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Abstract. We revisit the radiative transfer theory from first principles
approach, inspired from quantum kinetic theory. The radiation field is
described within the second quantization formalism. A master equation
for the radiation density operator is derived and transformed into a bal-
ance relation in the phase space, which involves nonlocal terms owing to
radiation coherence. In a perturbative framework, we focus on the lowest
order term in �-expansion and show that the radiation coherence results in
an alteration of the photon group velocity. An application to the formation
of hydrogen lines in stellar atmospheres is performed as an illustration.
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1. Introduction

The radiative transfer equation is commonly presented as a balance relation for the
electromagnetic radiation energy (Chandrasekhar 1960; Pomraning 1973; Mihalas
1978; Oxenius 1986; Milonni & Eberly 1988; Wang & Wu 2007); it has a structure
similar to the Boltzmann equation involved in classical kinetic theory, making it suit-
able for the elaboration of transport codes (e.g. based on the Monte-Carlo technique
(Reiter et al. 2002)) or the elaboration of a fluid model. In this framework, the radi-
ation field is viewed as a set of particles (photons) evolving along straight lines and
interacting locally with massive particles (e.g. atoms) through emission, absorption
and scattering processes. While convenient for numerical applications, the radiative
transfer equation can be inaccurate if the radiation has a narrow spectral band �k,
sufficiently so that the coherence length 1/�k (Born & Wolf 1964) becomes com-
parable to relevant gradient lengths. In this work, we revisit this issue from the first
principles. We derive the radiative transfer equation from QED master equations and
consider an extension suitable for a description of radiation coherence. The treatment
follows previous works (Rosato 2011, 2013, 2015).
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2. Specific intensity and phase space distribution

The specific intensity I (ω, n, r, t) is defined in such a way that the amount of energy
transported by a radiation pencil crossing a surface element dσ located at r, between
times t and t+ dt , is given by

δE = I (ω, n, r, t) cos θdωd�dσdt, (1)

where θ is the angle between the propagation direction n and the normal to the
surface, d� denotes the angular aperture, and [ω, ω+ dω] is the frequency range of
the radiation pencil. Several conventions can be found in the literature. For example,
an alternative definition involves the frequency ν instead of the angular frequency ω.
In the following, we adopt the angular frequency convention and take equation (1)
as a definition of the specific intensity in order to make the notation consistent with
previous works (Rosato 2011, 2013, 2015). In a kinetic theory context, the specific
intensity can be written in terms of the one-photon phase space distribution f (r, p, t)
(p = �ωn/c stands for the momentum): I (ω, n, r, t) = �cp3f (r, p, t). In a strict sense,
this function is not a true probability density function but rather a quasiprobability
(Wigner) distribution, which can take negative values on phase space volumes of
typical extent �

3. An observable signal (e.g., on a spectrometer) with positive values
can be obtained from a phase space average using an appropriate detector function
(Rosato 2013). The Wigner function is defined in terms of the QED photon creation
and annihilation operators as

f (r, p, t) =
(

2

�L

)3 ∑
jj ′

δεj εj ′ δ

(
kj + kj ′ − 2p

�

)
〈a+

j aj ′ 〉(t)e−ikjj ′ ·r. (2)

Here, j refers to a discretized mode (kj , εj ) ( εj is a polarization vector), kjj ′ ≡ kj –
kj ′ , and the brackets 〈· · ·〉 (t) denote average at time t using the radiation density
operator.

3. Photon master equation

In the following we consider a system of identical two-level atoms (dipoles)
immersed in a plasma, emitting and absorbing photons. The radiation density opera-
tor implied in the average 〈· · ·〉 in equation (2) is defined by partial trace of the total
density operator ρ over the atoms’ Hilbert space A: ρR = TrA(ρ). A closed master
equation for this quantity (hence a closed equation for the Wigner function) can be
obtained by tracing the Liouville–von Neumann equation

(3)

and using an appropriate model for the right-hand side (r.h.s.). Here ∧ denotes Liou-
ville superoperators defined in terms of commutators: L̂X = [H, X]/�, L̂RX =
[HR, X]/�, V̂ X = [V, X]/� for any operator X, where H = HA + HR + V is the
Hamiltonian of the total system (same notations as in Rosato (2013) are used). The
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interaction term V can be written as the sum �aVa , where a refers to an individual
atom, hence the r.h.s. of equation (3) becomes

(4)

where N is the number of atoms, V̂1 refers to the interaction with an individual
atom numbered ‘1’, and is the restriction of the density operator
to the subspace associated with the radiation and atom 1. An explicit expression for
this quantity can be obtained using BBGKY hierarchy techniques. For simplicity
we describe the interaction term V̂1 perturbatively at the first non-vanishing order
(weak coupling approximation) and we apply the Markov approximation. In this
framework, the following relation holds (Rosato 2015):

ρR,1 ≈ ρ1ρR − i

∫ ∞

0
dτ

˜̂
V1(−τ)[ρ1ρR], (5)

and equation (3) becomes a closed relation for ρR:

(6)

Here, ρ1 denotes the restriction of the density operator to the subspace associated
with atom 1 and the tilde symbol stands for the interaction picture with respect to
HA+HR . The r.h.s. can be split into a Hamiltonian term and a dissipator, in a fashion
similar to that done in the derivation of the Lindblad equation (Breuer & Petruccione
2002). For radiative transfer, it is more convenient to deal with a master equation for
the quantity 〈a+

j aj ′ 〉 ≡ Njj ′ rather than for the density operator; such an equation can

be obtained from equation (6), multiplying by a+
j aj ′ , tracing and neglecting terms

proportional to 〈a+
j a+

j ′ 〉 and 〈ajaj ′ 〉 (rotating wave approximation) (Rosato 2013):

(
d

dt
− iωjj ′

)
Njj ′ = γ2jj ′ −

∑
j ′′

(�jj ′′Nj ′′j ′ + �∗
j ′j ′′Nj ′′j ). (7)

Here the notation ωjj ′ ≡ ωj – ωj ′ with ωj = |kj |c has been used. The first term
of the right-hand side is a source corresponding to spontaneous emission and the
second term accounts for absorption and stimulated emission and can be interpreted
as a loss if the medium is not amplifying. The rates can be written explicitly as (the
time t is not written explicitly)

�jj ′ = cδεj εj ′

2L3

∫
d3reikjj ′ ·rχc(r, �kj ′), (8)

γ2jj ′ = cδεj εj ′

2L3

∫
d3reikjj ′ ·r[χc,em(r, �kj ′) + χ∗

c,em(r, �kj )], (9)

with

χc(r, p) = �ω0

4π
[B12N1(r) − B21N2(r)] φc(ω, n, r), (10)
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χc,em(r, p) = �ω0

4π
B21N2(r)φc(ω, n, r), (11)

φc(ω, n, r) = 1

π

∫ ∞

0
dτC(τ ; n, r)e−iωτ . (12)

χc and φc are complex generalizations of the extinction coefficient and the normal-
ized line shape function. C denotes the atomic dipole autocorrelation function in
reduced units. In the case where Doppler broadening is important, the line shape
involves a convolution with the atomic velocity distribution function.

4. Radiative transfer equation

The master equation (7) can be transformed into a balance relation in the phase space.
The calculation involves tedious manipulations with sums and integrals and will not
be detailed here. For simplicity, we focus on a case where the line shape function
is not space dependent. In this framework, the Wigner function obeys the following
transport equation (Rosato 2014):

∂f

∂t
+ {f, Hc}A = S − {f, L}S . (13)

Here, {,} A and {,}S denote the antisymmetric and symmetric brackets associated
with the Moyal star product: their action on two functions f , g yields

{f, g}A = 1

i�
(f ∗ g − g∗f ), (14)

{f, g}S = 1

2
(f ∗ g + g∗f ). (15)

The star product is defined by an integral (d1 ≡ d3r1d3p1, d2 ≡ d3r2d3p2),

(f ∗ g)(r, p)

= 1

(π�)6

∫
d1

∫
d2f (r + r1, p + p1)g(r + r2, p + p2)e

2i(r1·p2−r2·p1)/�. (16)

It can be expanded as a power series of �. At the first order, the symmetric bracket
reduces to multiplication and the antisymmetric bracket is equivalent to the Poisson
bracket involved in Hamiltonian mechanics. Hc is a scalar Hamiltonian function:

Hc = pc + c�

2
ImχW . (17)

It involves the free photon’s energy E = pc and a dispersion term. The χW coefficient
is defined by

χW = �ω0

4π
(B12N1 − B21N2)

∗φ∗
c . (18)

S, L are source and loss terms denoting spontaneous emission, stimulated emission
and absorption:

S = c ReχW,e × 2

(2π�)3
, (19)
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L = c ReχW (20)

with

χW,e = �ω0

4π
B21N2 ∗ φ∗

c . (21)

Note, the Einstein A21 coefficient is obtained if one multiplies with the factor
2/(2π�)3 (equation (19)) and the factor �cp3 (cf. section 2). The delocalization
implied in the star product (equation (16)) is a feature of the wave nature of
light. It can be important if the coherence length (identical to the radiation’s ther-
mal de Broglie length) is significant with respect to relevant gradient lengths.
Equation (13) reduces to the common radiative transfer equation given in textbooks
(Chandrasekhar 1960; Pomraning 1973; Mihalas 1978; Oxenius 1986; Milonni
& Eberly 1988; Wang & Wu 2007) at the large spectral band limit (incoherent
radiation). Note, scattering is implied and described within the complete redistri-
bution approximation. This stems from the closure relation (5). A generalization
that accounts for incomplete redistribution can be obtained using a non-Markovian
closure relation (Rosato 2015; Bommier 1997).

5. Application

Equation (13) presents a challenging computational issue due to the six-dimensional
integrals implied in the Moyal products. It has been solved in specific cases in Rosato
(2011, 2012, 2013, 2014), using simplifications (e.g. slab geometry with localized
boundary conditions), in order to illustrate the possible inaccuracy of the standard
radiative transfer theory at regimes with significant coherence length. We present
hereafter an application to hydrogen line radiation in conditions relevant to stellar
atmospheres. For the sake of simplicity, in numerical calculations we consider a
homogeneous medium with slab geometry and we keep terms of first order in � in
the Moyal product. The atomic populations are also assumed at local thermodynamic
equilibrium. The radiative transfer equation (13) in stationary regime reads

vg

∂f

∂x
= −L0(f − f0) (22)

and has the following solution:

f (x, p) = f0(1 − exp(−L0x/vg)) + f (x = 0) exp(−L0x/vg). (23)

x denotes the coordinate along the slab depth. f0 corresponds to the equilibrium
(black body) distribution evaluated at the Bohr frequency of the transition ω0:

f0 = 2

(2π�)3
× 1

e�ω0/T − 1
. (24)

L0 is defined by

L0 = �ω0c

4π
B12N1(1 − e−�ω0/T )φ, (25)
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where φ = Re φc denotes the real line shape function. vg is the group velocity,

vg = c

[
1 − �ω0c

8π
B12N1(1 − e−�ω0/T )Im φ′

c(ω)

]
. (26)

It can be significantly larger than c near a resonance line (anomalous dispersion).
Figure 1 illustrates this point. The radiation’s group velocity is plotted against the
frequency detuning �ω = ω – ω0 of hydrogen Lyman α, assuming N1 = 5 × 1013

-0.004 -0.002 0.000 0.002 0.004
0.9

1.0

1.1

1.2

 N
1
 = 5x1013 cm-3

 N
1
 = 1014 cm-3

Δω (eV)

v g/c

Figure 1. Plot of the ratio between the radiation’s group velocity and the speed of light, at the
vicinity of the hydrogen Lyman α transition. Two atomic densities are assumed. Only Doppler
line broadening is retained, with a temperature of 0.5 eV. The ratio is larger than unity near the
line center, which indicates anomalous dispersion.
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Figure 2. The characteristic length scale involved in the relaxation to thermal equilibrium
is sensitive to the coherence properties of radiation. When dispersion effects are retained, the
group velocity becomes larger than c near the line center, which results in an effective reduction
of opacity.
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cm−3 and 1014 cm−3, and a temperature of 0.5 eV. Only Doppler line broadening has
been retained. The deviation to c increases with density. Figure 2 shows the photon
distribution at the central frequency (p = �ω0/c) calculated from the solution (23)
and normalized to the equilibrium distribution f0. No incoming radiation has been
assumed [f (x =0) ≡ 0]. The atomic density has been set equal to 5 × 1014 cm−3.
Also shown in the figure is the result of a calculation assuming vg = c, i.e. neglecting
anomalous dispersion. As can be seen, the relaxation to thermal radiation occurs on
a larger scale if the anomalous dispersion is retained.

6. Conclusion

In this work, we have reconsidered the radiative transfer theory from first principles
approach inspired from quantum kinetic theory. The radiation field is quantized and
described with a Wigner function. The evolution is governed by a master equation
for the density operator. By using an appropriate closure relation, we have derived a
generalization of the radiative transfer equation that accounts for spatial coherence.
If the coherence length is significant with respect to relevant gradient lengths, the
photon emission and absorption processes are delocalized. The transport equation
can be written in a compact form involving Moyal brackets. At the first order in
�, it yields a transport equation of Boltzmann type, where the group velocity of
radiation wave packets appears explicitly. An application to stellar atmospheres has
indicated the possibility for an alteration of the relaxation to thermal radiation. These
results are still qualitative and require a further examination with confrontations to
experiments. A possible extension of the work could involve the analysis of atomic
lines observed in discharge lamps. On the theoretical side, an extension to radiation
transport in transient regimes is presently under consideration.

References

Bommier, V. 1997, Astron. Astrophys., 328, 706.
Born, M., Wolf, E. 1964, Principles of Optics: Electromagnetic Theory of Propagation,

Interference and Diffraction of Light (Pergamon, Oxford).
Breuer, H.-P., Petruccione, F. 2002, The Theory of Open Quantum Systems (Oxford University

Press, New York).
Chandrasekhar, S. 1960, Radiative Transfer (Dover, New York).
Mihalas, D. 1978, Stellar Atmospheres (Freeman, San Francisco).
Milonni, P. W., Eberly, J. H. 1988, Lasers (Wiley Interscience, New York).
Oxenius, J. 1986, Kinetic Theory of Particles and Photons – Theoretical Foundations of Non-

LTE Plasma Spectroscopy (Springer, Berlin).
Pomraning, G. C. 1973, The Equations of Radiation Hydrodynamics (Pergamon, Oxford).
Reiter, D., Wiesen, S., Born, M. 2002, Plasma Phys. Control. Fusion, 44, 1723.
Rosato, J. 2011, Phys. Rev. Lett., 107, 205001.
Rosato, J. 2013, Phys. Rev. E, 87, 043108.
Rosato, J. 2015, Phys. Rev. E, 91, 053103.
Rosato, J. 2014, Phys. Lett. A, 378, 2586.
Rosato, J. 2012, Transport Theor. Stat. Phys., 41, 214.
Wang, L. V., Wu, H.-i 2007, Biomedical Optics – Principles and Imaging (Wiley Interscience,

Hoboken).


