (N = 16) and 
3500 ± 279 kDa (N = 26), respectively. 
 The expected mass of Riftia Er, 3284 ± 10 kDa (table 2) 
is also in good agreement with the calculated mean of  
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all the known polychaete Er masses, 3209 ± 389 kDa 
(N = 30). The latter is again unaffected by excluding values 
outside 1 SD of the original mean, 3236 ± 234 kDa 
(N = 19) (table 2). In general, most polychaete Er masses 
are lower than the masses for the oligochaete and achaete 
Ers, as reflected in the lower means, 3209 ± 389 kDa 
(N = 30) versus 3481 ± 434 kDa (N = 37) and as clearly 
illustrated in figure 2. However, the difference, 272 kDa, 
is well within the SD of the two mean values. 
 The results shown in tables 1–3 and figure 2, show that 
the inherent spread in the molecular masses of Ers is 
much smaller than the spread of experimental masses, 
about 8–9% (range × 100/expected mass) compared to 
~ 50%, respectively. Several different factors are respon-
sible for this 5-fold greater variability in experimental 
masses. These include experimental errors such as the 
handling of protein samples, errors proper to the bio-
physical method used to determine the mass and errors 
due to the biological variability of Ers. 
 It is interesting to note that Svedberg (1933) and Sved-
berg and Hedenius (1934) had observed the sedimenta-
tion constants of polychaete Ers to be lower than those of 
oligochaete Ers, 57⋅1 S versus 60⋅8 S. However, the mean 
of all known polychaete Er masses determined after 
1980, 3398 ± 350 kDa (N = 14) (table 2) is in agreement 
with the calculated mean, 3387 ± 45 kDa (N = 8). The 
generally lower masses obtained for polychaete Ers, par-
ticularly prior to 1980 (see figure 2) are probably due to 
improper handling of the protein samples. Polychaete Ers 
have a greater proclivity towards dissociation as a result 
of proteolytic degradation either during preparation or 
storage than do oligochaete and leech Ers and the use of 
protease inhibitors in buffers used in Er preparation is 
relatively recent (Vinogradov and Sharma 1994). 
 An illustration of errors pertaining to a biophysical 
method of mass determination is the large effect of the  

specific volume of a protein on the mass determined by 
ultracentrifugation, whether by sedimentation equili-
brium or calculated from the S and D values using the 
Svedberg equation (Svedberg and Pedersen 1940). Gen-
erally, the specific volume was calculated from the amino 
acid composition of Ers, providing values ranging from 
0⋅73 to 0⋅75 (table 3). However, our experimentally deter-
mined value for Lumbricus terrestris Er, 0⋅714 (Martin  
et al 1996), indicates that the choice of the specific vol-
ume can well result in an error of 10% or more. 
 In addition to the above uncertainties, it should be  
emphasized that biological variability is inherent in the 
Er preparations, even of the same species, obtained by 
different investigators in different parts of the world.  

Table 1. Expected masses of globin and linker subassemblies and the complete HBL  
structure of Lumbricus and Riftia Ers. 

   
   
Result Lumbricus Riftia 
      
Expected dodecamer mass ± SD, Da 213,436 ± 319 199,488 ± 1,173 
Range, Da 212,624–214,176 197,724–209,064 
Percent variationa 0⋅73 5⋅7 
Expected mass of 12 dodecamers ± SD, Da 2,561,208 ± 1,107 2,393,856 ± 4,063 
Range, Da 2,551,068–2,569,752 2,372,688–2,508,768 
Percent variationa 0⋅73 5⋅7 
Expected mass of 36 linkers ± SD, Da 955,639 ± 16,416 890,504 ± 9,341 
Range, Da 867,240–1,155,744 846,180–987,336 
Percent variationa 30⋅2 15⋅9 
Total mass of hexagonal bilayer assembly, Da 3,516,847 ± 16,453 3,284,360 ± 10,187 
Range, Da 3,418,308–3,725,496 3,218,868–3,496,104 
Percent variationa 8⋅7 8⋅4 
      
aRange × 100/expected value. 

Table 2. Comparison of the mean Er masses calculated from 
ESI-MS data with the means of published  

experimental masses. 
      
 
Species 

Mean calculated 
mass, kDa 

Mean experimental 
mass, kDaa 

      
Lumbricus terrestris 3517 ± 16b 3524 ± 481 (N = 23) 

3577 ± 271 (N = 16)c 

 
All oligochaete and  
 achaete Ers 

 3481 ± 434 (N = 37) 
3500 ± 279 (N = 26)c 

 
Riftia pachyptila 3284 ± 10b – 
All polychaete Ers  3209 ± 389 (N = 30) 

3236 ± 234 (N = 19)c 

 
All polychaete Ers 
 since 1980 

 3398 ± 350a (N = 14) 
 

All annelid Ers 3387 ± 45a 
(N = 12) 

3366 ± 428 (N = 67) 
3⋅314 ± 0⋅235 (N = 47)c 

      
aFrom table 3 in supporting information section. 
bFrom table 1. 
cMean of data within ± 1 SD of original mean. 
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Table 3. Experimental and calculated masses of annelid Ers. 
          
 
Species 

Experimental 
mass, kDa 

 
Methoda 

Calculated 
mass, kDab 

 
Reference 

          
Oligochaetes     
 Lumbricus terrestris 2730 SE  Svedberg and Eriksson-Quensel (1933) 
 2950 SE  Svedberg and Eriksson-Quensel (1934) 
 3140c SD  Svedberg and Pedersen (1940) 
 3450 LS  Rossi Fanelli et al (1970) 
 2500 GF  Wiechelman and Parkhurst (1973) 
 3100 LS  Harrington et al (1973) 
  3230 ± 180d SD  Shlom and Vinogradov (1973) 
 2940 ± 100 LS  Harrington and Herskovits (1975) 
 3860 ± 90   SE  Wood et al (1976) 
 3680 ± 170 SE  Vinogradov et al (1977) 
 3950 ± 150 SAXS  Pilz et al (1980)  
  4120e SD  Vinogradov et al (1980) 
 3800 ± 300f EM  Vinogradov and Kolodziej (1988) 
 3340 ± 510 GF  Barnikol et al (1989) 
 3410 ± 390 SE 3517 Martin et al (1996) 
 3560 ± 130 STEM   3460h Martin et al (1996) 
 3850g SD   
 3840 SE  David and Daniel (1974) 
 3590 GEMMA  Kaufman et al (1998) 
 4470 SE  Tsfadia and Daniel (1999) 
 4100 ± 100 MALLS  Zhu et al (1996) 
 3755 ± 80   MALLS  F Zal (unpublished observations) 

 Lumbricus rubellus 3680 SE  Ellerton et al (1987a) 

 Eisenia fetida 4010j SD  Ochiai and Enoki (1981) 
 3820 ± 0⋅05 SE  Frossard (1982) 

 
 Glossoscolex paulistus 3100k S  Costa et al (1988) 
 3200 SAXS  El Idrissi Slitine et al (1990) 

 
 Maoridrilus montanus 3200 GF  Ellerton et al (1987b) 
 Pheretima communissima 3070l SD  Ochiai and Enoki (1979) 
 Limnodrilus 3010m SD  Yamagishi et al (1966) 
 Tubifex tubifex 3010 SE   3368n Scheler and Schneiderat (1959)  
  3630 LS  Russell and Osborn (1968) 
 3090 ± 150 SAXS  Theuer et al (1985) 
Achaetes     
 Haemopis sanguisuga 3710 SE   3361o Wood et al (1976) 
 Macrobdella decora 3560 ± 160 STEM 3355 Kapp et al (1990) 
  3540 ± 80   SE  Weber et al (1995) 
 3804 ± 70   MALLS   
Polychaetes     
 Riftia pachyptila 3503 ± 13   MALLS 3284 Zal et al (1996) 
  3396 ± 540 STEM 

 
  

 Spirographis spallanzanii 2800 SE, SD   3360p Antonini et al (1962) 
 Potamilla leptochaeta  2900 SE, GF  Himmel and Squires (1981) 
 Eudistylia vancouverii 3100 SE   3393q Terwilliger et al (1975a,b)  
  3480 ± 230  STEM  Qabar et al (1991) 
 3261 MALLS  F Zal (unpublished observations) 

 
 Arenicola marina 2850 SE   3385r Svedberg and Eriksson-Quensel (1933) 
 3000 SE  Roche (1965) 
 3300 ± 360s SD  Pionetti and Pouyet (1980) 
 3400 ± 40    SE  Wilhelm et al (1980) 
 3000 SAXS   
 3850 ± 150 

3650 ± 20   
SAXS 

MALLS 
 Wilhelm et al (1980) 

Zal et al (1997b) 
          

(Table 3. Contd.) 
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Table 3. Contd. 
          
 
Species 

Experimental 
mass, kDa 

 
Methoda 

Calculated 
mass, kDab 

 
Reference 

          
 Arenicola cristata 2850t SD  Waxman (1971) 
 Abarenicola pacifica 2600 GF  Garlick and Terwilliger (1977) 
 Abarenicola affinis  3290 SE  Chung and Ellerton (1982) 
 Marphysa sanguinea   2400u SD   3370n Chew et al (1965) 
 3609 MALLS  F Zal (unpublished observations) 
 Eunice aphroditois 3440 SE  Bannister et al (1976) 
 Cirriformia grandis 3000 SE  Swaney and Klotz (1981) 
 Pista pacifica 3400 SE  Terwilliger et al (1975a,b) 
 Thelepus crispus 3300 GF  Garlick and Terwilliger (1974) 
 Alvinella caudata 3517 ± 14 MALLS 3401 Zal et al (2000)  
 Paralvinella grasslei 3822 ± 28 MALLS 3426 Zal et al (2000) 
 Alvinella pompejana 3833 ± 14 MALLS 3412 Zal et al (2000) 
 Euzonus mucronata 3400   SE  Terwilliger et al (1977) 
 Ophelia bicornis 2700v SD  Mezzasalma et al (1985) 
 Perinereis cultrifera 2700w SD  Chiancone et al (1977) 
 Tylorrhynchus heterochaetus 3370   SE   3422x Suzuki and Gotoh (1986) 
     
     
aAbbreviations: GF, gel filtration; LS, light scattering; MALLS, multiple angle laser light scattering; GEMMA, gas-phase electro-
phoretic mobility molecular analysis; SAXS, small angle x-ray scattering; SD, calculated from the Svedberg equation and diffusion 
coefficient; SE, sedimentation equilibrium; STEM, scanning transmission electron microscopic mass mapping. 
bCalculated on the basis of Lumbricus erythrocruorin stoichiometry, 144 globin and 36 linker chains (Royer et al 2000), using sub-
unit masses obtained by ESI-MS. 
cCalculated using S°20,w = 60⋅9, D20,w = 1⋅81 × 10–7cm2.s–1. 
dCalculated using S°20,w = 58⋅9, D20,w = 1⋅66 × 10–7cm2.s–1 and ν = 0⋅733. 
eCalculated using S°20,w = 58⋅9 (Shlom and Vinogradov 1973), D20,w = 1⋅3 × 10–7cm2.s–1 (Gros 1978) and ν = 0⋅733. 
fDetermined by counting number of particles with ferritin as the mass standard. 
gCalculated using S°20,w = 58⋅9 (Shlom and Vinogradov 1973), D20,w = 1⋅3 × 10–7cm2.s–1 (Gros 1978) and experimental ν = 0⋅714 
from Martin et al (1996). 
hMass calculated without carbohydrate. 
iValue recalculated using earlier data (David and Daniel 1974) and ν = 0⋅738. 
jCalculated using S°20,w = 62⋅2, D20,w = 1⋅41 × 10–7cm2.s–1 and ν = 0⋅733. 
kEstimated from S°20,w = 58 and M1/M2 = (S1/S2)

3/2. 
lCalculated using S°20,w = 59, D20,w = 1⋅9 × 10–7cm2.s–1 and ν = 0⋅745. 
mCalculated using S°20,w = 60⋅8, D20,w = 1⋅8 × 10–7cm2.s–1 and ν = 0⋅733. 
nCalculated from B N Green (unpublished data). 
oCalculated from ESI-MS data of Green et al (1999). 
pCalculated from sequence data (Pallavicini et al 2001). 
qCalculated from ESI-MS data of Green et al (1998a). 
rCalculated from ESI-MS data of Zal et al (1997b). 
sCalculated using S°20,w = 54 ± 0⋅5, D20,w = 1⋅66 ± 0⋅15 × 10–7cm2.s–1. 
tCalculated using S°20,w = 57⋅8, D20,w = 2⋅06 × 10–7cm2.s–1 and ν = 0⋅726. 
uCalculated using S°20,w = 58⋅2, D20,w = 2⋅06 × 10–7cm2.s–1 and ν = 0⋅73. 
vCalculated using S°20,w = 55⋅1, D20,w = 1⋅84 × 10–7cm2.s–1 and ν = 0⋅73. 
wCalculated using S°20,w = 55, f/fo = 1⋅2 and ν = 0⋅74. 
xCalculated from ESI-Ms data of Green et al (1995). 
 
 

Since Er preparations are obtained generally from the 
pooled blood of many worms, it is not known whether the 
Ers from different Lumbricus populations collected over 
the world would have the same subunit composition. 
Several instances of highly polymorphic single chain Ers 
are known. ESI-MS has demonstrated that the monomeric 
Ers from the larvae of the midge Chironomus and the 
intracellular Ers of the marine polychaete Glycera are 

complex mixtures of more than 20 components (Green  
et al 1998b, c). Thus, it is conceivable that some of the 
variation in the published molecular masses of the giant 
Ers could be due to variation in the species. 
 The HBL Ers are known to contain about 40 to 80 Ca2+ 
and 2 to 4 Cu2+ and Zn2+ (Standley et al 1988), with 
about half of the Ca2+ required for the formation and 
maintenance of the HBL structure (Kuchumov et al  



J. Biosci. | Vol. 28 | No. 5 | September 2003

Mass distribution of a macromolecular assembly 

 

565 

 
 
Figure 2. Plot of available molecular masses of oligochaete and leech Ers (top) and of polychaete Ers (bottom). The masses for 
leech Ers are marked L. The crosses indicate the values obtained before 1950 (Svedberg 1933; Svedberg and Ericksson-Quensel 
1933, 1934). 
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2000). Clearly, the resulting additional mass of ~ 1700 to 
3500 Da is a negligible contribution to the total Er mass. 
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