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Abstract. The centrifugal and Coriolis forces do not appear as a result of
physically imposed forces, but are due to a special property of a rotation.
Thus, these forces are called pseudo-forces or ‘fictitious forces’. They are
merely an artifact of the rotation of the reference frame adopted. This
paper studies the motion of a test particle in the neighbourhood of the
triangular point L4 in the framework of the perturbed relativistic restricted
three-body problem (R3BP) when small perturbations are conferred to the
centrifugal and Coriolis forces. It is found that the position and stability
of the triangular point are affected by both the relativistic factor and small
perturbations in the Coriolis and centrifugal forces. As an application, the
Sun—Earth system is considered.
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1. Introduction

The general three-body problem is the problem of motion of three celestial bod-
ies under their mutual gravitational attraction. The restricted three-body problem
(R3BP) is a simplified form of the general three-body problem, in which one of
the bodies is of infinitesimal mass, and therefore does not influence the motion of
the remaining two massive bodies called the primaries (Bruno 1994; Valtonen and
Kartunen 2006).

The circular restricted three-body problem (CR3BP) possesses five stationary
solutions called Lagrangian points. Three are collinear with the primaries and the
other two are in equilateral triangular configuration with the primaries. The three
collinear points L 2 3 are unstable, while the triangular points L4 5 are stable for
the mass ratio u = ml"jrzmz < 0.03852...,m1 > my being the masses of the
primaries (Szebehely 1967a). Wintner (1941) and Contopoulos (2002) have shown
that the stability of the triangular equilibrium points is due to the existence of the
Coriolis terms in the equations of motion when these equations are recorded in
rotating coordinate system. In the classical problem, the effects of the gravitational
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attraction of the infinitesimal body and other perturbations have been ignored. Per-
turbations can be caused due to the lack of sphericity or triaxiality, oblateness and
radiation forces of the bodies, variation of masses, atmospheric drag, solar wind,
Poynting—Robertson effect and the action of the other bodies. The most striking
example of perturbations owing to oblateness in the solar system is the orbit of
the fifth satellite of Jupiter, Amalthea. This planet is very oblate and the satellite’s
orbit is too small that its line of apsides advances about 900" in one year (Moulton
1914). Such oblateness driven effects have competing disturbing effects on qualita-
tively similar general relativistic effects (Iorio 2006; Iorio 2009; lorio et al. 2013;
Renzetti 2012b). The Kirkwood gaps in the ring of the asteroid’s orbits lying between
the orbits of the Mars and Jupiter are examples of the perturbations produced by
Jupiter on an asteroid. This enables many researchers to study the restricted prob-
lem by taking into account the effects of small perturbations in the Coriolis and
centrifugal forces radiation, oblateness and triaxiality of the bodies (Sharma and
Ishwar 1995; Szebehely 1967a; SubbaRao and Sharma 1975; Bhatnagar and Hallan
1978; Singh 2011; Singh and Begha 2011; Singh 2013; AbdulRaheem and Singh
2006; AbdulRaheem and Singh 2008). Szebehely (1967b) investigated the stability
of triangular points by keeping the centrifugal force constant and found that the Cori-
olis force is a stabilizing force, whereas SubbaRao and Sharma (1975) observed that
the oblateness of the primary resulted in an increase in both the Coriolis and the cen-
trifugal forces, thereby concluding that the Coriolis force is not always a stabilizing
force. This was confirmed by AbdulRaheem and Singh (2006).

The theory of general relativity is currently the most successful gravitational the-
ory describing the nature of space and time, and well confirmed by observations
(Will 2014). Regarding the three-body relativistic effects we may also cite that: The
geodesic precession of the orbit of two-body system is about one-third the mass
in general relativity (Renzetti 2012a) and also for the post-Newtonian tidal effects
(Iorio 2014). Indeed, the Newtonian effects of the planet’s gravitational fields are
in order of magnitude greater than the first corrections due to general relativity, and
completely swamp the higher corrections that in principle was provided by the exact
Schwarzschild solution.

Krefetz (1967) computed the post-Newtonian deviations of the triangular
Lagrangian points from their classical positions in a fixed frame of reference for
the first time, but without explicitly stating the equations of motion. After a decade,
Contopoulos (1976) dealt with the relativistic R3BP in rotating coordinates. He deri-
ved the Lagrangian of the system along with the deviations of the triangular points.

Brumberg (1972, 1991) studied the relativistic n-body problem of three bodies
in more detail and gathered most of the important results on relativistic celestial
mechanics. He not only obtained the equations of motion for the general problem
of three bodies but also deduced the equations of motion for the restricted problem
of three bodies. Maindl and Dvorak (1994) derived the equations of motion for the
relativistic R3BP using the post-Newtonian approximation of relativity. They applied
this model to the computation of the advance of Mercury’s perihelion in the solar
system and found that they were compatible with the published data.

Bhatnagar and Hallan (1998) studied the existence and linear stability of the tri-
angular points L4 5 in the relativistic R3BP, and found that L4 5 are always unstable
in the whole range 0 < p < % in comparison to the classical R3BP which was stable
for u < g, where p is the mass ratio and g = 0.03852.. .. is the Routh’s value.
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In the beginning of the 21st century, Ragos et al. (2001) have investigated numer-
ically, the linear stability of the collinear libration points Lj > 3 in the relativistic

R3BP for several cases in solar system, and found that the points L 7 3 were unstable.
Douskos and Perdios (2002) examined the stability of the triangular points in the

relativistic R3BP and contrary to the result of Bhatnagar and Hallan (1998), thel:y

. . . e 2
obtained a region of linear stability in the parameter space as 0 < u < o — 11%6696)2 ,

where 1o = 0.03852. .. is the Routh’s value. They also determined the positions of
the collinear points and showed that they were always unstable.

Lucas (2003) studied the chaotic amplification in the relativistic R3BP and noticed
that the difference between Newtonian and post-Newtonian trajectories for the R3BP
is greater for chaotic trajectories than it is for trajectories that are not chaotic. He
also discussed the possibility of using this chaotic amplification effect as a novel test
of general relativity. Rodica and Vasile (2006) investigated the existence and cor-
responding positions of the equilibrium points in orbital plane in the framework of
the R3BP in Schwarzchild’s gravitational field. They observed that there are three
collinear libration points, and if they exist, then only two points are triangular libra-
tion points (situated in the orbital plane of the primaries). If triangular points exist,
they may not form equilateral triangles; the triangles are isosceles for equal masses
of the primaries, otherwise scalene.

Ahmed et al. (2006) also investigated the stability of the triangular points in the
relativistic R3BP. In contrast to the previous result of Bhatnagar and Hallan (1998),

they obtained a region of linear stability as 0 < pu < o + 11191;38212, where 1 is the
Routh’s value.

Abd El-Salam and Abd El-Bar (2011) derived the equations of motion of the
relativistic three-body in the post-Newtonian formalism.

Yamada and Asada (2012) discussed the post-Newtonian effects on Lagrange’s
equilateral triangular solution for the three-body problem. For three finite masses,
it was found that a triangular configuration satisfies the post-Newtonian equation
of motion in general relativity, if and only if, it has the relativistic corrections to
each length side. This post-Newtonian configuration for three finite masses was not
always equilateral and it reclaims the previous results for the restricted-problem
when one mass approches zero. They also found that for the same masses and angu-
lar velocity, the post-Newtonian triangular is always smaller than the Newtonian.
It is worth highlighting that so far all the ‘Schwarzschild’ terms have been used
in studies, but gravitomagnetic Lense-Thirring (Renzetti 2013; Iorio 2001; Linsen
1991) associated with the rotation of the bodies have been neglected. From the pre-
vious works and also to the best of our knowledge, no work has been carried out on
the combined effects of perturbations on the relativistic R3BP, so this increased the
curiosity to study the effects of small perturbations in the centrifugal and Coriolis
forces on the R3BP.

The focus of this paper is to study the difference between Newtonian and gen-
eral relativistic positions and stability of triangular points in the presence of small
perturbations in the centrifugal and Coriolis forces.

This paper is organized as follows. In section 2, the equations of motions are
presented, section 3 describes the positions of equilibrium points, while their linear
stability is analysed in section 4; the discussion is given in section 5, the numerical
applications are given in section 6, finally section 7 conveys the main findings of this

paper.
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2. Equations of motion

The system of coordinates (£, 1) such that the & — 5 plane rotates in the positive
direction with angular velocity equal to that of the common velocity of one primary
with respect to the other keeping the origin fixed, then that coordinate system is
known as synodic system.

The primaries appear at rest in the synodic or rotating frame (£, n) having its
origin at the centre of mass and rotating along with them and are placed on the &-
axis. The plane & — 7 is the plane of the motion of the primaries. The coordinates
(&, n) are sometimes called synodical. In this system,the primaries m and m, are
located at (—pu, 0), (1 — u, 0), respectively and have zero velocity. The advantage of
this system is that m| and m have fixed positions, so that the equations of motion are
time-independent and therefore it is the easiest way to obtain the stationary solutions.

The pertinent equations of motion of an infinitesimal mass in the relativistic R3BP
in a barycentric synodic coordinate system (£, 1) with origin at the centre of mass
of the primaries with dimlensionless variables can be denoted as (Brumberg 1972;
Bhatnagar and Hallan 1998):
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where 0 < < % is the ratio of mass of the smaller primary to the total mass of the pri-
maries, p; and p; are distances of the infinitesimal mass from the bigger and smaller
primary, respectively, n the mean motion of the primaries and c is the velocity of light.

We now introduce small perturbations in the centrifugal and Coriolis forces with
the help of the parameters {» = 1+¢1; |e1] << 1, ¢ = 14e2; |e2] << 1. The unper-
turbed value of each is unity. Consequently, the equations of motion can be taken as

ow d [oW
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3. Locations of triangular points

The libration points are obtained from equations (5) on changing £ = n= E= =
0. These points are the solutions of the equations
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The triangular points are the solutions of equations (7) with n # 0. Since Ciz << 1

and in the case }2 — 0, one can obtain p| = pr = Ll; we assume in the relativistic
v3

R3BP that p; = Ll + x and pr = Ll + y, where x,y << 1. Substituting these
V3 Y3

values in equations (4), solving them for £, n and ignoring terms of second and

higher orders of x and y, we get

Now substituting the values of p1, 02, &, 7, ¢ = 14+¢1,0 = 14+ & (le1] <<
1, |e2| << 1) from the previous equations (7) with n # 0 and neglecting the second
and higher order terms in x, y, Ciz, €1, & and their products, we have

C3pd =2z —p

1 - — 0,
(I —wx —py 2
) ®)
7 —
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Solving these equations for x and y, we get
__nC+3w
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8c2
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Thus, the coordinates of the triangular points (&, £7n) denoted by L4and Ls,

respectively are
1—-2u 5
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4. Stability of L4

Let (a, b) be the coordinates of the triangular point L4. We set§ = a +«a, n =
b+ B, (o, B << 1) in the equations (5) of motion. First, we compute the terms on
their R.H.S, neglecting higher order terms, we get
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Thus, the variational equations of motion corresponding to equations (5), on utilizing
equation (3), can be obtained as

P16 + pof + pac + paf + psa + peB = 0,

.. . : . (10)
q1¢ + @2 + q3a + qaB + qsa + geB =0,

where

p1=1+Cy, pr=D;, p3=A—-C,

P4 = {32—2(1+82)(1—ﬁ(3—u+uz) —D}, ps=—-A, pe=-B
G =C. @=1+D5 gz=2(1+e) (1= 356 n+ud)=Ci+4as,
g4 =B3—Di, g5=—A1, q¢=—Bi.

Then, the characteristic equation is

(P192 — P2q)A* 4+ (P1g6 + Psqa + p3ga — Peqi — Pags — pags)A’
+ psq6 — peqs = 0. (1)

Substituting the values of p;, g¢i, i = 1,2,...,6 in (11), the characteristic
equation (11) becomes

9 3 (1951 — 231u2 + 72113 — 36u*
4 2
A +<1—381—C—2+882))\ —g( cz

—18u — 44pe; + 18> + 44;&81) =0. (12)
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For Ciz — 0 and in the absence of small perturbations in the centrifugal Coriolis
forces (i.e., &1 = 0,er = 0) this reduces to its well-known classical restricted
problem form (see Szebehely 1967a):

27pd - _
4

A%+ 0.

The discriminant of (12) is
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The discriminant of the original form of the characteristic equation (11), before
normalizing to obtain (12) is
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This is mathematically equivalent to (13)
Now we have from (15),
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The discriminant of the equation a2 = 0is

Al = —5184 (66g1 + 27) < 0,
indicating that ‘327% > 0 for u € [0,1 / 2], hence fl—ﬁ is a monotone increasing
function in [0, 1 / 2]
But
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The equations (18) and (19) imply that fl—ﬁ <O0foru € [0, 1/2]

Hence A is a monotone decreasing function in [0, 1 / 2]. Also,

(A= =1~ C% — 681 + 1685 > 0,

(A),y = =2 = +16e - 5 <0.

Since (A),;—o and (A) p=) are of opposite signs, and A is monotone decreasing and

continuous, there is only one value of u, e.g., . in the interval [0, 1 / 2] for which
A vanishes.

Solving the equation A = 0, using (13) or (15), we obtain the critical value of the
mass parameter as

Je =

(20)

1 (69)2 Y 168, 768,
2 18

27¢2) 3692 27(69)7

1
pe = o — % 4 4G02=10) where 119 = 0.0385...is the Routh’s value.
¢ 27(69) 2
We consider the following three scenarios of the values of u separately:

(1) When 0 < < e, A > 0, the values of A2 given by (14) are negative and
therefore all the four characteristic roots are distinctly pure imaginary numbers.
Hence, the triangular points are stable.

(2) Whenue < w < 1, A <0, the real parts of the characteristic roots are positive.
Therefore, the triangular points are unstable.

(3) When u = ., A = 0; the values of 22 given by (14) are the same. This induces
instability of the triangular points.

Hence the stability region is

17(69)2 4 (368, — 1951)
486¢2 27 (69)% .

0<p<po-— 1)

With the absence of small perturbations in the centrifugal and Coriolis forces
(i.e., &1 = 0, &2 = 0), u. reduces to the critical mass value of the relativistic R3BP.
This confirms the result of Douskos and Perdios (2002), but disagrees with that of
Ahmed et al. (2006). In the presence of the perturbations &1 and ¢; and in the absence
of relativistic term Clz, W verifies the result of Bhatnagar and Hallan (1978).

Hence, it can be noted that u., < uo for & > 0 and u, > pg for e > 0,
showing that the centrifugal force is a destabilizing force when the Coriolis force
is kept constant and vice versa. This agrees with the results of Singh (2013) and
AbdulRaheem and Singh (2006).

5. Discussion

Equations (5)—(6) describe the motion of a test particle in the relativistic R3BP
with small perturbations €] ande; in the centrifugal and Coriolis forces, respectively.
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Equations (9) determine the positions of triangular points which are affected by the
perturbations in the centrifugal force and the relativistic factor. In the absence of the
perturbation &1, these positions correspond to those of Bhatnagar and Hallan (1998),
Douskos and Perdios (2002) and Ahmed et al. (2006). Equation (20) gives the crit-
ical value of the mass parameter which depends upon the small perturbations in the
centrifugal, Coriolis forces and relativistic factor. This critical value is used to deter-
mine the size of the region of stability and also helps in analysing the behaviour of
the parameters involved therein. It is obvious from (20) that the centrifugal force and
the relativistic factor have destabilizing effects, while the Coriolis force shows stabi-
lizing effect and thus when there is no perturbation in the Coriolis force, the region of
stability decreases in size with the increase in the values of the parameters involved
and increases with the increase in the values of the parameters when there is no per-
turbation in the centrifugal force. Equation (21) describes the region of stability. In
the absence of perturbations (i.e., &1 = 0, &, = 0), the stability results obtained in
this study are in agreement with those of Douskos and Perdios (2002) but disagrees
with Ahmed et al. (2006) and Bhatnagar & Hallan (1998). In the absence of rela-
tivistic terms, the results compatible with those of AbdulRaheem and Singh (2006)
when the primaries are spherical darkbodies.

6. Numerical results

In the following, the previous results are applied to the Sun—Earth system.

For the Sun—Earth system: ;& = 30035 x 10~!? and the corresponding dimension-
less speed of light is ¢ = 10064.84. Using equation (20) for arbitrary values of small
perturbation parameters in centrifugal and Coriolis forces, we show their effects on
the critical mass p as shown in Tables 1 and 2 respectively.

Table 1. Effect of the centrifugal force.

Perturbation Critical mass equation (20) Critical mass
parameter (g1) "o withe; =6 =0 equation (20) with g7 = 0
5% 1072 385208965 x 10710 385208946 x 1010 215776994 x 10710
—5x 1072 385208965 x 10710 385208946 x 1010 554640877 x 10~10
1 x 1072 385208965 x 1010 385208946 x 10710 351322547 x 10710
—1x 1072 385208965 x 10710 385208946 x 10710 419095324 x 10710
1x1073 385208965 x 1010 385208946 x 1010 381820297 x 1010
—1x1073 385208965 x 1010 385208946 x 10710 388597575 x 1010
5% 1074 385208965 x 10710 385208946 x 10710 383514616 x 10710
—5x 1074 385208965 x 1010 385208946 x 10~10 386903255 x 1010
1x 1074 385208965 x 10710 385208946 x 1010 384870072 x 1010
—1x107% 385208965 x 1010 385208946 x 1010 385547799 x 10~10
5% 1079 385208965 x 1010 385208946 x 10710 385039504 x 1010
—5x 1073 385208965 x 10710 385208946 x 1010 385378367 x 10710
1 %107 385208965 x 1010 385208946 x 10~10 385175050 x 1010
—1x 1073 385208965 x 1010 385208946 x 10~10 385242822 x 1010
5% 107° 385208965 x 1010 385208946 x 1010 385191993 x 1010
—5x 1070 385208965 x 10710 385208946 x 10710 385225879 x 1010




712 Jagadish Singh & Nakone Bello

Table 2. Effect of the Coriolis force.

Perturbation Critical mass equation (20)  Critical mass equation (20)
parameter (&7) o withe; =& =0 withe; =0

1 x 1072 385208965 x 10710 385208946 x 1010 449414724 x 10710
—1x 1072 385208965 x 1010 385208946 x 10710 321003147 x 10~10
2x 1072 385208965 x 10710 385208946 x 1010 513620512 x 10710
—2x 1072 385208965 x 10~10 385208946 x 1010 256797359 x 1010
1 x 1073 385208965 x 1010 385208946 x 1010 391629515 x 10~10
—1x 1073 385208965 x 10710 385208946 x 1010 378788356 x 1010
2% 1073 385208965 x 1010 385208946 x 10710 398050093 x 1010
—2x 1073 385208965 x 10710 385208946 x 1010 372367778 x 10710
1x 1074 385208965 x 10~10 385208946 x 1010 385850994 x 1010
—1x1074 385208965 x 1010 385208946 x 10710 384566878 x 1010
2x 1074 385208965 x 10710 385208946 x 10~ 10 386493052 x 10710
—2x 1074 385208965 x 10710 385208946 x 10710 383924820 x 10710
1 %107 385208965 x 10710 385208946 x 1010 385273142 x 10710
—1x 1073 385208965 x 10~10 385208946 x 1010 385144730 x 10710
2% 107 385208965 x 1010 385208946 x 1010 385337347 x 10710
—2x 1073 385208965 x 10~10 385208946 x 1010 385080524 x 1010

7. Conclusion

By considering small perturbations in the centrifugal and Coriolis forces in the rel-
ativistic CR3BP, we have determined the positions of the triangular points and have
examined their linear stability. It is found that their positions are sligthly affected by
a small change in the centrifugal force. It is also observed that the general destabiliz-
ing and stabilizing characteristics of the centrifugal and Coriolis forces, respectively
remains unaltered, resulting in either decrease or increase of the region of stability,
respectively. This is confirmed by Tables 1 and 2.

We have noticed that the expressions for A, D, A,, C> in Bhatnagar and Hallan
(1998) differ from the present unperturbed study. Consequently, the expression for
D1, D3, P4, ps5 and the characteristic equations are also different. This led Bhatnagar
and Hallan (1998) to infer that triangular points are unstable, contrary to Douskos
and Perdios (2002) and the present results. In future studies, it might be important to
look into the combined effects of the relativistic and perturbations factors i.e., i—;, i—%
and also the Lense—Thirring effects connected with the rotation of the primaries.
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