
J. Astrophys. Astr. (2014) 35, 685–700 c© Indian Academy of Sciences

On the Stability of L4,5 in the Relativistic R3BP with Radiating
Secondary

Jagadish Singh1 & Nakone Bello2,∗
1Department of Mathematics, Faculty of Science, Ahmadu Bello University, Zaria, Nigeria.
2Department of Mathematics, Faculty of Science, Usmanu Danfodiyo University,
Sokoto, Nigeria.
∗e-mail: jgds2004@yahoo.com; bnakone@yahoo.com

Received 27 June 2014; accepted 04 September 2014

Abstract. This paper discusses the motion of a test particle in the neigh-
bourhood of the triangular points L4,5 by considering the less massive
primary (secondary) as a source of radiation in the framework of the
relativistic restricted three-body problem (R3BP). It is found that the
positions and stability of the triangular point are affected by both rela-
tivistic and electromagnetic radiation factors. It turns out that both the
coordinates of the infinitesimal mass are affected, contrary to the classi-
cal where this happens only for one coordinate. A practical application of
this model could be the study of dynamical evolution of dust particles in
orbits around a binary system with a dark degenerate first primary and a
secondary stellar companion.

Key words. Celestial mechanics—radiating secondary—relativity—
R3BP.

1. Introduction

The most important of all dynamical problem is the problem of three bodies. The
three-body problem is concerned with the motion of three particles attracting each
other according to the Newtonian law, so that between each pair of particles there is
an attractive force which is proportional to the product of the masses of the particles
and the inverse of the square of the distance that separates them: They are free
to move in space, and are initially supposed to be moving in any given manner.
However, the complete solution of the general three-body problem still remains a
formidable challenge. Regarding the general three-body problem, one can refer to
Chenciner (2007); Bruno (1994); Gutzwiller (1998); Valtonen & Kartunen (2006).
There are also various forms of three-body problems in general relativity (see
Renzetti 2012a; Nordtvedt 1968; Iorio 2014a).

The restricted three-body problem is a simplified form of the general three-body
problem which describes the motion of an infinitesimal mass moving under the grav-
itational effect of the two finite masses m1 and m2 with m1 ≥ m2, called primaries,
which move in circular orbits around their center of mass on account of their mutual
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attraction and their motion not influence by infinitesimal mass. It was originally for-
mulated depending on the approximate circular motion of the planets around the sun,
and the small masses of the asteroids and satellites of the planets.

This classical restricted three-body problem is not valid when at least one of the
interacting bodies is an intense emitter of radiation. In this regard, it is reasonable
to modify the model by superimposing a light repulsion field whose source coin-
cides with the source of the gravitational field provided by the radiating body on the
gravitational field of the main bodies. According to Radzievskii (1950, 1953), the
problem in such a theory is called the photogravitational problem. He discussed it for
three specific bodies: the sun, a planet, and a dust particle. It was found that allowing
the direct solar electromagnetic radiation results in a change in the positions of the
librations points. An investigation of the positions of the libration points, when the
more massive primary is a source of radiation and the smaller primary (secondary)
one is an oblate spheroid, was carried out by Sharma (1987). He showed that the
triangular points are linearly stable for the mass parameter 0 < μ < μcrit, where
μ = m2

m1+m2
and the critical mass value μcrit decreases with the increase in oblateness

and radiation force.
The effect of oblateness and electromagnetic radiation force of the primaries on

the location and the linear stability of the triangular points in the restricted three-body
problem were analysed by Singh and Ishwar (1999). They considered both primaries
as a source of radiation as well as oblate spheroids, and observed that these points are
stable for 0 < μ < μc0 and unstable for μc0 < μ < 1

2 , where μc0 is the critical mass
value of the mass parameter which depends on the radiating and oblateness coeffi-
cients. Similar problem under the influence of small perturbations in the Coriolis and
centrifugal forces was studied by AbdulRaheem and Singh (2006). Considering the
overall effect they observed that range of stability of triangular points decreases.

Perdiou et al. (2012) considered the modification of Hill’s problem where the pri-
mary is radiating and the secondary is an oblate spheroid. They studied the evolution
of the network of the basic families of planar periodic orbits for various values of the
parameters of the problem.

In his paper, Singh (2013) has investigated the effects of small perturbations in the
Coriolis and centrifugal forces, electromagnetic radiation pressure and triaxiality of
the two stars (primaries) on the positions and stability of an infinitesimal mass (third
body) in the framework of the planar circular R3BP. He observed that the positions of
the three collinear and two triangular equilibrium points are affected by the radiation,
triaxiality and a small perturbation in the centrifugal force, but are unaffected by that
of the Coriolis force. The collinear points are found to remain unstable, while the
triangular points are seen to be stable for 0 < μ < μc but unstable for μc ≤ μ ≤ 1

2 ,
where μc is the critical mass ratio influenced by small perturbations in the Coriolis
and centrifugal forces, radiation and triaxiality. He also noticed that the Coriolis force
exhibits a stabilizing behaviour, whereas the centrifugal force shows destabilizing
behaviour. Therefore, in general the size of the region of stability decreases with
increase in the values of the parameters involved.

In considering the primary as an oblate spheroid and secondary as a source of
radiation, a different version of the problem was realized for study: Douskos et al.
(2006) considered a R3BP which includes the effects of oblateness of the primary
body and radiation of the secondary body. They determined the equilibrium points
and their stability and discussed the zero-velocities curves. They found that both
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oblateness of the primary and radiation of the secondary reduce the stability region
of the isosceles triangular equilibrium points in the parameter space. These effects
also reduce the Roche lobe and thus the sphere of influence of the secondary.

Singh and Umar (2012) studied the motion of an infinitesimal mass around seven
equilibrium points in the framework of the elliptical R3BP under the assumption that
primary of the system is non-luminous, oblate spheroid and the secondary is lumi-
nous. They found that a practical application of this case could be the study of the
dynamical evolution of dust particles in orbits around a binary system with a dark
degenerate primary and a secondary stellar companion. They found the conditional
stability of motion around the triangular points for 0 < μ < μc, where μ is the
mass ratio. The critical mass ratio μc depends on the combined effect of electro-
magnetic radiation, oblateness, eccentricity, and the semi-major axis of the elliptic
orbits; an increase in any of these parameters has destabilizing results on the orbits
of the test particles. Therefore, overall effect is that the size of the region of stability
decreases when the value of these parameters increases. The collinear points and the
out-of-plane equilibrium points are found to be unstable for any combination of the
parameters considered. Further, they carried out a numerical analysis by computing
the positions of the triangular points and the critical mass ratio of two binaries RXJ
0450.1-5836 and Nova Cen 1969 (Cen X-4).

Singh and Amuda (2014) have recently investigated the motion of a test particle
around the triangular equilibrium points under the influence of secondary radiation
and its Poynting–Robertson (P–R) effect when the first primary is an oblate spheroid.
It is seen that the triangular points are influenced by the presence of the following
parameters: electromagnetic radiation from the secondary and the incidental P–R
effect and the oblateness of the first primary. They also studied the linear stability of
the problem and applied it to the binary system RXJ 0450.1-5836. They found that
triangular points are unstable due to positive roots in Lyapunov sense when P–R
effect is considered against their conditional stability in the absence of P–R drag
effect. Regarding the relevance of asphericity of the primaries, in association with
general relativity, the following examples can be cited: Idrisi & Taqvi (2013, 2014);
Sharma et al. (2001); Katour et al. (2014); Bhavneet & Aggarwal (2013, 2014); Iorio
(2007a, b, 2009, 2011, 2013a, b, 2014b); Iorio et al. (2011); Renzetti (2012b, 2013,
2014); Hallan et al. (2000).

Further, the classical model assumes that the masses of the bodies are constant,
but there are numerous practical problems where the mass does not remain constant.
There is a decrease in stellar mass, on account of light emission. A satellite moving
around a radiating star surrounded by cloud varies its mass owing to the particles of
the cloud. Regarding the restricted problem dealing with variable mass of one, two or
three bodies under different aspects, one may refer to Singh et al. (2010) and Singh
& Leke (2010).

Bhatnagar and Hallan (1998) studied the existence and linear stability of the trian-
gular points L4,5 in the relativistic R3BP, and found that L4,5 are always unstable in
the whole range 0 ≤ μ ≤ 1

2 , comparison to the classical R3BP where they are stable
for μ < μ0, here μ is the mass ratio and μ0 = 0.03852 . . . is the Routh’s value.

Douskos and Perdios (2002) examined the stability of the triangular points in the
relativistic R3BP and contrary to the results of Bhatnagar and Hallan (1998), they

obtained a region of linear stability in the parameters space 0 ≤ μ < μ0 − 17
√

69
486c2 ,

where μ0 = 0.03852 . . . is Routh’s value. They also determined the positions of the
collinear points and showed that they are always unstable.
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Abd El-Salam and Abd El-Bar (2014) have studied the photogravitational restricted
three-body within the framework of the post-Newtonian approximation. The mass
of the primaries are assumed to change under the effect of continuous radiation pro-
cesses. They computed the locations of the triangular points. They also obtained
series forms of these locations and recorded new analytical results. It is also impor-
tant to note that compared to the existing works by other researchers till date, in this
paper, we do not consider the rotation of the primaries, i.e., the Lense–Thirring is
completely neglected (Josef & Hans 1918; Iorio 2001b; Iorio et al. 2004; Ashby &
Allison 1993; Snellen et al. 2014) which is one of the cause of rotation in general
relativity. The effects of Lense–Thirring on the position of the libration points might
be not negligible in view of the fact that fast spinning primaries are well known.
For example, the recent discovery of the past rotating planet Beta Pictoris b (Snellen
et al. 2014).

The aim of this paper is to investigate the triangular points and their linear stability
under the relativistic treatment of R3BP when the smaller primary is luminous.

This paper is organized as follows: In section 2, the equations the motion are
presented; section 3 describes the positions of equilibrium points, while their linear
stability is analyzed in section 4; the discussion is given in section 5. Section 6 gives
the numerical results. Finally, section 7 presents the main findings of this paper.

2. Equations of motion

The system of coordinates (ξ, η) such that the ξ − η plane rotates in the positive
direction with angular velocity equal to the common velocity of one primary with
respect to the other keeping the origin fixed, such a coordinate system is known
as synodic system. The direction of the ξ -axis is chosen such that the two masses
always lie along it with bigger and smaller primary placed at (−μ, 0) , (1 − μ, 0),
respectively. The primaries appear at rest in a synodic system with the frame rotating
along them. This implies that such a system has zero velocity.

The pertinent equations of motion of an infinitesimal mass in the relativistic R3BP
in a barycentric synodic coordinate system (ξ, η) with origin at the centre of mass
of the primaries having dimensionless variables can be written as (Brumberg 1972;
Bhatnagar & Hallan 1998)

ξ̈ − 2nη̇ = ∂W

∂ξ
− d

dt

(
∂W

∂ξ̇

)
,

η̈ + 2nξ̇ = ∂W

∂η
− d

dt

(
∂W

∂η̇

)
, (1)

with

W = 1

2
(ξ2 + η2) + 1 − μ

ρ1
+ μ

ρ2
+ 1

c2

[
−3

2

(
1 − 1

3
μ(1 − μ)

)
(ξ2 + η2)

+ 1

8
{ξ̇2 + η̇2 + 2(ξ η̇ − ηξ̇) + (ξ2 + η2)}2

+ 3

2

(
1 − μ

ρ1
+ μ

ρ2

)
(ξ̇2 + η̇2 + 2(ξ η̇ − ηξ̇) + (ξ2 + η2))
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− 1

2

(
(1 − μ)2

ρ2
1

+ μ2

ρ2
2

)
+ μ(1 − μ)

{(
4η̇ + 7

2
ξ

) (
1

ρ1
− 1

ρ2

)

−η2

2

(
μ

ρ3
1

+ 1 − μ

ρ3
2

)
+

( −1

ρ1ρ2
+ 3μ − 2

2ρ1
+ 1 − 3μ

2ρ2

)}]
, (2)

n = 1 − 3

2c2

(
1 − 1

3
μ(1 − μ)

)
, (3)

ρ2
1 = (ξ + μ)2 + η2,

ρ2
2 = (ξ + μ − 1)2 + η2,

(4)

where 0 < μ ≤ 1
2 is the ratio of mass of the smaller primary to the total mass of

the primaries; ρ1 and ρ2 are distances of the infinitesimal mass from the bigger and
smaller primary. With the introduction of a radiation factor q2 for the smaller primary
(less massive), the equations of motion can be expressed as follows:

ξ̈ − 2nη̇ = ∂W

∂ξ
− d

dt

(
∂W

∂ξ̇

)
,

η̈ + 2nξ̇ = ∂W

∂η
− d

dt

(
∂W

∂η̇

)
, (5)

where

W = 1

2
(ξ2 + η2) + 1 − μ

ρ1
+ q2μ

ρ2
+ 1

c2

[
−3

2

(
1 − 1

3
μ(1 − μ)

)
(ξ2 + η2)

+ 1

8

{
ξ̇2 + η̇2 + 2(ξ η̇ − ηξ̇) + (ξ2 + η2)

}2

+ 3

2

(
1 − μ

ρ1
+ q2μ

ρ2

)
(ξ̇2 + η̇2 + 2(ξ η̇ − ηξ̇) + (ξ2 + η2))

− 1

2

(
(1 − μ)2

ρ2
1

+ q2
2μ2

ρ2
2

)
+ q2μ(1 − μ)

{(
4η̇ + 7

2
ξ

) (
1

ρ1
− 1

ρ2

)

−η2

2

(
q2μ

ρ3
1

+ 1 − μ

ρ3
2

)
+

( −1

ρ1ρ2
+ q2μ−2(1−μ)

2ρ1
+ (1−μ)−2q2μ

2ρ2

)}]
, (6)

The radiation factor q2 is given by Fp2 = Fg2(1 − q2) such that 0 < 1 − q2 << 1
Radzievskii (1950), where Fg2 and Fp2 are, respectively the gravitational and
electromagnetic radiation forces.

3. Location of triangular points

The libration points can be obtained from equation (5) after formulating ξ̇ = η̇ =
ξ̈ = η̈ = 0.
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These points are the solutions of the equations

∂W

∂ξ
= 0 = ∂W

∂η
with ξ̇ = η̇ = 0

that is,

ξ − (1−μ)(ξ + μ)

ρ3
1

− q2μ(ξ − 1 + μ)

ρ3
2

+ 1

c2

[
−3ξ

(
1− 1

3
μ(1 − μ)

)
+ 1

2
ξ(ξ2 + η2)

− 3

2
(ξ2 + η2)

(
(1 − μ)(ξ + μ)

ρ3
1

+ q2μ(ξ − 1 + μ)

ρ3
2

)
+ 3

(
1 − μ

ρ1
+ q2μ

ρ2

)
ξ

+ (1 − μ)2(ξ + μ)

ρ4
1

+ q2
2μ2(ξ − 1 + μ)

ρ4
2

+ q2μ(1 − μ)

{
7

2

(
1

ρ1
− 1

ρ2

)

+ 7

2
ξ

(
− (ξ + μ)

ρ3
1

+ (ξ − 1 + μ)

ρ3
1

)
+ 3

2
η2

(
q2μ(ξ + μ)

ρ5
1

+ (1 − μ)(ξ − 1 + μ)

ρ5
2

)

+ (ξ + μ)

ρ3
1ρ2

+ (ξ−1 + μ)

ρ1ρ
3
2

− (q2μ−2(1−μ)) (ξ+μ)

2ρ3
1

− ((1−μ)−2q2μ) (ξ−1+μ)

2ρ3
2

}]
, (7)

and
ηF = 0

with

F =
(

1 − (1 − μ)

ρ3
1

− q2μ

ρ3
2

)
+ 1

c2

[
−3

(
1 − 1

3
μ(1 − μ)

)
+ 1

2
(ξ2 + η2)

+3

(
(1 − μ)

ρ1
+ q2μ

ρ2

)
− 3

2
(ξ2 + η2)

(
(1 − μ)

ρ3
1

+ q2μ

ρ3
2

)
+

(
(1 − μ)2

ρ4
1

+ q2
2μ2

ρ4
2

)

+q2μ(1 − μ)

{
7

2
ξ

(
− 1

ρ3
1

+ 1

ρ3
2

)
−

(
q2μ

ρ3
1

+ (1 − μ)

ρ3
2

)
+ 3

2
η2

(
q2μ

ρ5
1

+ (1 − μ)

ρ5
2

)

+ 1

ρ3
1ρ2

+ 1

ρ1ρ
3
2

−
(

(q2μ − 2(1 − μ))

2ρ3
1

+ ((1 − μ) − 2q2μ)

2ρ3
1

)}]
.

The triangular points are the solutions of equations (7) with η �= 0.
Since in the absence of both the electromagnetic radiation and relativistic effect(

q2 = 1, 1
c2 → 0

)
, one can obtain ρ1 = ρ2 = 1,

We, therefore assume in the relativistic R3BP with electromagnetic radiation that
ρ1 = 1 + x and ρ2 = 1 + y, where x, y << 1 depending upon the radiation and
relativistic terms. Substituting these values in equations (4), solving them for ξ, η

and ignoring terms of second and higher powers of x and y, we get

ξ = x − y + 1 − 2μ

2
, η = ±

(√
3

2
+ x + y√

3

)
(8)
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which give the positions of triangular points in terms of x and y. In order to determine
x and y, we substitute the values of ρ1, ρ2, ξ, η from the equations (7) with η �= 0
and neglecting second and higher order terms in x, y, 1

c2 and (1 − q2) since they are
very small quantities, we have

(
3

2
− μ

2
− q2μ

)
x −

(
μ + q2μ

2

)
y − μ

2
+ q2μ

2

+ 1

c2

{
(−20 + 11q2) μ

16
+

(
20 + 18q2 − 11q2

2

)
μ2

16
+

(
20 − 41q2 + 3q2

2

)
μ3

16

}
= 0

and

3 (1 − μ) x + 3q2μy + (1 − q2) μ

+ 1

c2

{
(−12 + 33q2) μ

8
+

(−20 − 14q2 + 13q2
2

)
μ2

8
+

(
12 − 7q2 − 5q2

2

)
μ3

8

}
= 0.

(9)

Solving these equations for x and y, we get

x = μ
(
q2

2 − 2q2 + 1
)

3
(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

) + μ

24
(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

)
c2

{(6q2 + 33q2
2 − 10q3

2 − 20)μ + (12 + 29q2 − 70q2
2 + 2q3

2 )μ2

+ (−12 − 3q2 + 33q2
2 )},

y =
(
q2 + q2

2 − 2
)
μ + (−3q2 + 3)

3
(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

) + 1

24
(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

)
c2

{(12 + 33q2) + (−84 − 36q2 + 3q2
2 )μ + (28 + 105q2 − 21q2

2 − 13q3
2 )μ2

+ (24 − 70q2 + 14q2
2 + 5q3

2 )μ3}. (10)

Thus, the coordinates of the triangular points (ξ, ±η) denoted by L4 and L5,
respectively, can be obtained by substituting values of x and y in equation (8).

They are,

ξ = −2
(
q2

2 + q2 + 1
)
μ2 + (−3q2 − q2

2 − 5
)
μ + 3

2
(−1 − q2 + (

q2
2 + q2 + 1

)
μ

)

−
(4 + 11q2) + (−11q2 − 10q2

2 − 24
)
μ + (16 + 33q2

−18q2
2 − q3

2

)
μ2 + (

4 − 33q2 + 28q2
2 + q3

2

)
μ3

8
(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

)
c2

,
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η = ±
√

3

72

⎧⎪⎪⎨
⎪⎪⎩

(−12 − 96q2) + (
28 + 28q2 + 52q2

2

)
μ(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

)

+
(12 + 33q2) + (−96 − 39q2 + 36q2

2

)
μ + (

8 + 111q2 + 12q2
2

−23q3
2

)
μ2 + (

36 − 41q2 − 56q2
2 + 7q3

2

)
μ3(−1 − 2q2 + (

q2
2 + q2 + 1

)
μ

)
c2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(11)
Inserting q2 = 1 − (1 − q2) = 1 − δ, where δ = 1 − q2 and neglecting second and
higher powers of δ as 0 ≤ δ << 1, (10) and (11) can be formulated, respectively as

x = −μ (2 + 3μ)

8c2
+

{
μ

(−21 − 14μ + 35μ2
) + μ (3μ + 2) (2 − 3μ)

24 (μ − 1) c2

}
δ,

y = − (1 − μ) (5 − 3μ)

8c2
− δ

3
+

{(
11 + μ + 9μ2

) + (3μ − 5) (2 − 3μ)

24c2

}
δ, (12)

ξ = 1 − 2μ

2

(
1 + 5

4c2

)
+ 1

3
δ −

{(−1 − 4μ + 36μ2 − 26μ3
)

24 (μ − 1) c2

}
δ,

η = ±
{√

3

2

(
1 + 1

12c2
(−5 + 6μ − 6μ2)

)

−
√

3

9
δ +

√
3

72 (μ − 1) c2
(−1 − 38μ + 8μ2 + 26μ3)δ

}
. (13)

4. Stability of L4,5

Since the nature of linear stability about the point L5 will be similar to that of L4 it
will be sufficient to consider only the stability near L4.

Let (a, b) be the coordinates of the triangular point L4.
We set ξ = a + α , η = b + β , (α , β << 1) in equation (5).
First, we compute the terms of R.H.S. using q2 = 1 − δ, 0 ≤ δ = 1 − q2 << 1

and neglecting second and higher order terms of small quantities, we get(
∂W

∂ξ

)
ξ=a+α , η=b+β

= Aα + Bβ + Cα̇ + Dβ̇,

where

A = 3

4

{
1 + 1

2c2
(2 − 19μ + 19μ2)

}

−
{

1

48 (μ − 1) c2
(−28 + 82μ + 3μ2 − 321μ3 + 234μ4) +

(
3μ

2
− 1

)}
δ,
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B = 3
√

3

4
(1 − 2μ)

(
1 − 2

3c2

)

+
√

3

6

{
−(μ−2)+ 1

48 (μ − 1) c2
(96−309μ + 314μ2−151μ3 + 40μ4)

}
δ,

C =
√

3

2c2 (1 − 2μ) +
{

2
√

3

9c2 (μ + 1)

}
δ,

D = 1

2c2
(6 − 5μ + 5μ2) +

{
1

3c2
(−2 + 3μ − 6μ2)

}
δ.

Similarly, we obtain(
∂W

∂η

)
ξ=a+α , η=b+β

= A1α + B1β + C1α̇ + D1β̇,

where

A1 = 3
√

3

4
(1 − 2μ)

(
1 − 2

3c2

)

+
√

3

6

{
−(μ−2)+ 1

48 (μ − 1) c2
(96−309μ + 314μ2−151μ3 + 40μ4)

}
δ,

B1 = 9

4

{
1 + 7

(−2 + 3μ − 3μ2
)

6c2

}

+
{(

3μ

2
− 1

)
+ 1

16 (μ − 1) c2
(4 − 26μ + 173μ2 − 279μ3 + 118μ4)

}
δ,

C1 = 1

2c2

(
−4 + μ − μ2

)
+

{
1

3c2 (7μ − 2)

}
δ,

D1 = −
√

3

2c2 (1 − 2μ) −
{

2
√

3

9c2
(1 − 8μ + 9μ2)

}
δ.

d

dt

(
∂W

∂η̇

)
ξ=a+α , η=b+β

= A2α̇ + B2β̇ + C2α̈ + D2β̈,

where

A2 =
√

3

2c2 (1 − 2μ) +
{

2
√

3

9c2 (μ + 1)

}
δ,

B2 = − 1

2c2

(
4 − μ + μ2

)
+

{
1

3c2 (7μ − 2)

}
δ,
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C2 = 1

4c2

(
17 − 2μ + 2μ2

)
−

{
1

3c2 (7μ + 1)

}
δ,

D2 = −
√

3

4c2 (1 − 2μ) −
{√

3

9c2 (μ + 1)

}
δ.

d

dt

(
∂W

∂η̇

)
ξ=a+α , η=b+β

= A3α̇ + B3β̇ + C3α̈ + D3β̈,

where

A3 = 1

2c2
(6 − 5μ + 5μ2) +

{
1

3c2
(−2 + 3μ − 6μ2)

}
δ,

B3 = −
√

3

2c2 (1 − 2μ) −
{

2
√

3

9c2
(1 − 8μ + 9μ2)

}
δ,

C3 = −
√

3

4c2 (1 − 2μ) −
{√

3

9c2 (μ + 1)

}
δ,

D3 = 3
(
5 − 2μ + 2μ2

)
4c2

−
{

1

3c2 (9μ − 1)

}
δ.

Thus, the variational equations of motion corresponding to equations (5), on utilizing
equation (3), can be shown as

P1α̈ + P2β̈ + P3α̇ + P4β̇ + P5α + P6β = 0,

Q1α̈ + Q2β̈ + Q3α̇ + Q4β̇ + Q5α + Q6β = 0,
(14)

where

P1 = 1 + C2, P2 = D2, P3 = A2 − C,

P4 =
{
B2 − 2

(
1 − 1

2c2
(3 − μ + μ2)

)
− D

}
, P5 = −A, P6 = −B,

Q1 = C3, Q2 = 1 + D3, Q3 = 2

(
1 − 1

2c2
(3 − μ + μ2)

)
− C1 + A3 ,

Q4 = B3 − D1, Q5 = −A1, Q6 = −B1,

Then the associated characteristic equation is

(P1Q2 − P2Q1)λ
4 + (P1Q6 + P5Q2 + P3Q4 − P6Q1

− P2Q5 − P4Q3)λ
2 + P5Q6 − P6Q5 = 0. (15)

Substituting the values of Pi, Qi, i = 1, 2, ..., 6 in (15) and neglecting second and
higher power of small quantities, the characteristic equation (15) becomes

λ4 + λ2 + d = 0, (16)
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where

b = 1 − 9

c2
+

(
10 + 84μ − 21μ2 − 12μ3

12c2

)
δ,

d = 27

4
μ(1 − μ) + −585μ + 693μ2 − 216μ3 + 108μ4

8c2

+
(

3

2
μ(1−μ)+ 960 − 2253μ − 2226μ2 + 9243μ3 − 6390μ4 + 816μ5

192(μ − 1)c2

)
δ.

While 1
c2 → 0 and when the smaller primary is non-luminous (i.e., δ = 0) , (16)

reduces to its well-known classical restricted problem form (see Szebehely 1967):

λ4 + λ2 + 27

4
μ(1 − μ) = 0.

The discriminant of (16) is


 = 1

(μ − 1)

{
(−54 − 17δ)

c2
μ5 + (1296 + 1049δ)

8c2
μ4

+
(

27+6δ + (−7272 − 3105δ)

16c2

)
μ3 +

(
−54 − 12δ + (5112 + 511δ)

8c2

)
μ2

+
(

28 + 6δ + (−14904 + 1661δ)

48c2

)
μ+

(
−1 + 18

c2
− 65

3c2
δ

)}
. (17)

The roots are given as

λ2 = −b ± √



2
, (18)

where

b = 1 − 9

c2
+

(
10 + 84μ − 21μ2 − 12μ3

12c2

)
δ.

Now we have from (17),

d


dμ
= 1

(μ − 1)2
{(54 + 12δ) μ3 − 81μ2 − 18μδ − 6δ − 27}

+ 1

16(μ − 1)2c2
{(−3456 − 1088δ) μ5 + (12096 + 7654δ) μ4

+ (−24912 − 14602δ) μ3 + (21816 + 9315δ) μ2 + (4680 − 207δ)} < 0.

(19)

From (17) and (19), it can be seen that 
 is a decreasing and continuous function,
hence monotone in (0, 1

2 ].
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But

(
)μ=0 = 1 − 18

c2
+ 65δ

3c2
> 0,

(
)μ= 1
2

= −17

4
− 9δ

2
+ 2491δ

96c2
+ 423

2c2
< 0. (20)

Since (
)μ=0 and (
)μ= 1
2

are of opposite signs, and 
 is monotone and continuous,

there is only one value of μ, e.g., μc in the interval (0, 1
2 ] for which 
 vanishes.

Solving the equation 
 = 0, using (17), we obtain the critical value of the mass
parameter as

μc = 1

2
−

√
69

18
− 17

√
69

486c2
− 2δ

27
√

69
+

(
−3690189 + 682606

√
69

2414448c2

)
δ,

μc = μ0 − 17
√

69

486c2
− 2δ

27
√

69
+

(
−3690189 + 682606

√
69

2414448c2

)
δ, (21)

where μ0 = 0.03852 . . . is the Routh’s value.
We consider the following three regions of the values of μ separately.

(1) When 0 < μ < μc, the values of λ2 given by (18) are negative and therefore
all the four characteristic roots are distinct pure imaginary numbers. Hence, the
triangular points are stable.

(2) When μc < μ ≤ 1
2 , 
 < 0, the real parts of the characteristic roots are positive.

Therefore, the triangular points are unstable.
(3) When μ = μc, 
 = 0, the values of λ2 given by (18) are the same. This induces

instability of the triangular points.

Hence the stability region is

0 < μ < μ0 − 17
√

69

486c2
− 2δ

27
√

69
+

(
−3690189 + 682606

√
69

2414448c2

)
δ. (22)

When the mass reduction factor q2 is unity (i.e., δ = 0) , μc reduces to the critical
mass value of the relativistic R3BP. This confirms the result of Douskos and Perdios
(2002).

5. Discussion

Equations (5)–(6) describe the motion of a test particle in the relativistic R3BP with
the less massive primary radiating. Equations (13) determine the positions of trian-
gular points which are slightly affected by both the mass reduction and relativistic
factors due to the presence of small quantities coupling terms. When the value of
the mass reduction factor is unity, these positions correspond to those of Douskos
and Perdios (2002). It is noticed from equation (12) that the distances ρ1 and ρ2 of
the infinitesimal mass from the primaries are different which implies that the trian-
gular points L4,5 form scalene triangles with primaries contrary to the classical case
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in which they form equilateral triangles. From (13) it is observed that the ordinate is
also affected by the mass ratio μ, in comparison to the classical case where only the
abscissa is affected by the mass ratio.

Equations (21) give the critical value of the mass parameter which depends upon
the mass reduction and relativistic factors. This critical value is used to determine
the size of the region of stability and also helps in analyzing the behaviour of the
parameters involved therein. It is noticed from (21) that the mass reduction and the
relativistic factors have destabilizing effects. Equation (22) describes the region of
stability. From equation (22) it is seen that the region of stability is affected by both
the mass reduction and the relativistic factors combined together due to the presence
of a coupling term. When the mass reduction factor is unity (i.e., δ = 0) the stabil-
ity results obtained in this study are in agreement with the results of Douskos and
Perdios (2002) but disagree with that of Bhatnagar and Hallan (1998).

In the absence of relativistic terms it is noticed from equations (13) and (21) that
our results coincide with those of (i) Singh (2013) when the primaries are spherical
in the absence of Coriolis and centrifugal forces and the smaller primary is only
luminous; (ii) AbdulRaheem & Singh (2006) when the primaries are spherical in the
absence of small perturbations in the Coriolis and centrifugal forces and the smaller
primary is only luminous; (iii) Singh & Umar (2012) when the orbit is circular in
the absence of oblateness of the first primary (i.e., A = 0); (iv) Singh & Amuda
(2014) when the first primary is spherical in the absence of the P–R drag of the
second primary; (v) Douskos et al. (2006) when the secondary is radiating and the
oblateness of the primary is neglected (i.e., A1 = 0).

6. Numerical results

In the following, we will apply the earlier results to the binary systems, CenX-4 and
RXJ0450.15856 to compute the value of the critical mass parameter and locations of
the triangular equilibrium points. The necessary data has been adopted from Singh
and Umar (2012).

(1) In the binary system CenX-4, we consider

m1 = 1.9996Msun, velocity of light = 299792.458km/s,

m2 = 0.0801Msun, constant of gravity γ = 6.67259 × 10−8 /cm3/g/s2,

μ = 0.038515

The dimensionless velocity of light of this system is c = 1.307039186 × 1010.
The radiation factor q2 = 0.993 and distance between primaries a =1.7 kpc

(2) In the binary system RX0450.1-5856, we consider

m1 = 1.4Msun, the radiation factor q2 = 0.9965,

m2 = 0.15Msun, distance between primaries a = 205 pc,

μ = 0.0967, velocity of light = 299792.458 km/s,

Constant of gravity γ = 6.67259 × 10−8 cm3/g/s2.

The dimensionless velocity of light of this system is c = 1.662513320 × 1011.
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Table 1. Locations and critical mass.

Binary system

CenX-4 RXJ0450.1-5856

ξ
Classical 0.4614850000 0.4033000000
Relativistic 0.4614850000 0.4033000000
Equation (13) 0.4638183333 0.4044666667

±η
Classical 0.8660254040 0.8660254040
Relativistic 0.8660254040 0.8660254040
Equation (13) 0.86467825333 0.8653518287

μc
Classical 0.0385208965 0.0385208965
Relativistic 0.0385208965 0.0385208965
Equation (21) 0.0384584742 0.0384896853

7. Conclusion

By considering a second primary radiation in the relativistic CR3BP, we have deter-
mined the positions of the triangular points and have examined their stability. It is
found that their positions are slightly affected by both the radiation and relativistic
factors. It can be noticed from Table 1 that the relativistic factor has no independent
effect on the locations and stability region whereas the combined effect of relativis-
tic and radiation factors play a significant role. This supports the fact that when the
speed of light is large, the results tend to be in agreement with the classical ones. It
can also be noticed from equation (12) that both the factors have destabilizing ten-
dency. We have observed that the expressions for A, D, A2, C2 in Bhatnagar and
Hallan (1998) differ from those of the present study when the radiation factor is unity
(i.e., δ = 0). Consequently, the expression for P1,P3, P4, P5 and the characteristic
equation are also different. This led Bhatnagar and Hallan (1998) to infer that trian-
gular points are unstable, contrary to Douskos and Perdios (2002) and the present
results. The aim is to consider the mass loss or variation of the masses in a future
work.
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