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DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The 
history of the approach, the main results, and arguments in favour and against are presented. Perspectives are  
discussed pertaining to studies of DNA’s nonlinear properties. 

1. Introduction 

In recent years, many investigators dealing with large-
amplitude internal motions in DNA have come to the con-
clusion that the molecule can be considered as a nonlinear 
dynamical system where solitary conformational waves 
can be excited. Do these waves really exist in DNA? Or is 
this only an example of an incorrect “invasion” of physi-
cists into biology (Frank-Kamenetskii 1987b)? The final 
answer has not yet been obtained although many authors 
have tried. 

Firstly, the question was formulated twenty years ago  
in the paper of Englander et al (1980), which was titled 
“Nature of the open state in long polynucleotide double 
helices: possibility of soliton excitations”. In the paper the 
first nonlinear hamiltonian of DNA was presented and this 
result gave a powerful impulse for investigations of the 
nonlinear DNA dynamics by physicists-theoreticians. A 
large group of authors, including Krumhansl and Alexan-
der (1983), Takeno and Homma (1983), Yomosa (1983, 
1984), Homma and Takeno (1984), Fedyanin and Yaku-
shevich (1984), Krumhansl et al (1985), Fedyanin et al 
(1986), Fedyanin and Lisy (1986), Yakushevich (1987, 
1989a, 1991), Zhang (1987), Muto et al (1988, 1989, 
1990), Prohofsky (1988), van Zandt (1989), Peyrard and 
Bishop (1989), Gaeta (1990, 1992, 1999), Dauxois 

(1991), Salerno (1991), Zhou and Zhang (1991), Dauxois  

et al (1992), Bogolubskaya and Bogolubsky (1994),  
Gonzalez and Martin-Landrove (1994), Hai (1994), Barbi 
et al (1999), Campa and Giansanti (1999) and Homma 
(1999) made contributions to the development of theoretical 

studies of the problem by improving the model hamilto-
nian, suggesting new models, investigating corresponding 
nonlinear differential equations and their soliton-like solu-
tions, consideration of statistics of DNA solitons and  
calculations of corresponding correlation functions. At the 
same time period several brave attempts to explain differ-
ent experimental data in the frameworks of the nonlinear 
conceptions were made in spite of the hot discussion in 
scientific literature (Frank-Kamenetskii 1987a). Interpre-
tations of experimental data on hydrogen-tritium exchange 
(Englander et al 1980), on resonant microwave absorption 
(Webb and Booth 1969; Swicord and Davis 1982, 1983; 
Edwards et al 1984) (interpretations were made by Muto 
et al 1988 and Zhang 1989) and on neutron scattering by 
DNA (Baverstock and Cundal 1989; Yakushevich 1999) 
were among them. Moreover some of the investigators 
tried to use the nonlinear approach to explain the dynami-
cal mechanisms of the DNA functioning. The works  
devoted to dynamical mechanisms of transitions between 
different DNA forms (Sobel 1984; Khan et al 1985; 
Zhang and Olson 1987), long-range effects (Yakushevich 
1989b, 1992; Volkov 1990), regulation of transcription 
(Polozov and Yakushevich 1988), DNA denaturation  
(Peyrard and Bishop 1989), protein synthesis (namely, 
insulin production) (Balanovskii and Beaconsfield 1985), 
carcinogenesis (Ladik et al 1978) were only some of the 
examples. We should add, however, that most of the 
measured data admit alternative interpretations. And may 
be only the work published by Selvin et al (1992), where 
the torsional rigidity of positively and negatively super-
coiled DNA was measured, gave a rather reliable evidence  
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that the DNA molecule can exhibit nonlinear properties. It 
was a romantic period of the studies of nonlinear DNA 
dynamics, described completely in the reviews (Scott 
1985; Zhou and Zhang 1991; Yakushevich 1993; Gaeta  
et al 1994) and books (Peyrard 1995; Yakushevich 1998). 

What can we say now about the possibility of solitary 
waves in DNA? Are the results of soliton physics dealing 
with nonliving systems, applicable to biology, which deals 
with living systems? And can we state in general that physi-
cal principles are as much universal as mathematical ones, 
which penetrate everywhere without any limits? Or may be 
there is a boundary beyond which only biology remains? 

In this paper we consider a remarkable example of 
penetration of physical ideas to biology: nonlinear solitary 
waves, which are well known in physics as interesting 
phenomena observed in many media and studied in mathe-
matics as particular solutions of the nonlinear differential 
equations, are considered here in connection with DNA. 
We describe shortly new arguments in favour of the  
approach, which are based on the analysis of the internal 
motions of DNA and on the general principles of mathe-
matical modelling of the motions. We present a general 
description of the DNA internal dynamics and discuss 
when and why the dynamics exhibits the nonlinear beha-
viour. Then we construct mathematical model of the  
internal DNA mobility, and show that corresponding  
dynamical equations do admit solitary wave solutions. 
 

2. General picture of the internal DNA mobility 

From the point of view of a physicist the DNA molecule 
is nothing but a system consisting of many interacting 
atoms organized in a special way in space. It was shown 
by Franklin and Gosling (1953), Watson and Crick (1953), 
Wilkins et al (1953) and Crick and Watson (1954) that: 
(i) under usual external conditions (temperature, pH,  
humidity, etc) the molecule has the form of double helix, 
and (ii) the helix is not a static structure. On the contrary, 
the DNA molecule is a very flexible molecule. One of the 
reasons of this is the thermal bath where the DNA mole-
cule is usually immersed. Collisions with the molecules of 
the solution which surrounds DNA, local interactions with 
proteins, drugs or with some other ligands also lead to 
internal mobility. As a result, different structural elements 
of the DNA molecule such as individual atoms, groups of 
atoms (bases, sugar rings, phosphates), fragments of the 
double chain including several base pairs are in constant 
motion. More or less complete descriptions of internal 
motions occurred in DNA and their main dynamical char-
acteristics such as characteristic times, amplitudes, ener-
gies of activation, were listed in the works of Fritzsche 
(1982), Keepers and James (1982), McClure (1985), 
McCommon and Harvey (1987), Yakushevich (1989b, 

1993) and Yakuchevich and Komarov (1998). Some  
examples of the internal motions are shown schematically 
in figure 1. At least two important conclusions can be 
made from the analysis of these lists: 
 
(i) First of all we can state that the general picture of the 
internal DNA mobility is very complex: many types of 
internal motions with different characteristic times, ampli-
tudes and energies of activation. In practice, however, 
investigators deal with limited groups of the motions with 
characteristics close to corresponding parameters of the 
biological processes considered. 
(ii) The motions can be divided into two main groups: the 
first one includes small-amplitude internal motions and 
the other one includes large-amplitude motions. To des-
cribe mathematically small-amplitude internal motions,  
it is enough to use the so-called harmonic (or linear)  
approximation. But to describe the large-amplitude motions, 
we need to use anharmonic (or nonlinear) approach  
because linear approximation becomes incorrect when the 
amplitudes of the motions are not small. 
 

Two examples of the large-amplitudes internal motions 
are shown in figure 1. Local unwinding of the double  
helix is the first example (figure 1e). Some authors name 
this motion “the formation of open state”. It is widely  
accepted that this motion plays an important role in DNA 
functioning. Indeed, the process of DNA-protein recogni-
tion includes the formation of open state to have a possi-
bility to “recognize” the sequence of bases. Local 
unwinding is an important element of binding RNA poly-
merase with promoter regions at the beginning of tran-
scription. Formation of unwounded regions is known also 
as an important part of the process of DNA melting. 

Transitions between different conformation states shown 
in figure 1f, are the second example. These motions also 
play an important role in DNA functioning. Indeed, it is 
well known that the changing of the conformation of a 
fragment of DNA leads to the changing of the coefficient 
of the binding of this fragment with protein molecules and 
ligands. And this in turn can lead to the crucial changing 
in the cell biological activity. 
 

3. The main approximate models of the DNA  
structure and dynamics 

To describe mathematically the internal DNA mobility 
different approximate models are used. In table 1 some of 
the models, arranged in the order of increasing their com-
plexity, are presented. 

In the first line of the table 1 the simplest models of 
DNA, namely, the model of elastic thread and its discrete 
version, are shown. To describe mathematically the inter-
nal dynamics of elastic rod it is enough to write three cou-
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pled differential equations: one for longitudinal motions, 
one for torsional motions and one for transverse motions. 
To describe the discrete version we need to write 3N 
equations. 

In the second line of the table 1 a little more complex 
models of the internal DNA dynamics are shown. They 
take into account that the DNA molecule consists of two 
polynucleotide chains. The first of the models consists of 
two elastic threads weakly interacting with one another 
and being wound around each other to produce the double 
helix. The discrete version of the model is nearby. The 
next two models in the line are simplified versions of  
the previous two models. In these models the helicity of 
the DNA structure is neglected. To describe mathemati-
cally the model consisting of two weakly interacting elas-
tic threads, we need to write six coupled differential 
equations: two equations for longitudinal motions, two 
equations for torsional motions and two equations for trans-
verse motions in both threads. Mathematical description of 
the discrete versions consists of 6N coupled equations. 

In the third line a more complex model of the DNA in-
ternal dynamics is shown. It takes into account that each 
of the polynucleotide chains consists of three types of 
atomic groups (bases, sugar rings, phosphates). In the 
table 1 different groups are shown schematically by dif-

ferent geometrical forms, and for simplicity the helicity of 
the structure is omitted. The number of equations required 
to describe mathematically internal motions is substan-
tially increased in this case. 

The list of approximate models can be continued and 
new lines with more and more complex models of DNA 
structure and dynamics can be added till the most accurate 
model which takes into account all atoms, motions and 
interactions, is reached. 
 

4. Mathematical description of the internal DNA 
dynamics: model hamiltonian and dynamical  

equations 

To describe internal DNA dynamics mathematically let us 
begin with choosing appropriate approximate model. 
Usually the choice of the model depends on the problem 
considered and on the required accuracy of mathematical 
description. Let us consider as an example the problem of 
local unwinding of the DNA double helix. As it follows 
from the table 1, the models of the second line are the 
simplest models which can be used. To obtain the analyti-
cal form of corresponding six coupled differential equa-
tions, let us use the method developed recently in our 

Figure 1. Some examples of the internal motions possible in DNA. Displacements of individual atoms from their equilibrium posi-
tions (a), displacements of atomic groups (b), rotations of atomic groups around single bonds (c), rotations of bases around sugar-
phosphate chain (d), local unwinding of the double helix (e), and transitions between different DNA forms (f). 
 

(c) 

(d) (e) (f) 

(a) (b) 
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previous work (Yakushevich 2000) and write correspond-
ing hamiltonian in the vector form 

Hgeneral = Σn[m(dUn,1/dt)2 + m(dUn,2/dt)2]/2  

    + Σn K[|Un,1 – Un–1,1 |
2/2 + |Un,2 – Un–1,2 |

2/2] 

    + Σn V(|Un,1 – Un,2 |),  (1) 

where Un,i(t) is the vector which describes torsional, 
transverse and longitudinal displacements  

Un,1 = {R0(1 – cos Θn,1) + un,1 cos Θn,1; 

    – R0 sin Θn,1 + un,1 sin Θn,1; zn,1}; 
(2) 

Un,2 = {– R0(1 – cos Θn,2) + un,2 cos Θn,2; 

    R0 sin Θn,2 + un,2 sin Θn,2; zn,2}, 

where Θ1 and Θ2 are the angles of rotations of bases 
around the sugar-phosphate chains; un,1 and un,2 are the 
transverse displacements of nucleotides; zn,1 and zn,2 are 
the longitudinal displacements; m is a common mass of 
nucleotides; K is the coupling constant along each strand; 
R0 is the radius of DNA; a is the distance between bases 
along the chains; and V is the potential function describ-
ing interaction between bases in pairs. Hamiltonian (1) 
can be considered as a generalization of two well known 
particular nonlinear models of the DNA internal dyna-
mics: the model of Peyrard and Bishop (1989), which des-
cribes transverse DNA dynamics, and the model of Yomosa 
(1983), which describes torsional DNA dynamics. 

To obtain the explicit form of the model hamiltonian, 
let us insert now formula (2) into (1). To simplify calcula-
tions, let us suggest a simple form for potential function 

V(|Un,1 – Un,2 |) = Σn k |Un,1 – Un,2 | 
2/2, (3) 

and omit the terms describing the helicity of the DNA 
structure which can be taken into account at the final stage 
of the calculations (Yakushevich 1984; Gaeta 1990, 1992). 
As a result of calculations we obtain the discrete version 
of the model hamiltonian 

H = (m/2)Σn{[(dun,1/dt)2 + (R0 – un,1)
2(dΘn,1/dt)2 

+ m(dzn,1/dt)2] + [(dun,2/dt)2 + (R0 + un,2)
2 (dΘn,2/dt)2 

+ m(dzn,2/dt)2]} +(K/2)Σn{[2R2
0  [1 – cos(Θn,1 – Θn1,1)]  

+ u2
n  ,1+ u2

n  –1,1 – 2un,1un–1,1 cos(Θn,1 – Θn–1,1) 

– 2R0 un,1[1 – cos(Θn,1 – Θn–1,1)] – 2R0un–1,1 

[1 – cos(Θn,1 – Θn–1,1)] + |zn,1 – zn–1,1 |
2  

+ | zn,2 – zn–1,2 |
2] + [2R2

0  [1 – cos(Θn,2 – Θn–1,2)] + u2
n  ,2 

+ u2
n  –1,2 – 2un,2un–1,2 cos(Θn,2 – Θn–1,2)  

+ 2R0 un,2[1 – cos(Θn,2 – Θn–1,2)] + 2R0un–1,2 

[1– cos(Θn,2 – Θn–1,2)]]} + (k/2)Σn{[2R0
2  {(1– 2cos Θn,1)  

+(1 – 2cos Θn,2) + [1 + cos(Θn,1 – Θn,2)]} – 2R0 un,1 

(1 – 2cos Θn,1)+2R0 un,2 (1 – 2cos Θn,2) + un
2 
 ,1

 + u2
n  ,2  

– 2un,1un,2 cos(Θn,1 – Θn,2) – 2R0 un,1 cos(Θn,1 – Θn,2) 

+ 2R0 un,2 cos(Θn,1 – Θn,2)] + k |zn,1 – zn,2 |
2},  (4) 

 
which can be written in a more convenient form 

H = H( f ) + H(Ψ) + H(g) + H(interact.). (5) 

Where hamiltonians 

H( f ) = (mR2
0  /2)Σn(dfn,1/dt)2 + (mR2

0  /2)Σn(dfn,2/dt)2  

+ (KR2
0  /2)Σn( fn,1 – fn–1,1)

2 + (KR2
0  /2)Σn( fn,2 – fn–1,2)

2 

+ (kR2
0  /2)Σn( fn,1

 + fn,2)
2, (6) 

H(Ψ) = (mR2
0  /2)Σn(dΨn,1/dt)2 + (mR2

0  /2)Σn(dΨn,2/dt)2 

+ (KR2
0  )Σn[1 – cos(Ψn,1 – Ψn–1,1)] + (KR2

0  ) 

Table 1. Approximate models of DNA structure and  
dynamics. 
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Σn[1 – cos(Ψn,2 – Ψn–1,2)] + (kR0
2  )Σn{2(1 – cos Ψn,1)  

+ 2(1 – cos Ψn,2) – [1 – cos(Ψn,1 +Ψn,2)]}, (7) 

H(g) = (mR2
0  /2)Σn(dgn,1/dt)2 + (mR2

0  /2)Σn(dgn,2/dt)2  

+ (KR2
0  /2)Σn(gn,1 – gn–1,1)

2 + (KR2
0  /2)Σn(gn,2 – gn–1,2)

2  

+ (kR2
0  /2)Σn(gn,1

 + gn,2)
2,  (8) 

H(interact.) = (mR2
0/2)Σn(– 2fn,1 + f 2

n  ,1)(dΨn,1/dt)2  

+ (mR2
0  /2)Σn(– 2fn,2 + f n

2  
,2)(dΨn,2/dt)2 + (KR2

0  ) 

Σn[1 – cos(Ψn,1 – Ψn–1,1)][ fn,1 fn–1,1 – fn–1,1 – fn,1]  

+ (KR2
0  )Σn[1 – cos(Ψn,2 – Ψn–1,2)][fn,2 fn–1,2 – fn,2 – fn–1,2] 

– (2kR2
0  )Σn( fn,1)(1 – cos Ψn,1)–(2kR2

0  )Σn( fn,2) 

(1 – cos Ψn,2) + (kR2
0  )Σn(– fn,1 fn,2 + fn,1 + fn,2) 

[1 – cos(Ψn,1 + Ψn,2)], (9) 

and new variables 

fn,1 = un,1/R0; fn,2 = – un,2/R0; Ψn,1 = Θn,1; Ψn,2 = – Θn,2, 

(10) 
gn,1 = zn,1/R0; gn,2 = – zn,2/R0 

are used. Here H( f ) is a part of the model hamiltonian 
which describes transverse motions; H(Ψ) is a part of the 
model hamiltonian which describes torsional motions; 
H(g) is a part of the model hamiltonian which describes 
longitudinal motions; H(interact.) is a part of the model 
hamiltonian which describes interactions between the  
motions. 

If we are interested in the solutions which are rather 
smooth functions (or in other words, if the functions f1, f2, 
g1, g2, Ψ1, Ψ1 change substantially only at the distances 
which are much more than the distance between neigh-
bouring base pairs), we can use continuous approxima-
tion. Then the model hamiltonian takes the form 

Hcont. = (ρmR2
0  /2) ∫ dz [(∂1/∂t)2 + (∂2/∂t)2] + (YR2

0  /2) 

∫ dz [(∂1/∂z)2 + (∂2 f
 /∂z)2] + ( yR2

0  /2) ∫ dz ( f1
 + f2)

2  

+ (ρmR2
0  /2) ∫ dz [(∂g1/∂t)2 + (∂g2/∂t)2] + (YR2

0  /2)  

∫ dz [(∂g1/∂z)2 + (∂g2/∂z)2] + ( y R2
0  /2) ∫ dz (g1

 + g2)
2  

+ (ρmR2
0  /2) ∫ dz [(1 – f1)

2(∂Ψ1/∂t)2 + (1 – f2)
2 

(∂Ψ2/∂t)2] + (YR2
0  /2) ∫ dz [(1 – f1)

2(∂Ψ1/∂z)2 + (1 –

 f2)
2 (∂Ψ2/∂z)2] + ( yR0

2  ) ∫ dz {2(1 – f1)(1 – cos Ψ1)  

+ 2(1 – f2)(1 – cos Ψ2) + (– f1 f2 + f1 + f2-1)  

[1 – cos(Ψ1 +Ψ2)]}, (11) 

where m/a = ρm; Ka = Y; k/a = y. And the dynamical equa-
tions which correspond to the model hamiltonian (11) can 
be easily obtained from the general theory of hamiltonian 
systems 

ρm(d2 f1/dt2) + ρm(1 – f1)(dΨ1/dt)2 = Y ∂2f1/∂z2  

+ Y(∂Ψ1/∂z)2(1 – f1) – y ( f1
 + f2) + 2y(1 – cos Ψ1)  

– y(1 – f1)[1 – cos(Ψ1 + Ψ2)], (12) 

ρm(d2 f2/dt2) + ρm(1 – f2)(dΨ2/dt)2 = Y ∂2f2/∂z2  

+ Y(∂Ψ2/∂z)2(1 – f2) – y( f1
 + f2) + 2y(1 – cos Ψ2)  

– y(1 – f2)[1–cos(Ψ1 + Ψ2)], (13) 

ρm(1 – f1)(d
2Ψ1/dt2) – 2ρm(df1/dt)(dΨ1/dt)  

 = Y(∂2Ψ1/∂z2)(1 – f1) – 2Y(∂Ψ1/∂z)[∂f1/∂z]  

– 2y[(sin Ψ1)] + y(1 – f1)[sin(Ψ1 + Ψ2)], (14) 

ρm(1 – f2)(d
2Ψ2/dt2) – 2ρm(df2/dt)(dΨ2/dt)  

 = Y(∂2Ψ2/∂z2)(1 – f2) – 2Y(∂Ψ2/∂z)[∂f2/∂z]  

– 2y[(sin Ψ2)] + y(1 – f1)[sin(Ψ1 + Ψ2)]. (15) 

ρm(d2g1/dt2) = Y ∂2g1/∂z2 – y(g1
 + g2), (16) 

ρm(d2g2/dt2) = Y ∂2g2/∂z2 – y(g1
 + g2).  (17) 

And this is the sought mathematical description of the 
internal DNA dynamics, which we obtained in the frame-
works of the model consisting of two weakly interacting 
elastic threads. To prove that conformational solitary 
waves are possible, it is enough to show that the model 
equations (12)–(17) have soliton-like solutions. 

5. Soliton-like solutions and their interpretation 

Let us note that the system of equations (12)–(17) can be 
divided into two independent subsystems. The first one 
consists of equations (12)–(15) and it describes transverse 
and torsional internal motions in DNA. Second one con-
sists of equations (16)–(17), and it describes longitudinal 
motions. Such a division becomes possible because we 
chose simplified form [see formula (3)] for potential func-
tion V(|Un,1 – Un,2 |). In the general case when the formula 
for potential function is 

V = D{exp[– A(|Un,1 – Un,2 |)] – 1}2, (18) 

the division into two independent subsystems is not possi-
ble. But here, in this paper, we limited ourselves by sim-
plified formula (3), which can be considered as a first 
term in the expansion 

V(|Un,1 – Un,2 |) = D{exp[– A |Un,1 – Un,2 |] – 1}2 

        = 2DA2| Un,1 – Un,2| 
2/2 + . . . . (19) 

In this approximation, longitudinal motions can be con-
sidered independently. In the next section we describe 
shortly solutions of equations (16)–(17) which describe 
longitudinal DNA dynamics. 
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5.1 Longitudinal DNA dynamics 

Equations (16)–(17) are well known linear partial differ-
ential equations having the solutions in the form of usual 
plane waves 

g1(z, t) = g01 exp[i(qz – wlong t)]; g2(z, t)  

   = g02 exp[i(qz – wlong t)], (20) 

where g01, g02 are the amplitudes of the waves and q is the 
wave vector which lies in the first Brillouin zone. Insert-
ing (20) into (16)–(17) we can easily find the frequencies 
of longitudinal waves in DNA 

w1
l ong = [(Y/ρm)q2 + 2( y/ρm) ]1/2; w2

l ong = [(Y/ρm)]1/2q. 

 (21) 
 

As follows from (21), the spectrum of longitudinal  
oscillations of DNA consists of two branches: one optical 
branch [w1

l ong(q)] and one acoustic branch [w2
l ong(q)]. 

5.2 Transverse DNA dynamics 

Let us pass now to the other subsystem of the system of 
dynamical equations (12)–(17). It consists of four equa-
tions (12)–(15) which describes transverse and torsional 
motions. If we assume, however, that transverse motions 
(variables f1 and f2) are much faster than the torsional  
motions (variables Ψ1 and Ψ2), adiabatic approximation 
can be applied, and the subsystem of equations (12)–(15) 
can be divided into two independent parts. The first part 
will describe torsional DNA dynamics and the second part 
will describe transverse DNA dynamics. Let us begin with 
equations (12)–(13) describing transverse dynamics and sug-
gest that the slow variables Ψ1 and Ψ2 are constants (C1 and 
C2, relatively). Then the dynamical equations take the form  

ρm(d2 f1/dt2) = Y ∂2f1/∂z2 – y( f1
 + f2)  

+ 2y(1 – cos C1) – y(1 – f1)[1 – cos(C1 + C2)], (22) 

ρm(d2 f2/dt2) = Y ∂2f2/∂z2 – y( f1
 + f2)  

+ 2y(1 – cos C2) – y(1 – f2)[1 – cos(C1 + C2)], (23) 

and corresponding model hamiltonian is 

Hadiab.( f ) = (ρmR2
0  /2) ∫ dz [(∂f1/∂t)2 + (∂f2/∂t)2]  

+ (YR2
0  /2) ∫ dz [(∂f1/∂z)2 + (∂f2/∂z)2] + ( yR2

0/2) ∫ dz 

( f1
 + f2)

2 + ( yR0
2  ) ∫ dz {2(1 – f1)(1 – cos C1)  

+ 2(1 – f2) (1 – cos C2) + (– f1 f2 + f1 + f2 – 1) 

[1 – cos(C1 + C2)]}. (24) 

If we suggest boundary conditions in the form 

cos Ψ1 → 1, when z → ± ∞; and cos Ψ2 → 1,  

when z → ± ∞, (25) 

then the following relations are valid 

(1 – cos C1) = (1 – cos C2) = [1 – cos C1+ C2)] = 0,  

(26) 
 
and the final formula for hamiltonian describing trans-
verse subsystem takes the form 

Hadiab.( f ) = (ρmR2
0  /2) ∫ dz [(∂f1/∂t)2 + (∂f2/∂t)2]  

+ (YR2
0  /2) ∫ dz [(∂f1/∂z)2 + (∂f2/∂z)2] + ( yR2

0  /2) ∫ dz 

( f1
 + f2)

2.  (27) 

So, we can conclude that in the adiabatic approximation 
and for simple model of potential function (3) and bound-
ary conditions (25) any influence of torsional subsystem 
on transverse subsystem is absent. Equations (22)–(23) 
take then the form 

ρmd2 f1/dt2) = Y ∂2f1/∂z2 – y( f1
 + f2), (28) 

ρm(d2 f2/dt2) = Y ∂2f2/∂z2 – y( f1
 + f2), (29) 

and their solutions are 

f1(z, t) = f01 exp[i(qz – wtr t)];  

f2(z, t) = f02 exp[i(qz – wtr t)], (30) 
 
where f01, f02 are the amplitudes of the waves and q is the 
wave vector which lies in the first Brillouin zone. Insert-
ing (30) into (28)–(29) we find the frequencies of trans-
verse oscillations in DNA 

w1
t r = [(Y/ρm)q2 + 2( y/ρm) ]1/2; w2

t r = [(Y/ρm)]1/2q.  

(31) 
 

So, the spectrum of transverse oscillations of DNA also 
consists of two branches: one optical branch [w1

t r(q)] and 
one acoustic branch [w2

t r(q)]. 

5.3 Torsional DNA dynamics 

To finish the analysis of the system of dynamical equa-
tions (12)–(17) it remains only to consider equations 
(14)–(15) describing torsional DNA dynamics. In accor-
dance with adiabatic approximation, let us write the terms 
of hamiltonian (11) which contains variables Ψ1, Ψ2 and 
average the values depending on the variables f1 and f2. As 
a result, we obtain the hamiltonian describing torsional 
motions written in the adiabatic approximation 

Hadiab.(Ψ) = E0 + [ρm <(1 – f1)
2> R2

0  /2] ∫ dz (∂Ψ1/∂t)2 

+ [ρm <(1 – f2)
2> R2

0 /2] ∫ dz (∂Ψ2/∂t)2 + [Y <(1 – f1)
2 

> R2
0  /2] ∫ dz (∂Ψ1/∂z)2 + [Y <(1 – f2)

2> R2
0  /2] ∫ dz 

(∂Ψ2/∂z)2 + [ y <(1 – f1)> R0
2  ] ∫ dz [2(1 – cos Ψ1)] 

+ [ y <(1 – f2)> R0
2  ] ∫ dz [2(1 – cos Ψ2)]  
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+ [ y <(– f1 f2 + f1 + f2 – 1)> R0
2] ∫ dz  

[1 – cos(Ψ1 + Ψ2)]. (32) 

Here E0 is an average energy of transverse oscillations 
and < . . . > means averaging over the states of oscillating 
transverse subsystem. 

From the general view of formula (32) we can conclude 
that in the framework of adiabatic approximation the  
influence of the transverse subsystem on the torsional is 
reduced to a simple renormalization of the coefficients of 
the torsional hamiltonian, and the form of the hamiltonian 
does not changed. This gives us a possibility to use our 
previous results on the solutions of the system of coupled 
nonlinear partial differential equations describing tor-
sional DNA dynamics (Yakushevich 1995). 

Indeed let us write dynamical equations corresponding 
to hamiltonian (32) 

ρm <(1 – f1)
2> (d2Ψ1/dt2) = Y  <(1 – f1)

2> 

 (∂2Ψ1/∂z2) + y[2sin Ψ1 – sin(Ψ1 + Ψ2)], (33) 

ρm <(1 – f2)
2> (d2Ψ2/dt2) = Y <(1 – f2)

2  

 > (∂2Ψ2/∂z2) + y[2sinΨ2 – sin(Ψ1 + Ψ2)]. (34) 

As we showed earlier, equations of that type have 
among others the soliton-like solution 

 Ψ1(z – vt) = – Ψ2(z – vt) = 4 arctan{exp[γ (ξ – ξ0)/d]},  

(35) 
 
where γ = [1 – (ρm/Y )v2]–1/2; ξ = z – vt; and v is the velocity 
of propagation of the soliton. The values of mass (M), 
energy (E) and size (d ) of the soliton are a little increased 
in comparison with corresponding values obtained for 
torsional dynamical system where interactions with trans-
verse and longitudinal motions are not taken into account 

E = 8{2Yy}1/2{<(1 – f )2>}1/2, (36) 

M = 8ρm{2y/Y}1/2{<(1 – f )2>}1/2, (37) 

d = Y <(1 – f1)
2> /2y. (38) 

Graphic representation of the solution is shown in  
figure 2a, and qualitative picture, which corresponds to 
this solution, is shown schematically in figure 2b. So, the 
solitary wave solution can be really interpreted as that 
describing unwound region (or open state). 
 

6. Conclusions 

In this paper a possibility of nonlinear conformational 
waves in DNA is considered. We described shortly the 
history of the problem, the main results, and new argu-
ments which are based on the analysis of the internal  
motions of DNA and on the general principles of mathe-
matical modelling of the motions. We gave a general  
description of the DNA internal dynamics and showed 
when the nonlinear behaviour is exhibited. We illustrated 
the statement by detailed consideration of one of the  
examples of large-amplitude internal motions occurred in 
DNA, namely, by consideration of local unwinding of the 
double helix. We constructed an appropriate mathematical 
model, and showed that corresponding dynamical equa-
tions admit solitary wave solutions interpreted as un-
wound regions. This result gives one more argument in 
favour of the approach where DNA molecule is consid-
ered as a nonlinear dynamical system where solitary 
waves can be excited. 

It is necessary to say, however, a few words about limi-
tations of the mathematical proof presented above. First 
of all we should note, that all calculations were made for 
simplified mathematical model of DNA which did not 
take into account inhomogeneity of the DNA structure, 
existence of dissipation and interactions with surrounding. 
In the paper we discussed a possibility of excitation of 

(a) (b) 

Figure 2. Kink-like solution (a), and its interpretation as an open state in the double strand DNA (b). Dotted lines correspond to 
the case when interactions between different types of internal motions (transverse, longitudinal, and torsional) were not taken into 
account. 
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only a single conformational solitary wave and the prob-
lem of assemble of the waves and their statistics were out 
of our investigation. Consideration of all these aspects 
could give a more reliable answer to the question formu-
lated in the title of the paper. 
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