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The complement system is a potent innate immune mechanism consisting of cascades of proteins which are  
designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size 
and have relatively simple structure, they are not immune to complement attack. Thus, activation of the com-
plement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis 
of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat 
host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control com-
plement, but also have turned these interactions to their own advantage. Important examples include poxviruses, 
herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the 
various complement evasion strategies that viruses have developed to thwart the complement attack of the host. 
A special emphasis is given on the interactions between the viral proteins that are involved in molecular  
mimicry and the complement system. 

[Bernet J, Mullick J, Singh A K and Sahu A 2003 Viral mimicry of the complement system; J. Biosci. 28 249–264] 

1. Introduction 

The complement system, an integral component of innate 
immunity, is an ancient system of immunological defense. 
Recent cloning of C3-like molecules in nonvertebrate 
deuterostomes – for example, sea urchin (Al-Sharif et al 
1997) and ascidians (Nonaka et al 1999) – and in pro-
teosome – for example, mosquito (Levashina et al 2001); 
and identification of a lectin (Sekine et al 2001) and 
lectin-associated serine proteases in ascidians (Ji et al 
1997) suggest that the complement system has emerged 
at least 700 million years ago, long before the appearance 
of immunoglobulins. The complement system has evolved 
to perform wide range of immune function with a goal to 
eliminate ‘nocuous’ substances from the body. This 
elimination is achieved by various methods: (i) Attach-

ment of the complement component C3 to the pathogen 
surface leads to engulfment of the foreign pathogens. (ii) 
Formation of the membrane attack complex (MAC, C5b-
9) on the pathogen surface results in direct lysis of the 
pathogen. (iii) Release of anaphylatoxic peptides as a 
result of complement activation produces the local in-
flammatory response against pathogen. (iv) The comple-
ment system prevents immune precipitation, and help 
solubilization and clearance of immune complexes from 
the circulation. (v) It helps in selection of appropriate 
antigens for a humoral response by tagging them with C3 
(Dempsey et al 1996). (vi) The complement system is 
also involved in negative selection of self-reactive B cells 
(Prodeus et al 1998). 
 Since the complement system has evolved to perform 
all the above-mentioned functions, it must recognize a 
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large array of molecular structures, and must adapt to new 
structures as they emerge. If the system has to fulfill all 
the above criteria, then it is likely to become relatively 
non-specific and perhaps might not be able to discrimi-
nate between the self and the non-self. Consistent with 
this premise, it has been reported that complement pro-
teins which are involved in the activation process, though 
show preferences for certain structures (Sahu et al 1994; 
Sahu and Pangburn 1994, 1995; Kim et al 1992; Kino-
shita et al 1988), do not discriminate between the self and 
the non-self and have the potential to destroy any cell 
including the host cells (Sahu and Lambris 2001). This 
inadvertent complement-mediated damage of the host 
cells by homologous complement is protected by a family 
of structurally and functionally related proteins termed as 
regulators of complement activation (RCA) (Lambris  
et al 1998) (figure 1). These proteins range from 45–
540 kDa and are characterized by the presence of com-
mon structural motifs – the short consensus repeat (SCR) 
or complement control protein (CCP) modules. Each 
SCR is comprised of approximately 60 to 70 amino acids, 
and are characterized by a conserved motif that includes 
four disulphide-linked cysteines, prolines, tryptophan and 
many other hydrophobic residues which together form a 
bead-like structure. The proteins belonging to the RCA 
family include both the plasma proteins; for example, 
factor H and C4-binding protein (C4bp); and membrane 
proteins such as complement receptor 1 (CR1), decay-
accelerating factor (DAF), and membrane cofactor pro-
tein (MCP). These proteins act at the level of C3 and C4 
and function by dissociating the subunits of C3 and C5 
convertases and/or by acting as cofactors for the factor I-
dependent cleavage of C3b and/or C4b (Sahu et al 2000) 
(figure 2). In addition, regulation of complement is also 
achieved by non-RCA proteins like C1 inhibitor, carbo-
xypeptidase N and CD59: which inhibit activated C1s 
and C1r, anaphylatoxins (C3a, C4a and C5a), and MAC 
formation, respectively (Sahu and Lambris 2000). 
 Given that the complement proteins involved in the 
activation process do not discriminate between self and 
non-self, it is not unexpected that viruses are susceptible 
to complement attack. Viruses are obligatory intracellular 
parasites and depend solely on the host for their survival 
and propagation. Thus, when viruses invade the host they 
are exposed to the complement system of the host, which 
may result in complement-dependant viral lysis, neutrali-
zation of the viral particles by opsonization with com-
plement proteins of the host and destruction of the viral 
particles by phagocytosis. Therefore, the complement 
system presents a constant threat to viruses for their sur-
vival within the host and for successful transmission. 
During the co-evolution of the viruses with their hosts 
over a period of several million years, they have deve-
loped mechanisms to combat the complement system of 

the host to be a successful pathogen. The viruses have 
adapted various ways to subvert the complement system; 
either by capturing CCPs from the RCA loci of their host, 
or by evolving CCPs within their genome. In addition, 
they take advantage of the complement system and use 
the host complement receptors to infect various cells 
(Sahu et al 1998a). 
 

2. Role of complement system in virus  
neutralization 

It is known over several decades that the complement 
system of the host gets activated upon interaction with 
viruses (Wedgewood et al 1956). Activation however is 
not always associated with virus neutralization. As  
described further in this review, many viruses take  
advantage of complement activation to infect cells. 
Activation of the complement system can occur through 
three distinct pathways: the classical; alternative; or the 
more recently identified lectin (mannose-binding lectin; 
MBL) pathways (see figure 2): (i) The classical pathway 
activation has been demonstrated in the presence of virus-
specific antibodies and cross-reacting antibodies (Beebe 
and Cooper 1981; Beebe et al 1983). In addition, this 
pathway is also activated in the absence of antibodies due 
to the direct interaction of C1q with viral surface pro-
teins. For example, p15E of oncornavirus (Bartholomew 
et al 1978) and gp41 (Ebenbichler et al 1991) and gp120 
(Susal et al 1994) of human immunodeficiency virus 
(HIV-1) have been shown to interact with C1q. (ii) The 
alternative pathway activation is initiated by covalent 
attachment of metastable C3b (C3b with an intact thio-
ester bond; half life ~ 100 µs) to hydroxyl and amino 
groups present on the viral surface to form an ester, the 
preferred linkage, or an amide bond. Since its initiation 
does not require any recognition molecule, in the absence 
of complement regulators, the pathway can be efficiently 
activated by enveloped as well as by non-enveloped  
viruses. Various examples known to activate the alterna-
tive pathway include sindbis virus (Hirsch et al 1980), 
simian virus 5 (McSharry et al 1981), vesicular stomatitis 
virus (VSV) (McSharry et al 1981) and Epstein-Barr  
virus (EBV) (Mold et al 1988a). (iii) The lectin pathway 
is initiated as a result of surface carbohydrate recognition 
by lectins followed by activation of associated serine 
proteases. Viruses that are known to activate the MBL path-
way include a variety of oncolytic viruses (Wakimoto  
et al 2002), hepatitis C virus (Ishii et al 2001) and HIV 
(Ezekowitz et al 1989; Saifuddin et al 2000). 
 Activation of the complement system in the absence  
of proper regulation can lead to virus neutralization.  
The various mechanisms which are known to inactivate 
viruses are: (i) neutralization by complement dependant 
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aggregation; (ii) neutralization by opsonization with 
complement proteins; (iii) neutralization by direct lysis; 
and (iv) neutralization by phagocytosis (figure 3). 
 

2.1 Neutralization by complement  
dependant aggregation 

Neutralization due to aggregation occurs in most enve-
loped and non-enveloped viruses. Multivalent antibodies 

directed against the viral surface proteins induce aggrega-
tion and reduction in the total number of infectious units. 
This type of neutralization has also been demonstrated in 
polyoma virus where C1q aggregated the antibody coated 
polyoma virus particle and enhanced neutralization 
(Oldstone et al 1974). Whether such phenomenon is of 
any physiological significance is under question since 
plasma-complement proteins, other than C1q and MBL, 
are monovalent in nature. In addition, other factors such 
as virus : antibody ratio and size of the aggregate (due to 

 
 
Figure 1. Schematic representation of human RCA proteins and viral proteins with complement regulatory activities. 
The DAF and factor I cofactor activities of these proteins are shown on the right. ND, Not determined. 
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large size of virus-antibody complexes) would also influ-
ence this process (Cooper and Nemerow 1983). 
 

2.2 Neutralization by opsonization with  
complement protein 

It was believed that complement-mediated lysis operates 
as the primary mechanism of complement-mediated virus 
neutralization. However, increasingly it is becoming 
clear that viral neutralization may occur in the absence of 
aggregation or lysis. The lack of evidence for lysis in 
most of the earlier reports and growing list of reports 

demonstrating evidence for neutralization without lysis 
suggest that this may be the major mechanism of viral 
neutralization. The opsonization-mediated viral neutrali-
zation is a direct result of coating of viral surface by 
complement proteins. These coats are clearly observed in 
electron microscopic studies (Welsh et al 1976;  
Nemerow and Cooper 1981). Recent studies have clearly 
demonstrated that coating of viral surface with C3 in case 
of HIV-1 (Sullivan et al 1998) and C5 in case of herpes 
simplex virus-1 (HSV-1) gC null virus (Friedman et al 
2000) is essential for viral neutralization. Though there is 
no direct evidence, complement coating could inhibit 

 
 
Figure 2. Activation pathways of the complement system. The complement system is 
activated by three distinct pathways: the classical, alternative and lectin pathways. Dotted 
lines indicate regulation at different steps by complement regulators (black letters) and 
viral proteins (pink letters). 
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virus attachment, entry, uncoating, DNA transport to the 
nucleus, or immediate early gene expression. 

2.3 Neutralization by direct lysis 

Enveloped viruses undergo complement-dependant lysis 
resulting in the disruption of the viral integrity and irre-
versible loss of viral activity. In order for lysis to occur, 
sufficient numbers of MACs must be formed on the viral 
envelope. This is achieved when a large amount of anti-
body is deposited on the viral surface which leads to effi-
cient complement activation or when there is a direct 
activation of the complement in the absence of antibody. 
Many viruses such as alphavirus, coronavirus, herpesvi-
rus, orthomyxovirus, paramyxovirus and retrovirus fami-
lies are susceptible to this type of complement-mediated 
lysis (reviewed in Cooper and Nemerow 1983). 

2.4 Neutralization by phagocytosis 

Complement activation at the surface of the virus leads to 
covalent attachment of C3b to the viral surface. This 

makes opsonized viruses prone to phagocytosis through 
complement receptors which finally leads to the destruc-
tion of the virus. This mechanism is well-documented for 
herpes simplex and Japanese encephalitis viruses (Kelkar 
and Gogate 1987; Van Strijp et al 1990). 

3. Complement system and viral  
molecular mimicry 

As discussed above, the host complement system has the 
potential to efficiently inactivate all types of viruses. 
Thus, viruses have devised multiple mechanisms to  
manipulate and subvert the complement system, and 
evade the immune system of the host in order to survive 
as successful pathogens. A few viruses use subtle mecha-
nisms, such as, stay latent in cells and emerge any time 
later during their lifetime. The lack of expression of any 
detectable viral antigen during their latent period allows 
them to evade from all the immune mechanisms includ-
ing the complement system. However, once reactivated 
they need to evade the complement attack. Therefore, 

 
Figure 3. Complement mediated neutralization of viruses. (1) Aggregation: Binding of C1q and MBL may lead to 
aggregation of viruses. (2) Opsonization: Activation of complement may lead to deposition of C3b and C5b on the viral 
surface. (3) Lysis: Activation of complement in the presence or absence of antibody may lead to lysis of viral particles 
due to formation of C5b-9 (MAC). (4) Phagocytosis: Deposition of complement components on viral surface as a result 
of complement activation may lead to phagocytosis. 
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along with acute viruses, even latent viruses have deve-
loped active strategies to evade the host complement. 
These strategies include direct inactivation of comple-
ment either by encoding complement regulatory proteins 
or by capturing membrane regulatory proteins from the 
host and by the use of membrane complement receptors 
to gain cellular entry. 

3.1 Evasion by encoding complement  
control proteins 

Two different families of viruses namely the poxviruses 
and herpesviruses are known to encode for proteins with 
complement regulatory activities (table 1). Although 
there are multiple examples in each family, only a few of 
them have been characterized to significant details. 
 
(i) Poxviruses: Viral homologs of complement control 
proteins have been identified in various members of the 
poxvirus family e.g. vaccinia, cowpox, rabbitpox, and 
smallpox viruses (Kotwal and Moss 1988; Martinezpo-
mares et al 1995; Miller et al 1997; Rosengard and 
Ahearn 1998; Sahu et al 1998b). The first known and 
best-studied example is vaccinia virus complement con-
trol protein (VCP). This protein received scientific atten-
tion when it was discovered that an attenuated mutant of 
vaccinia virus (VV) does not encode for this protein 
(Kotwal et al 1990). 
 VCP is a 27 kDa secretory protein encoded by the C3L 
open reading frame (ORF) of the vaccinia genome. The 

primary structure, deduced from the ORF, consists of 263 
amino acids, including a 19 amino acid signal peptide. 
Sequence analysis revealed that it is composed of four 
tandemly repeating SCRs (Kotwal et al 1990) and thus is 
homologous to members of the RCA family (see figure 1). 
Efforts have been made to determine the three-dimen-
sional structures of VCP. Analysis of the NMR structures 
of pairs of VCP modules (SCR 2-3 and SCR 3-4) showed 
that, each SCR fold into a compact 6 β-strand structure 
and is conformationally similar to SCR 16 of factor  
H (Wiles et al 1997; Henderson et al 2001). Importantly, 
it also revealed that the relative orientation of successive 
modules differed from one module pair to another. More 
recently, the crystal structure of the entire VCP molecule 
has been solved (Murthy et al 2001). The salient features 
of the crystal structure are: (i) SCR modules have the 6 
β-strand topology; as shown previously by NMR struc-
tures. (ii) The “tilt” angles between the long axes of SCR 
at the SCR 1–2, 2–3 and 3–4 junctions are 60°, 63° and 
99°, respectively. Thus, the molecule has an extended 
structure from SCR 1–3 and a turn between SCR 1–3 and 
SCR 4. (iii) The “hypervariable” loop of SCR 1 (Lys14-
Ala23) projects laterally from VCP close to the N-
terminal tip of the molecule. (iv) A two amino acid inser-
tion (Gln42 and Lys43) in SCR 1 forms a β-bulge near 
the interface with SCR 2. (v) A five amino acid insertion 
(Leu109-Ser114) in SCR 2 forms a loop near the inter-
face with SCR 1. 
 Initial functional studies revealed that VCP apparently 
protects the infected cells and the released virions from 

Table 1. Viruses that encode protein(s) with complement regulatory activity. 
            
Virus family Virus Viral protein Homology Key feature References 
            
Poxviruses Vaccinia  VCP  RCA Binds C3b and C4b. Accelerates 

decay of CP and AP C3-convertases 
Factor I cofactor for C3b and C4b 

Kotwal et al 1990; Mckenzie 
et al 1992; Sahu et al 1998b 

 Cowpox  IMP  RCA Modulates in vivo complement-
mediated inflammatory responses 

Miller et al 1997 

 Variola  SPICE  RCA Inhibits human complement Rosengard and Ahearn 1998 
      
Herpesviruses HSV-1  gC-1  None Binds native C3, C3b, iC3b and C3c 

Accelerates decay of AP C3-conver-
tase. Blocks binding of properdin 
and C5 to C3b 

Friedman et al 1984; Fries et al 
1986; Kostavasil et al 1997 

 HSV-2  gC-2  None Binds native C3, C3b, iC3b and C3c McNearney et al 1987; Kostavasil 
et al 1997 

 EBV  Unknown  Unknown Accelerates decay of AP C3-conver-
tase. Factor I cofactor for C3b, iC3b, 
C4b and iC4b 

Mold et al 1988b 

 HVS  HVSCCPH  RCA Blocks C3b deposition Albrecht and Fleckenstein 1992; 
Fodor et al 1995 

   HVSCD59  CD59 Inhibits terminal complement path-
way 

Albrecht et al 1992; Rother et al 
1994 

      
      
CP, Classical pathway; AP, alternative pathway; IMP, inflammation modulatory protein; SPICE, small pox inhibitor of complement 
enzymes. 
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attack by host complement. It was shown that VCP abro-
gates antibody-dependent complement-mediated neutrali-
zation of vaccinia virus (VV) (Isaacs et al 1992a). In 
addition, studies using recombinant VV that do not  
express VCP have shown that these viruses are attenuated 
in vivo (Isaacs et al 1992a). Further, studies to determine 
the mechanism of complement inactivation of VCP were 
performed using the culture medium containing secreted 
VCP and partially purified wild type VCP. In these stud-
ies, VCP was shown to inhibit the classical pathway-
mediated lysis of sheep erythrocytes, to bind to C3b and 
C4b, and to accelerate the decay of classical as well as of 
alternative pathway C3 convertases (Mckenzie et al 1992) 
(figure 4). These studies also suggested that VCP pos-
sesses factor I cofactor activities for C3b and C4b, how-
ever, the cleavage products were not visualized and thus 
the nature of cofactor activity could not be determined. 
 To understand the detailed mechanisms by which VCP 
inactivates complement, earlier we expressed recombi-

nant VCP using Pichia expression system (Sahu et al 
1998b) and asked: Is VCP as effective as other physiol-
ogic complement inhibitors in inhibiting complement 
activation? Does it discriminate between activator bound 
and non-activator bound C3b? Is VCP’s cofactor activity 
similar to other cofactor molecules (CR1 and factor H)? 
Analysis of our data led to following conclusions, (i) 
VCP is significantly less effective than CR1 in inhibiting 
classical as well as alternative pathways of complement 
and factor H in inhibiting the alternative pathway, but is 
4-fold more effective than factor H in inhibiting the clas-
sical pathway; (ii) unlike factor H, it does not discrimi-
nate between activator (rabbit erythrocyte)- and non-
activator (sheep erythrocyte)-bound C3b; and (iii) unlike 
CR1 and factor H, it displays cofactor activity primarily 
for the first site, which is sufficient to inactivate C3b 
(Sahu et al 1998b) (see figure 4). 
 Although VCP is composed only of four SCR domains, 
it binds to C3b as well as C4b and possesses all the com-

 
 
Figure 4. Complement inactivation mechanisms of gC-1 and VCP. (A) HSV-1 is sensitive to complement-mediated neutralization 
in the absence of gC. Binding of C5, but not C6-C9 is essential for the neutralization of HSV-1 gC null viruses. Presence of gC in 
wild type HSV-1 virus accelerates the decay of alternative pathway C3-convertase C3b,Bb and inhibits binding of properdin (a 
positive regulator of C3b,Bb) and C5 to C3b. (B) VCP secreted by vaccinia virus protects the virions from antibody-dependent 
complement-mediated neutralization. VCP possesses both DAF- as well as factor I cofactor-activities for C3b and C4b. 
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plement regulatory activities of CR1 (composed of 30 
SCRs). Previously it has been shown that at least three 
SCRs are essential for C3b/C4b binding in CR1 (Klickstein 
et al 1988; Krych et al 1991), while four are needed for 
C3b binding in factor H (Gordon et al 1995; Alsenz et al 
1984; Sharma and Pangburn 1996). In case of VCP, it has 
been shown that all the four SCRs are required for bind-
ing to C3b (Rosengard et al 1999). This led to the belief 
that the binding sites for C3b and C4b in VCP are over-
lapping in nature. Our recent laboratory data however 
suggests that, physically distinct sites on VCP are invol-
ved in binding to C3b and C4b (Bernet J and Sahu A, 
unpublished data). 
 VCP also contains two distinct putative heparin-bind-
ing sites: the first site overlaps between SCRs 1–2; and 
the second site is located in SCR 4 (Murthy et al 2001). 
Amongst the human complement regulators, factor H and 
C4bp bind to heparin (Sahu and Pangburn 1993). Impor-
tantly, interaction of factor H with heparin is an impor-
tant step in the regulation of activation of alternative 
pathway. Whether interaction of VCP with heparin is 
fortuitous or has any physiological relevance needs fur-
ther study. Currently our laboratory is focusing on these 
aspects of VCP. 
 
(ii) Herpesviruses: A number of herpesviruses are 
known to encode for proteins with complement regulatory 
activities. The known examples are HSV-1 (McNearney 
et al 1987; Friedman et al 1996), HSV-2 (McNearney  
et al 1987), EBV (Mold et al 1988b), herpesvirus saimiri 
(HVS) (Albrecht and Fleckenstein 1992), Kaposi’s sar-
coma-associated herpesvirus (HHV-8) (Russo et al 1996), 
and murine γ-herpesvirus 68 (Virgin et al 1997). 
 
(a) Herpes simplex virus: Glycoprotein C of HSV-1 
(gC-1) (see figure 1) was the first viral-encoded protein 
to be identified as complement-binding protein and is 
also the most extensively studied protein amongst all the 
virally encoded complement regulators (Friedman et al 
1984; Sahu et al 1998a). It is one of the 11 proteins ex-
pressed on the virion envelop as well as on the surface of 
infected mammalian cells (Spear 1985). A similar protein 
present on HSV-2 is known as glycoprotein C-2 (gC-2) 
(see figure 1). Both gC-1 and gC-2 are highly homolo-
gous in sequence and occupy collinear positions on their 
respective viral genomes (Zezulak and Spear 1984; 
Swain et al 1985). It is important to note that none of 
these proteins show either partial or complete homology 
to proteins of the RCA family. Thus, the mechanisms 
through which they inactivate complement are distinctly 
different from RCA proteins. 
 HSV gC-1 is a 511 amino acid protein including 25 
amino acid signal sequence encoded by HSV-1 UL44 
gene (Frink et al 1983). The protein is highly glycosy-
lated: containing nine potential sites for N-linked oligo-

saccharides (N–CHO) (Frink et al 1983) and numerous 
O-linked oligosaccharides (O–CHO) (Johnson and Spear 
1983; Dall’Olio et al 1985). Although the detailed carbo-
hydrate analysis has not been performed, it has been 
shown that eight to nine N-linked oligosaccharides of 
expressed gC-1 are occupied by approximately 1 kDa 
glycans, and the O–CHO moieties are primarily located 
at the N-terminal region (residues 33–123) (Rux et al 
1996). A complete disulphide linkage pattern has also 
been determined for gC-1. It contains eight cysteine resi-
dues that form four disulphide bonds (Rux et al 1996). 
Glycoprotein C-2 on the other hand, is a 480 amino acid 
transmembrane-protein with seven potential sites for N–
CHOs and several sites for O–CHOs (Swain et al 1985). 
Like gC-1, it also contains eight cysteine residues. Since 
cysteine positions are highly conserved between gC-1 
and gC-2 it is predicted that a similar disulphide pattern 
must be present in gC-2 (Rux et al 1996). 
 Studies with gC-null HSV-1 and HSV-2 mutants have 
clearly established that these molecules provide protec-
tion against complement-mediated neutralization (Mc-
Nearney et al 1987; Friedman et al 1996; Hidaka et al 
1991). Examination of interactions of these proteins with 
complement proteins revealed that both gC-1 and gC-2 
bind to native C3 and its proteolytically cleaved frag-
ments C3b, iC3b and C3c (Fries et al 1986; Kostavasil et 
al 1997). Glycoprotein C-1, but not gC-2, is also known 
to inhibit the binding of properdin and C5 to C3b (Hung 
et al 1994; Kostavasil et al 1997) (see figure 4). Further, 
insight into the mechanism of complement inactivation 
has revealed that though gC-1 does not inhibit the forma-
tion of alternative pathway C3 convertase (C3b, Bb) 
(Kostavasil et al 1997), like other regulators of comple-
ment activation (factor H, CR1, and DAF), it accelerates 
the decay of C3b, Bb into its subunits. Glycoprotein C-2 
on the other hand is known to stabilize the C3 convertase 
(Fries et al 1986; Eisenberg et al 1987) (see figure 4). 
None of these proteins however mediate the proteolytic 
inactivation of C3b or C4b by factor I (Fries et al 1986). 
 Structure-function analysis of gCs, using linker inser-
tion and deletion mutants, identified four distinct regions 
in gC-1 and three separate regions in gC-2 as C3b-
binding sites (Seidel-Dugan et al 1990; Hung et al 1992). 
These C3b-binding sites are located in the central portion 
of the gCs. Further, studies using deletion mutants have 
revealed that the N-terminal region (residues 33–123) of 
gC-1, which is not involved in binding to C3b, is neces-
sary to inhibit properdin and C5 binding to C3b 
(Kostavasil et al 1997). Thus, it appears that this region 
sterically hinders the access to properdin and C5-binding 
sites on C3b. Since all these mechanistic studies were 
done in vitro it was important to evaluate the in vivo  
importance of these domains. Recent in vivo study on the 
role of complement-interacting domains of gC-1 has 
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clearly shown that the C3-binding domain is more impor-
tant than the C5/P-blocking domain and is a major con-
tributor to complement evasion (Lubinski et al 1999). 
 From the studies described above it is clear that gCs 
offer survival advantage to HSV by subverting the com-
plement system. This notion is further supported by the 
fact that though spontaneous gC knockout of HSV have 
frequently emerged in cell cultures, they are rarely iso-
lated from human materials (Hidaka et al 1990). 
 
(b) Herpesvirus saimiri: Analysis of the genome of 
HVS has identified a gene that encodes for a protein with 
striking homology to VCP and other members of the 
RCA protein family (Albrecht and Fleckenstein 1992). 
The gene encodes for a protein of 360 amino acids with 
seven consensus sites for N-linked glycosylations, a sig-
nal peptide of 20 amino acids, and a transmembrane do-
main of 23 residues (residues 328–350) which lie at the 
C-terminus. The region between amino acids 21 to 265 
forms four SCR domains. 
 The HVS complement control protein homolog 
(CCPH) gene encodes for two different forms of the same 
protein, the membrane form (mCCPH) and the secretory 
form (sCCPH), as a result of differential splicing of the 
primary transcript (Albrecht and Fleckenstein 1992). 
Both proteins contain all the four SCRs except that the 
membrane form contains a putative transmembrane domain 
(see figure 1). The membrane form has already been 
cloned and the functional data shows that it protects the 
transfected cells from complement-mediated damage 
(Fodor et al 1995). Although the mechanism of comple-
ment inactivation has not been studied, it was reported 
that mCCPH inhibits the deposition of C3b on transfected 
cells (Fodor et al 1995). Currently our laboratory is  
attempting to decipher the mechanism by which HVS-
CCPH and a similar protein present in HHV-8 inactivate 
complement. 
 Apart from CCPHs, HVS is also known to encode for a 
CD59-like molecule (Albrecht et al 1992). In mammals, 
CD59 protects host cells from the cytolytic action of 
C5b-9 by tightly binding to C5b-8 complex, and by pre-
venting the incorporation of C9 molecules (Morgan 1999; 

Sahu and Lambris 2000). Cloning and functional analysis 
of this molecule showed that it is a functional homolog of 
CD59 (Rother et al 1994). Thus, unlike other viruses, 
HVS encodes for two distinct complement control pro-
teins that function at two different steps of complement 
activation. 
 
(c) Epstein-Barr virus: Although the genome of EBV 
does not contain ORF that has either full or partial  
sequence similarity to members of the RCA family, it 
contains protein(s) that has complement regulatory activ-
ity. Purified EBV has been shown to possess cofactor 
activity for factor I mediated cleavage of C3b, iC3b, C4b 
and iC4b (Mold et al 1988b). In addition, EBV also  
accelerates the decay of alternative pathway C3-con-
vertase C3b,Bb (Mold et al 1988b). Though these  
activities seem similar to human complement regulator 
CR1, there are significant differences. Unlike CR1, EBV 
does not bind to C3b and accelerate decay of the classical 
pathway C3-convertase, C4b,2a (Cooper 1998). To date, 
no efforts have been made to characterize these proteins. 
 

3.2 Evasion by acquiring host complement  
control proteins 

Complement regulatory proteins such as MCP (CD46), 
DAF (CD55) and CD59 are expressed on the mammalian 
cell surface to protect the host cells from the bystander 
effects of complement activation (Sahu and Lambris 
2000; Sun et al 1999). During maturation by budding, a 
number of enveloped viruses such as human cytomega-
lovirus (HCMV), a herpesvirus, human T-cell leukemia 
virus type 1 (HTLV-1), HIV-1 and simian immunodefi-
ciency virus (SIV) all belonging to the family of retrovi-
ruses, and VV, a poxvirus, capture one or more of the 
host’s cellular complement regulatory proteins and use 
them to evade the complement attack (table 2). 
 Studies by Cooper and his coworkers have shown that 
the complement regulatory activity in the HCMV virion 
is functionally similar to the regulatory effect of MCP 
and DAF and that this activity was blocked by the addi-

Table 2. Viruses that acquire host complement control proteins. 
    
    
Virus family Virus Acquired proteins References 
        
Poxvirus Vaccinia MCP, DAF, and CD59 Vanderplasschen et al 1998 
Herpesvirus HCMV MCP, DAF and CD59 Cooper 1998 
Retroviruses HTLV-1 DAF and CD59 Spear et al 1995 
 HIV-1 DAF, CD59, and factor H Marschang et al 1995; Stoiber

et al 1996; Schmitz et al 1995 
 SIV MCP, DAF, CD59 Montefiori et al 1994 
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tion of specific monoclonal antibodies to MCP and DAF 
(Cooper 1998). Similarly, DAF and CD59 were also 
found to be associated in HTLV-1 viral preparations. Re-
moval of these proteins from the viral envelope increased 
the sensitivity to complement-mediated inactivation, 
while reconstitution by MCP and DAF restored the resis-
tance to the complement attack (Spear et al 1995). 
 HIV-1 acquires complement control proteins DAF and 
CD59 into their membrane while budding from the host 
cells and gains protection against complement mediated 
cytolysis (Marschang et al 1995; Schmitz et al 1995; 
Stoiber et al 1996). In addition to the primary HIV-1 iso-
lates, these host cell regulatory proteins were also found 
to be present in the HIV-1 infected cells. Importantly, the 
degree of protection to infected cells against host com-
plement attack was found to be dependant on the expres-
sion levels of DAF and CD59 (Saifuddin et al 1995). 
Studies with phosphoinositol phospholipase C (PI-PLC), 
which removes the GPI-linked DAF and CD59 from the 
membrane, showed that removal of these proteins  
rendered the virus more susceptible to the complement 
attack (Saifuddin et al 1995). It is believed that in addi-
tion to DAF and CD59, factor H also protects HIV-1 
from complement due to its interaction with the viral en-
velope proteins (Stoiber et al 1997). Consistent with this 
notion factor H was shown to interact with gp41 and 
gp120 (Pinter et al 1995a,b; Stoiber et al 1995). Further, 
it was also shown that removal of factor H from the sera 
results in lysis of free virus (Stoiber et al 1996). 
 As described in the previous section, VV encodes a 
secretory complement regulatory protein VCP, which 
controls complement activation in fluid phase. However, 
it would be advantageous for the virus to encode a mem-
brane-bound complement regulatory protein, which would 
inhibit the complement activation focused on the viral 
surface and the surface of infected cells. Thus we pro-

posed that B5R, which shows sequence similarity to 
complement control proteins (Schwarting et al 1985; 
Goebel et al 1990; Engelstad et al 1992), and is also pre-
sent on the outer envelope of the virus (Takahashi-
Nishimaki et al 1991; Engelstad et al 1992; Isaacs et al 
1992b), might confer resistance to extracellular envel-
oped virus against complement (Sahu et al 1998b). When 
we examined the functional activity of expressed B5R we 
found that like VCP it lacked factor I cofactor activity 
(Sahu A, Lambris J D and Isaacs S N, unpublished  
observation). Later it became clear that complement  
resistance to extracellular enveloped virus (EEV) was not 
imparted by B5R, instead, human RCA proteins acquired 
by EEV provide resistance against complement (Vander-
plasschen et al 1998). 

3.3 Complement receptor as a tool for  
cellular entry 

Viruses from at least five different families are known to 
interact with complement receptors to aid their entry into 
cells (table 3). These viruses bind to complement recep-
tors either through the proteins they encode or through 
the C3 fragments attached to their surface as a result of 
complement activation. 
 
(i) Epstein-Barr virus: One of the important and well-
studied examples is the EBV, which infects B cells and 
epithelial cells through CR2 (Fingeroth et al 1984). The 
ligand responsible for binding to CR2 is a major EBV gly-
coprotein, gp350/220 (Nemerow et al 1987, 1989; Tanner 
et al 1987). Like C3d (a physiological ligand of CR2), 
gp350/220 also interacts with the first two SCRs of CR2 
(Lowell et al 1989; Molina et al 1991). One of the binding 
sites in C3d is located between residues 1201 and 1214 
(PGKQLYNVEATSYA) (Lambris et al 1985). A sequ-
ence similar to this C3d sequence has also been identified  

Table 3. Viruses that use complement receptors for cellular entry. 
          
Virus family Virus Ligand in viruses Complement receptor References 
          
Herpesviruses  EBV  gp350/220   CR2 Fingeroth et al 1984; Nemerow et al 1987; 

Tanner et al 1987 
  HHV-6  Unknown   MCP Santoro et al 1999 
Paramyxovirus  MV  Hemagglutinin   MCP Naniche et al 1993; Dorig et al 1993; 

Manchester et al 1994 
Picornaviruses  Echoviruses  Unknown   DAF Bergelson et al 1994; Clarkson et al 1995; 

Powell et al 1997 
  Coxsackieviruses  Unknown   DAF Bergelson et al 1995; Shafren et al 1995 
Retrovirus  HIV     -a   CR1, CR2, CR3 Robinson et al 1988;  Stoiber et al 2001; 

Spear et al 2001 
          
aUnlike other viruses, binding of HIV to complement receptors is due to the presence of C3 fragments on its surface and not due to 
the direct interaction of its surface proteins with complement receptors. 
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in gp350/220, suggesting that the C3d and EBV binding 
sites on CR2 are either identical or conformationally  
related. A series of studies based on monoclonal antibody 
competition, peptide mapping, and site-directed muta-
genesis have determined that the CR2 binding site on 
gp350/220 lies within residues 1-470 of the viral glyco-
protein. Specifically, a monoclonal antibody (72A1) that 
binds to this region has been shown to inhibit gp350/220 
binding to CR2 and viral entry into host cells (Nemerow 
et al 1987; Tanner et al 1988). Further, a nine amino acid 
peptide (residues 21–30, EDPGFFNVEI) that binds to 
CR2 has been identified within this region of the mole-
cule (Nemerow et al 1987), and deletion of residues 28 
and 29 (VE) have been shown to abolish the binding of 
gp350/220 to CR2 (Tanner et al 1988). Recently, kinetics 
of binding of gp350/220 to CR2 has been studied and 
compared to other physiological ligands (iC3b and C3d) 
of CR2 (Sarrias et al 2001). It was observed that unlike 
binding of C3 fragments to CR2, binding of gp350/220 to 
CR2 follows a simple 1 : 1 binding model. Importantly 
the apparent KD value obtained for gp350/220-CR2 inter-
action was 45 nM compared to 6⋅2 µM obtained for iC3b-
CR2 and 4⋅3 µM obtained for C3d-CR2 interactions 
(Sarrias et al 2001). The high affinity of gp350/220 for 
CR2 compared to C3 fragments suggests that it would 
effectively compete out the C3 fragments from the recep-
tor. This subtle strategy may help the virus to better in-
fect the B cells. 
 
(ii) Measles virus: Measles virus (MV) is another exam-
ple which uses MCP as a receptor to initiate infection 
(Dorig et al 1993; Naniche et al 1993; Manchester et al 
1994). The MV entry is mediated by the interaction of its 
surface glycoprotein H with MCP (Nussbaum et al 1995; 
Devaux et al 1996), which triggers F-induced fusion  
between the virus and the cell membrane. The region of 
MCP that interacts with the hemagglutinin has been 
mapped to the first two SCR domains (Iwata et al 1995; 
Manchester et al 1995). The crystal structure of the  
first two SCRs of MCP (Casasnovas et al 1999) along  
with antibody binding data and site-directed mutagenesis 
studies of MCP (Buchholz et al 1997; Manchester  
et al 1997) indicate that H interaction extends from the 
top of the first SCR to the bottom of second SCR. The 
interaction sites are located at the top of SCR 1 and at  
the base of SCR 2. In addition, a highly hydrophobic  
loop that protrudes at the base of the first SCR contains 
residues important for virus binding (Casasnovas et al  
1999). It is believed that the N-glycan of the SCR 2, 
which was found to be important for viral binding 
(Maisner et al 1996), stabilizes the conformation of  
virus binding region (Casasnovas et al 1999). It is  
important to mention here that identification of MCP as a 
MV receptor led to the development of transgenic mouse 

models, which immensely aided in in vivo studies on  
MV pathogenesis (reviewed in Manchester and Rall 
2001). In addition to MV, human herpesvirus 6 is also 
known to utilize MCP as a cellular receptor (Santoro et al 
1999). 
 
(iii) Echoviruses and coxsackieviruses: A number of 
picornaviruses use DAF as a cell surface receptor. These 
include echoviruses and coxsackieviruses (CV) (Bergel-
son et al 1994; Shafren et al 1995, 1997a). The interest-
ing feature among these viruses is that even the closely 
related viruses use different SCRs of DAF for binding. 
For example, SCRs 2–4 are utilized by echovirus 7 
(Clarkson et al 1995; Powell et al 1997) and CV B3 
(CVB3) (Bergelson et al 1995), while SCRs 1 and 2 are 
sufficient for binding of CV A21 (CVA21) (Shafren et al 
1997a). Affinity determination using surface plasmon 
resonance indicated that unlike gp350/220-CR2 interac-
tion (KD = 45 nM), the interaction of echoviruses with 
DAF is a low affinity interaction (KD = 3⋅0 µM) (Lea  
et al 1998). It is increasingly getting clear that DAF by  
itself may not be sufficient for mediating productive  
infection and may require an accessory molecule. For 
example, in case of CVB3, it has been shown that puta-
tive CVB3 cellular receptor complex include DAF and 
CV-adenovirus receptor protein and both these receptors 
are essential for viral entry (Shafren et al 1997b). Simi-
larly, it has been shown that association of DAF with 
intercellular adhesion molecule 1 is essential for cellular 
entry of CVA21 (Shafren et al 1997a). Thus, the current 
belief is that DAF primarily facilitates binding of  
the virus to the host cells and this in turn enables the  
virus to interact with the second receptor/molecule, 
which is the key step in cellular entry. 
 
(iv) Human immunodeficiency virus: There is conside-
rable evidence showing activation of complement by  
HIV (Ebenbichler et al 1991; Spear et al 1991). Activa-
tion of the complement system either in the presence or 
in the absence of antibody results in opsonization of  
the HIV surface with C3b molecules, which may  
undergo proteolytic cleavage to form iC3b and C3dg frag-
ments. Thus, opsonized viral particles have the ability to 
interact with complement receptors such as CR1, CR2 
and CR3. In late 1980’s, it was shown that treatment of 
HIV with antibody and complement results in enhanced 
HIV infection (Robinson et al 1988). Currently, several 
groups are trying to delineate the role of complement and 
complement receptors in HIV infection (reviewed in 
Cooper 1998; Spear et al 2001; Stoiber et al 2001). It is 
generally be-lieved that binding of opsonized HIV parti- 
cles to complement receptors either help in enhancement 
of CD4-dependant entry and infection or result in effec-
tive transfer of these particles to T cells. 
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4. Concluding remarks 

There exists a continuous interplay between the host’s 
complement system and pathogens. Viruses come in con-
tact with complement and are prone to complement  
attack during both the stages of their life cycle: (i) while 
they are present outside the cell, and (ii) during their  
intracellular phase, due to the presence of viral proteins 
on the surface of infected cells which are known to acti-
vate complement. Thus, for extracellular survival as well 
as for propagation, viruses must develop mechanism(s) to 
evade complement attack. Understanding these mecha-
nisms are difficult since in vitro studies in tissue culture 
as well as studies performed using animal models may 
not reflect the true situation. Nevertheless, studies per-
formed thus far clearly indicate that viruses have devised 
multiple strategies to manipulate and subvert the com-
plement system. Some viruses encode proteins that 
modulate and inhibit the host’s complement function, 
while others pickup the host complement regulatory pro-
teins to do the same, and still others use complement  
receptors to gain cellular entry. Current efforts are  
directed at identification of the vital structural determi-
nants of immune evasion molecules that are important in 
interacting with complement proteins. These studies 
would not only allow us to better understand the struc-
tural features of immune evasion molecules important in 
its biology, but would also identify a significant control 
point in the molecule that would direct the development 
of pharmacological ligands to neutralize these viruses. 
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