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Abstract. Observations of the redshifted 21-cm HI fluctuations promise
to be an important probe of the post-reionization era (z ≤ 6). In this paper
we calculate the expected signal and foregrounds for the upgraded Ooty
Radio Telescope (ORT) which operates at frequency νo = 326.5 MHz
which corresponds to redshift z = 3.35. Assuming that the visibilities
contain only the HI signal and system noise, we show that a 3σ detec-
tion of the HI signal (∼ 1 mK) is possible at angular scales 11′ to 3◦ with
≈1000 h of observation. Foreground removal is one of the major chal-
lenges for a statistical detection of the redshifted 21 cm HI signal.
We assess the contribution of different foregrounds and find that the
326.5 MHz sky is dominated by the extragalactic point sources at the
angular scales of our interest. The expected total foregrounds are 104−105

times higher than the HI signal.

Key words. Cosmology: large scale structure of Universe—intergalactic
medium—diffuse radiation.

1. Introduction

The study of the evolution of cosmic structure has been an important subject in cos-
mology. In the post reionization era (z < 6) the 21-cm emission originates from
dense pockets of self-shielded hydrogen. These systems which are seen as Damped
Lyman-α absorption lines (DLAs) in quasar spectra are known to contain the bulk
of the HI (Zafar et al. 2013). Different from traditional galaxy redshift surveys, the
21-cm surveys do not need to resolve individual HI sources. The collective emission
from the individual clouds appears as a very faint, diffuse background radiation in
all low frequency radio observations below 1420 MHz, and the source clustering is
imprinted on the fluctuations of this background radiation (Bharadwaj et al. 2001).
Observations of the redshifted 21-cm radiation from neutral hydrogen (HI) can in
principle be carried out over a large redshift range starting from the cosmological
dark ages through the Epoch of Reionization (EoR) to the present epoch. This allows
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us to study both the evolution history of neutral hydrogen as well as the growth of
large scale structures in the Universe (Kumar et al. 1995; Bagla et al. 1997, 2010;
Madau et al. 1997; Bharadwaj et al. 2001; Bharadwaj & Pandey 2003; Bharadwaj &
Ali 2005; Furlanetto et al. 2006; Wyithe & Loeb 2008). Redshifted 21-cm observa-
tions also hold the potential of probing the expansion history of the Universe (Visbal
et al. 2009; Bharadwaj et al. 2009). It has been proposed that the Baryon Acous-
tic Oscillation (BAO) in the redshifted 21-cm signal from the post-reionization era
(z ≤ 6) is a very sensitive probe of dark energy (Wyithe et al. 2007; Chang et al.
2008; Seo et al. 2010; Masui et al. 2010). A compact interferometer with a wide
field-of-view is needed to cover the BAO length-scale. By scanning across frequency,
21 cm observations will probe the HI distribution at different times in cosmic his-
tory. It will allow us to construct 21 cm tomography of the IGM. This tomography
may carry more useful information than any other survey in cosmology (Madau et al.
1997; Loeb & Zaldarriaga 2004; Loeb & Wyithe 2008).

Realizing this great potential, a large number of recent or upcoming radio-
interferometric experiments are aimed at measuring the HI 21 cm signal at different
redshifts from z ∼ 1 to 12. The Giant Meterwave Radio Telescope (GMRT1; Swarup
et al. 1991) is functioning at several bands in the frequency range 150–1420 MHz and
can potentially detect the 21 cm signal at high as well as low redshifts (Bharadwaj
& Ali 2005). Several low-frequency EoR experiments (LOFAR2, MWA3, 21CMA,
formerly known as PAST4, PAPER (Parsons et al. 2010), LWA5) are currently in
progress or under construction. They have raised the possibility to detect and char-
acterize the EoR signal. Several other upcoming radio telescopes like CHIME6 and
BAOBAB7 aim to probe the low redshift Universe (z ≤ 2.5). It has been recently
reported that a cylindrical transit interferometer would be a novel approach which
would avoid the curved sky complications of conventional interferometry and be
well suited for wide-field observations (Shaw et al. 2013). They claim that the data
analysis techniques and two point statistics allow new ways of tackling the impor-
tant problems like map-making and foreground removal. More ambitious designs
are being planned for the future low-frequency telescope SKA8. This would be well
suited for carrying out observations towards detecting the HI signal over a large
redshift range z ∼ 0 to ∼ 12.

The removal of continuum foregrounds sources (such as extragalactic point
sources, galactic synchrotron, and galactic and extra-galactic free free emission)
is a major challenge for detecting the faint HI signal. The foreground sources are
expected to be roughly four to five orders of magnitude stronger than the cosmo-
logical HI signal (Di Matteo et al. 2002; Ali et al. 2008; Ghosh et al. 2011a).
Various proposals for tackling the foreground issue have been discussed in the liter-
ature (Harker et al. 2009; Bowman et al. 2009; Datta et al. 2010; Jelic et al. 2010;

1http://www.gmrt.ncra.tifr.res.in
2http://www.lofar.org/
3http://web.haystack.mit.edu/ast/arrays/MWA/
4http://web.phys.cmu.edu/~past/
5http://lwa.nrl.navy.mil/
6http://chime.phas.ubc.ca/
7http://bao.berkeley.edu/
8http://www.skatelescope.org/
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Bernardi et al. 2011; Ghosh et al. 2011b; Liu & Tegmark 2011; Mao 2012; Liu &
Tegmark 2012; Cho et al. 2012; Switzer et al. 2013a, b; Jacobs et al. 2013; Pober et al.
2013; Dillon et al. 2013,). The polarized galactic synchrotron emission is expected
to be Faraday-rotated along the path, and it may acquire additional spectral structure
through polarization leakage at the telescope. This is a potential complication for
detecting the HI signal. The effect of polarized foregrounds on foreground removal
has been studied by Moore et al. (2013).

A statistical detection of the post-reionization HI signal has already been made
(Pen et al. 2009) through cross-correlation between the HIPASS and the 6dfGRS.
In a recent paper, Masui et al. (2010) have measured the cross power spectrum at
redshift z ∼ 0.8 using 21-cm intensity maps acquired at the Green Bank Telescope
(GBT) and large-scale structure traced by optically selected galaxies in the WiggleZ
Dark Energy Survey. This measurement puts a lower limit on the fluctuation power,
of 21 cm emission. For the first time, Switzer et al. (2013a, b) have measured the auto-
power spectrum of redshifted 21 cm radiation from the HI distribution at redshift z ∼
0.8 with GBT. These detections represent important steps towards using redshifted
21 cm surface brightness fluctuations to probe the HI distribution at high z.

Efforts are currently underway (Prasad & Subrahmanya 2011a, b) to upgrade
the Ooty Radio Telescope (hereafter ORT) so that it may be operated as a radio-
interferometric array. The aim of this paper is to present the expected post-
reionization 21 cm signal at a frequency of νo = 326.5 MHz (z = 3.35), and to
discuss the possibility of its detection with the upgraded ORT. For detecting this
faint cosmological signal, it is very crucial to understand all foreground components
in detail. Here we use a foreground model to predict the foreground contribution to
the radio background at 326.5 MHz. The prospect for detecting the redshifted 21 cm
signal is considerably higher at this frequency in comparison to the lower frequen-
cies (e.g. 150 MHz, EoR) where the foreground contribution and the system noise
are both larger.

The background UV radiation at redshift (z = 3.35) is expected to be nearly
uniform, and we expect the redshifted 21 cm power spectrum to trace the underly-
ing matter power spectrum with a possible linear bias. The ORT holds the potential
of measuring the z = 3.35 power spectrum, opening the possibility of probing
large-scale structure formation at an hitherto unexplored redshift. We note that it is
extremely difficult to accurately measure the redshift for a large number of galaxies
at high redshifts (Eisenstein et al. 2005), and it will be difficult to probe z > 3 using
galaxy surveys. Further, the quasar distribution is known to peak between z = 2
and 3 (Busca et al. 2013), and we do not expect Lyman-α forest surveys to be very
effective at z > 3. Observations of the redshifted 21-cm signal are possibly one of
the few (if not only) techniques by which it will be possible to probe the matter
power spectrum at z > 3. This has the possibility of probing cosmology and struc-
ture formation through a variety of effects including the redshift space distortion
(Bharadwaj et al. 2001; Bharadwaj & Ali 2004; Barkana & Loeb 2005; Ali et al.
2005; Wang & Hu 2006; Masui et al. 2010; Mao et al. 2012; Majumdar et al. 2013)
and the Alcock–Paczyski test (Nusser 2005; Barkana 2006). Further, five successive
oscillations of the BAO are well in the k range that will be probed by ORT. The
BAO is a powerful probe of the expansion history, and a detection will constrain
cosmological parameters at z = 3.35. The present paper is exploratory in nature,
and it presents a preliminary estimate of the expected signal and foregrounds. We
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plan to present more quantitative estimates for parameter estimation in subsequent
publications.

A brief outline of the paper is as follows: Section 2 introduces the upgraded ORT
as a radio interferometer and analyses the visibility signal that will be measured
by this instrument. Section 3 discusses how the correlations between the measured
visibilities can be used to quantify the angular and frequency domain fluctuations
of the background radiation. Section 4 presents model prediction for the HI signal,
the signal-to-noise ratio and the contributions from different foregrounds compo-
nents. This section also discusses the feasibility of detection of the signal. Section 5
contains a summary and conclusions.

In this work we have used the standard LCDM cosmology with parameters:
�m0 = 0.30, �bh

2 = 0.024, ��0 = 0.7, h = 0.7, ns = 1.0 and σ8 = 1.0.

2. The ORT and the measured visibilities

The Ooty Radio Telescope (ORT) consists of a 530-m long and 30-m wide parabolic
cylindrical reflector. The telescope is placed in the North–South direction on a hill
with the same slope as the latitude (11◦) of the station (Swarup et al. 1971; Sarma
et al. 1975). It thus becomes possible to observe the same part of the sky by rotating
the parabolic cylinder along its long axis. The telescope operates at a nominal fre-
quency of νo = 326.5 MHz with λo = 0.919 m. The entire telescope feed consists
of 1056 half-wavelength (0.5 λo ≈ 0.5 m) dipoles which are placed nearly end-to-
end along the focal line of the cylinder. The separation between the centres of two
successive dipoles is 0.515 λo which is slightly larger than the length of each dipole.
The entire feed is placed off-axis to avoid maximally the obstruction of the incoming
radiation.

Work is currently underway to upgrade the ORT whereby the linear dipole array
may be operated as a radio-interferometer. Here the signal from groups of dipoles is
combined to form an antenna element. The RF signal from each antenna element is
directly digitized and transported to a central location where the signals from differ-
ent pairs of antenna elements are correlated to produce the visibilities V(U, ν) which
are recorded. Here U = 	d/λ refers to a baseline which is the antenna separation
(Fig. 1), 	d in units of the observing wavelength λ. The upgrade is being carried out in
two different stages with two nearly independent systems, namely Phase I and Phase
II, being expected at the end of the upgrade (Prasad & Subrahmanya 2011a, b). We
briefly discuss these two phases below, and the relevant parameters are presented in
Table 1 (Subrahmanya, private communication).

Phase I: Here 24 successive dipoles are combined to form a single antenna element.
This gives 40 antennas each of which is 11.5 m along the length of the cylinder and
30 m wide. The smallest baseline corresponds to an antenna separation of 11.5 m and
the longest baseline corresponds to 448.5 m. The system has a frequency bandwidth
of 18 MHz.
Phase II: Here 4 successive dipoles are combined to form a single antenna element.
This gives 264 antennas each of which is 1.9 m along the length of the cylinder
and 30 m wide. The smallest baseline also corresponds to an antenna separation of
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Figure 1. This shows the antenna layout corresponding to the ORT when it is used as a radio-
interferometer. We have a linear array of antenna elements with spacing d arranged along the
x axis which is aligned to the axis of the cylindrical reflector. The figure also shows the b × d
rectangular aperture of the individual antenna elements. Here b corresponds to the width of the
parabolic cylindrical reflector.

1.9 m and the longest baseline corresponds to 505.0 m. The system has a frequency
bandwidth of 30 MHz.

We note that CHIME, an upcoming new telescope designed to detect the BAO,
is partly similar to the ORT in construction. The CHIME consists of five parabolic
cylindrical reflectors, each of dimensions 100 m × 20 m and each containing 256
antennas. The total telescope is 100 m × 100 m in dimension. Unlike the ORT, this
will be a drift scan telescope with no moving parts, and it will cover the frequency
range 800 to 400 MHz which corresponds to the redshift range ∼0.8 to 2.5.

Figure 1 provides a schematic representation of the ORT when it is used as a
radio-interferometer. The parabolic cylinder may be thought of as a linear array of
NA radio antennas, each antenna located at a separation d along the length of the
cylinder. Viewed from the direction in which the telescope is pointing, each antenna
has a rectangular aperture of dimensions b × d where b = 30 m is the width of the
parabola, and d = 11.5 and 1.9 m for Phases I and II respectively. For convenience,

Table 1. System parameters for phases I and II of the upgraded ORT.

Parameter Phase I Phase II

No. of antennas (NA) 40 264
Aperture dimensions (b × d) 30 m × 11.5 m 30 m × 1.92 m
Field-of-View (FoV) 1.75◦ × 4.6◦ 1.75◦ × 27.4◦
Smallest baseline (dmin) 11.5 m 1.9 m
Largest baseline (dmax) 448.5 m 505.0 m
Angular resolution 7′ 6.3′
Total bandwidth (B) 18 MHz 30 MHz
Single visibility rms. noise (σ )
assuming Tsys = 150 K, η = 0.6,
	νc = 0.1 MHz,	t = 16 s 1.12 Jy 6.69 Jy
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we have assumed the telescope aperture to lie in the x−y plane with the x axis along
the length of the cylinder. We then have the baselines

U1 =
(
d

λ

)
î; U2 = 2U1; U3 = 3U1; . . . ; UNA−1 = (NA − 1)U1 (1)

for which the complex visibilities V(U, ν) are recorded. It should be noted that there
is considerable redundancy in this radio-interferometric array i.e. there are many dif-
ferent antenna pairs which correspond to the same baseline. Any baseline Un occurs
Mn = (NA − n) times in the array. In reality U1,U2, . . . change as ν varies across
the observing bandwidth. This is an extremely important factor that needs to be con-
sidered in the actual data analysis. However this is not very significant for the signal
and foreground estimates presented here, and we ignore this for the purpose of the
present analysis, and hold U fixed at the value corresponding to λo.

The visibility V(U, ν) recorded at any baseline U is the Fourier transform of the
product of I (	θ, ν) which is the specific intensity distribution on the sky and A(	θ, ν)
which is the primary beam pattern or the normalized power pattern of the individual
antenna. We have

V(U, ν) =
∫

d2 	θA(	θ, ν)I (	θ, ν)e−i2πU· 	θ . (2)

where 	θ is a two dimensional vector in the plane of the sky with origin at the cen-
tre of the field-of-view, and the beam pattern A(	θ, ν) quantifies how the individual
antenna responds to signals from different directions in the sky. We have assumed
that the field-of-view of the individual antennas is sufficiently small so that we may
ignore the curvature of the sky and treat the region of sky under observation as
being flat. While such an assumption is quite justified for Phase I, the field-of-view
is quite large for Phase II and the flat sky assumption is not strictly valid in this
situation. We, however, expect our predictions based on the flat sky assumption to
provide a reasonable preliminary estimate of the signal expected for both Phases I
and II.

We now briefly discuss the normalized power pattern A(	θ, ν) of the individ-
ual antennas in our radio-interferometer. This can be calculated by considering the
antenna as an emitter instead of receiver. We first calculate E(	θ , ν), the normal-
ized far-field radiation electric pattern that will be produced by the antenna, where
A(	θ, ν) =| E(	θ, ν) |2. The function E(	θ, ν) is the Fourier transform of the electric
field pattern Ẽ(U, ν) at the telescope’s aperture (Fig. 1). The ORT responds only to
a single polarization determined by the dipole feeds which are aligned parallel to the
telescope cylinder’s axis. It is therefore justified to ignore the vector nature of the
electric field Ẽ(U, ν) and focus on a single polarization. The exact form of Ẽ(U, ν)

depends on how the dipole illuminates the antenna aperture. Modeling this is quite
complicated and we do not attempt it here. For the purpose of the present analysis,
we make the simplifying assumption that the electric field Ẽ(U, ν) is uniform every-
where on the b × d rectangular aperture of the antenna element (Fig. 1). We then
have the primary beam pattern

A(	θ, ν) = sinc2
(
πdθx

λ

)
sinc2

(
πbθy

λ

)
. (3)
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The actual beam pattern is expected to be somewhat broader than that predicted by
eq. (3) if the dipole’s illumination pattern is taken into account. We use the aperture
efficiency η that appears in the subsequent calculations to account for this to some
extent.

The primary beam pattern decides the field-of-view of the radio-interferometer.
We see that in this case (eq. (3)) we have an asymmetric field-of-view. The primary
beam has a Full Width at Half Maximum (FWHM) of 1.55◦ corresponding to b =
30 m in the East–West direction, and 4.05◦ and 24.32◦ in the North–South direction
for Phases I and II respectively. The anisotropy in the field-of-view is particularly
pronounced in Phase II where the N–S extent is more than 10 times the extent in the
E–W direction.

It is useful to decompose the specific intensity as

I (	θ, ν) = Ī (ν)+ δI (	θ, ν), (4)

where the first term is an uniform background brightness and the second term is the
angular fluctuation in the specific intensity. We use this and express eq. (2) in terms
of a convolution as

V(U, ν) = Ã (U, ν) Ī (ν)+ Ã (U, ν) ⊗ 	Ĩ(U, ν), (5)

where 	Ĩ(U, ν) and Ã (U, ν) are the Fourier transforms of δI (	θ, ν) and A(	θ, ν)
respectively. We refer to Ã (U, ν) as the aperture power pattern.

The aperture power pattern Ã (U, ν) is the auto-convolution of the electric field at
the telescope aperture i.e., Ã(U, ν) = Ẽ(U, ν)⊗ Ẽ(U, ν). The telescope’s aperture
being finite, we have the interesting property that Ã(U, ν) has compact support in U
irrespective of the details of the shape of the telescope’s aperture. For the uniform
rectangular aperture assumed earlier, we have

Ã(U, ν) = λ2

bd
�

(
u λ

d

)
�

(
v λ

b

)
, (6)

where U = (u, v), and �(x) is the triangular function defined as

�(x) = 1 − |x| for |x| < 1 , and �(x) = 0 for |x| ≥ 1 . (7)

We see that Ã(U, ν) has non-zero values only within | u |< d/λ, | v |< b/λ and
vanished beyond. Figure 2 shows the u dependence of Ã(U, ν) for v = 0. The actual
behaviour of Ã(U, ν) will be different, and we expect the u, v dependence to fall
faster than the triangular function when the dipole’s illumination pattern is taken into
account. However the fact that Ã(U, ν) has compact support, and that Ã(U, ν) = 0
for | u |≥ d/λ, | v |≥ b/λ will continue to hold.

We see that the first term Ã (U, ν) Ī(ν) in eq. (5) dies away before the smallest
baseline U1 (Fig. 2), and hence it is not necessary to consider the contribution from
Īν . We then have

V(Un, ν) =
∫

d2U ′Ã(Un − U′, ν)	Ĩ(U′, ν). (8)
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Figure 2. The upper panel shows a schematic view of the aperture power pattern Ã (U, ν)
as a function of u for v = 0. The lower panel shows the u range and the respective weights
corresponding to each Fourier mode that contributes to the visibility at any baseline Un. The
shaded region shows the overlap between the Fourier modes that contribute to the visibilities
at two adjacent baselines.

where each visibility V(Un, ν) is a weighted linear superposition of different Fourier
modes 	Ĩ(U, ν). The contribution peaks at U = Un, and it is restricted to a rectangle
of size (b/λ)× (d/λ) centered at Un. The modes outside this region do not contribute
to V(Un, ν). This is shown schematically in Fig. 2. We also note that there is an
overlap between the Fourier modes that contribute to two neighbouring visibilities
V(Un, ν) and V(Un+1, ν). This implies that to some extent the same information
is present in the visibilities measured at two neighbouring baselines. This overlap,
however, is restricted to the nearest neighbours, and does not extend beyond.

In addition to the sky signal discussed till now, each visibility also has a noise
contribution i.e.,

V(Un, ν) = Vsky(Un, ν)+N (Un, ν), (9)

where the noise contribution N (Un, ν) in each visibility is an independent com-
plex Gaussian random variable with zero mean. The real part (or equivalent to the
imaginary part) of N (Un, ν) has a rms fluctuation (Thompson et al. 1986)

σ =
√

2kBTsys

ηA
√
	νc	t

, (10)

where Tsys is the total system temperature, kB is the Boltzmann constant, A = b ×
d is the physical collecting area of each antenna, η is the aperture efficiency, 	νc
is the channel width and 	t is the correlator integration time. We expect Tsys to
have a value around 150 K, and we use this value for the estimates presented here.
Considering observations with 	νc = 0.1 MHz and 	t = 16 s we have σ = 1.12 Jy
and 6.69 Jy for Phases I and II respectively.
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We now highlight two interesting features which are unique to the ORT radio-
interferometer. First, in a typical radio-interferometer the baseline U corresponding
to a pair of antennas changes with the rotation of the Earth. As a consequence, the
individual baselines sweep out different tracks in the u − v plane during the course
of a long observation. However, for the ORT, the North–South axis of the cylindri-
cal reflector is parallel to the Earth’s rotation axis. The baselines (eq. (1)) too are
all parallel to the Earth’s rotation axis and they do not change with the rotation of
the Earth. Second, the interferometer has a high degree of redundancy in that there
are NA − n distinct antenna pairs which correspond to any particular baseline Un.
Considering a particular baseline Um, the visibility V ′

ab measured by any antenna
pair a, b is the actual visibility V(Um) amplified by the unknown individual antenna
gains ga and gb i.e. V ′

ab = ga g
∗
bV(U). The fact that there are many different antenna

pairs for which the measured visibility has the same signal V(Um) can be put to
good use in determining the unknown antenna gains ga and gb (Ram Marthi &
Chengalur 2013).

3. Visibility correlations

We assume that the observed sky signal δI (	θ, ν) is a particular realization of a sta-
tistically homogeneous and isotropic random process. In other words, the process
that generates δI (	θ, ν) has no preferred origin or direction on the sky. Further, it
also has no preferred origin in frequency. We use the multi-frequency angular power
spectrum C
(	ν) to quantify the statistical properties of δI (	θ, ν) (Datta et al. 2007).
The calculations are considerably simplified in the flat-sky approximation where it
is convenient to use Fourier modes instead of the spherical harmonics Ym


 (θ, φ). The
two-dimensional power spectrum P (U,	ν) is defined through

〈	Ĩ(U, ν)	Ĩ ∗(U′, ν +	ν)〉 = P (U,	ν)δ2
D(U − U′), (11)

where δ2
D

(
U − U′) is the two-dimensional Dirac-delta function. The angular brack-

ets 〈· · ·〉 above denote the ensemble average with respect to different realizations of
δI (	θ, ν).

The multi-frequency angular power spectrum C
(	ν) refers to δT (	θ, ν) which is
the brightness temperature corresponding to δI (	θ, ν). We have

C
(	ν) =
(
∂B

∂T

)−2

P (
/2π,	ν) , (12)

where the angular multipole 
 corresponds to the 2D dimensional wave vector 2πU
with 
 = 2π |U|, B is the Planck function and (∂B/∂T ) = 2kB/λ2 in the Raleigh–
Jeans limit which is valid at the frequencies of our interest. Strictly speaking, we
should evaluate (∂B/∂T ) at two different frequencies ν and ν+	ν. This introduces
a slow variation of order ∼	ν/ν which is small in most of our analysis. For the
estimates of this paper, here and in subsequent analysis, we ignore several such terms
which introduce slow variations of the order of ∼	ν/ν � 1.

The multi-frequency angular power spectrum C
(	ν) defined above jointly char-
acterizes the angular (
) and frequency (	ν) dependence of the statistical properties
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of the sky signal. The observed visibilities V(Un, ν) are related to C
(	ν) through
the two visibility correlation which, using eqs (8), (11) and (12) can be written as

〈V(Un, ν)V∗(Um, ν +	ν)〉 =
(
∂B

∂T

)2 ∫
d2U ′ Ã(Un − U′, ν)

×Ã∗(Um − U′, ν +	ν)C2πU ′(	ν) . (13)

The functions Ã(Un − U′, ν) and Ã∗(Um − U′, ν +	ν) have an overlap only when
| n−m |≤ 1 (Fig. 1). This implies that two visibilities are correlated only if they cor-
respond to the same baseline or the nearest neighbours. The correlation is strongest
when n = m, and we restrict our analysis here to this situation where the two base-
lines are the same. Further, in subsequent discussions we also ignore the slow 	ν

dependence of Ã∗(Um − U′, ν + 	ν). The two visibility correlation can then be
expressed as

V2(Un,	ν) ≡ 〈V(Un, ν)V∗(Un, ν +	ν)〉 (14)

and we have

V2(Un,	ν) =
(
∂B

∂T

)2 ∫
d2U′ |Ã (

Un − U′) |2 C2π U ′(	ν), (15)

where we do not explicitly show ν as an argument in any of the terms, and it is
implicit that this has the value νo = 326.5 MHz.

At large baselines it is possible to approximate the convolution in eq. (15) as

V2(Un,	ν) =
(
∂B

∂T

)2 [∫
d2U′ |Ã (

Un − U′) |2
]
C
(	ν) (16)

with 
 = 2πUn. This gives a very simple relation

C
(	ν) = 0.26

(
mK

Jy

)2 (
b d

m2

)
V2(Un,	ν) (17)

between V2(Un,	ν)which can be determined directly from the measured visibilities
and C
(	ν) which quantifies the statistical properties of the brightness temperature
distribution on the sky. We expect eq. (17) to be a good approximation only at large
baselines where the value of C2πU(	ν) does not change much within the width of
the function |Ã (Un − U) |2. However, our investigations later in this paper show that
eq. (17) provides a reasonable good approximation to the full convolution (eq. (15))
for nearly the entire U range covered by ORT.

4. Predictions

The contribution to the measured visibilities V(U, ν) from the sky signal (eq. (9)) is
a combination of two different components

Vsky(Un, ν) = S(Un, ν)+ F(Un, ν) , (18)
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where S(Un, ν) is the HI signal which is the object of our study here, and F(Un, ν)

is the contribution from other astrophysical sources referred to as the foregrounds.
We treat both of these, as well as the system noise N (Un, ν) as uncorrelated random
variables with zero mean. We then have

V2(Un,	ν) = S2(Un,	ν)+ F2(Un,	ν)+N2(Un,	ν), (19)

where S2, F2 and N2 respectively refer to signal, foreground and noise contributions
to the visibility correlation. We individually discuss the predictions for each of these
components.

4.1 The HI signal

The contribution S2(Un,	ν) to the visibility correlation V2(U,	ν) from the HI
signal directly probes the three-dimensional (3D) power spectrum PHI(k, z) of the
HI distribution in redshift space (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005).
It is convenient to use

C
(	ν) = 1

πr2
ν

∫ ∞

0
dk‖ cos(k‖ r ′ν 	ν)PHI(k) (20)

to calculate the multi-frequency angular power spectrum for the HI signal (Datta
et al. 2007), and use this in eq. (15) to calculate S2(Un,	ν). Here rν is the comoving
distance corresponding to z = (1420 MHz/ν)− 1, r ′ν = drν

dν
and the 3D wave vector

k has components k‖ and k⊥ = 
/r which are respectively parallel and perpendicular
to the line-of-sight, and μ = k‖/k is the cosine of the angle between k and the
line-of-sight.

We model PHI(k, μ) ≡ PHI(k) assuming that HI traces the total matter distribu-
tion with a linear, scale-independent bias parameter b. We then have

PHI(k, μ) = b2 x̄2
HI T̄

2 [1 + β μ2]2 P (k), (21)

where P (k) is the matter power spectrum at the redshift z, x̄HI is the mean hydrogen
neutral fraction and

T̄ (z) = 4.0 mK (1 + z)2
(
�bh

2

0.024

) (
0.7

h

) (
H0

H(z)

)
. (22)

We have used the value x̄HI = 2.45 × 10−2 which corresponds to �gas = 10−3

(Noterdaeme et al. 2012; Zafar et al. 2013). The term [1 + βμ2]2 arises due to the
HI peculiar velocities (Bharadwaj et al. 2001; Bharadwaj & Ali 2004) and β is the
linear distortion parameter. The semi-emperical estimate of the large-scale bias (b)
of HI at redshift z ∼ 3 is 1.7 (Marín et al. 2010). N-body simulations (Bagla et al.
2010; Guha Sarkar et al. 2012) indicate that it is reasonably well justified to assume
a constant HI bias b = 2 at wave numbers k ≤ 1 Mpc−1, and we have used this value
for our entire analysis. The later result is consistent with Marín et al. (2010).

Figure 3 shows k3PHI(k)/2π2 which quantifies the magnitude of the expected HI
signal. In this figure we have fixed μ = 0 (eq. (21)) which implies that the wave
vector k is perpendicular to the line-of-sight. The figure also shows the range of
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Figure 3. The solid curve shows the HI signal k3 PHI(k)/2π2 where PHI(k) ≡ PHI(k, μ =
0) is the HI power spectrum (eq. (21)) at z = 3.35 which corresponds to νo = 326.5 MHz. The
vertical lines demarcate the k⊥ = 2π U

rν
range that will be probed through the HI signal at ORT.

The solid and dashed vertical lines refer to Phases I and II respectively.

comoving wave numbers k where the HI power spectrum PHI(k) will be probed by
the ORT. We see that the upper limit ∼0.5 Mpc−1 is comparable in both Phases I
and II. The lower limit ∼0.002 Mpc−1, however, is considerably smaller for Phase
II in comparison to Phase I which is only sensitive to modes k > 0.01 Mpc−1. We
note that Phases I and II are both sensitive to the BAO feature which has the first
peak at k = 0.045 Mpc−1, and which has successive oscillations whose amplitude
decays within k = 0.3 Mpc−1 which is well within the k range that will be probed
by ORT. It is planned to investigate the possibility of detecting the BAO feature and
constraining cosmological parameters in a separate, future study.

Our subsequent discussion is in terms of the angular multipole 
, baseline U and
frequency separation 	ν. Here we briefly discuss how these quantities are related to
the comoving wave numbers k⊥, k‖ and 	r‖ which is the comoving distance interval
along the line-of-sight. We have

k⊥ = 2πU

rν
= 


rν
(23)

which relates 
 and U to k⊥ which is the wave number perpendicular to the line-of-
sight. Further, we have

	r‖ = r ′ν 	ν = c 	ν

νea2H(a)
(24)

which relates 	ν to 	r‖. The comoving wave number k‖, which is parallel to
the line-of-sight, is the Fourier conjugate of 	r‖. We have rν = 6.67 Gpc and
r ′ν = 11.33 MpcMHz−1 at ν0 = 326.5 MHz for which the conversion factors are
summarized in Table 2.

We have used the HI power spectrum PHI(k) to calculate the multi-frequency
angular power spectrum C
(	ν) (eq. (20)). The HI signal is maximum when 	ν =
0, and Fig. 4 shows C
(0) as a function of 
. The respective 
 range that will be
probed by Phases I and II is also indicated in the figure. The value of C
(0) is around
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Table 2. Conversion factors for νo = 326.5 MHz.

k⊥ U 
 	ν 	r‖
0.01 Mpc−1 11 67 0.1 MHz 1.13 Mpc

4 × 10−6 mK2 at the smallest 
 values (
 <∼150) where C
(0) is nearly constant
independent of 
. Beyond this, the value of C
(0) decreases gradually, and we have
around 4 × 10−7 mK2 at 
 ≈ 3, 300 which is near the largest 
 mode that will be
probed.

We now discuss the visibility correlation HI signal S2(U,	ν) predicted for the
ORT (eq. (15)). The signal is maximum for 	ν = 0, and we first study S2(U, 0) as
a function of U as shown in Fig. 5. For Phase II we see that S2(U, 0) has a value
3 × 10−7 Jy2 at the smallest baseline, and it is nearly constant at small baselines
U <∼30 beyond which it slowly falls to a value of around 2 × 10−8 Jy2 at U ≈
550. The U range is considerably smaller for Phase I where S2(U, 0) has a value
∼4 × 10−8 Jy2 at the smallest baseline (U ≈ 10) and falls to ∼5 × 10−9 Jy2 at
U ≈ 420.

The visibility correlation V2(U,	ν) depends on the size of the antenna aperture
through the factor |Ã(U, ν)|2 which appears in eq. (15). The amplitude (eq. (6))
scales as |Ã(U, ν)|2 ∝ (bd)−2 whereas the region in U space where this function
has support scales as ∝ (bd). As a consequence it follows that we expect the scal-
ing V2(U,	ν) ∝ (bd)−1, and we expect (bd) × V2(U,	ν) to be independent of
the size of the antenna aperture. This is also apparent from eq. (17) which relates
(bd)×V2(U,	ν) to C
(	ν), and which is expected to hold if the baseline U is suf-
ficiently large. Figure 4 shows (bd)× S2(U, 0) as a function of U . We find that the
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Figure 4. This shows C
(0) and also (bd) × S2(U, 0) which is expected to be independent
of the size of the antenna aperture. We find that the values of (bd) × S2(U, 0) predicted for
Phase I are nearly identical to those predicted for Phase II, and it is not possible to distinguish
between the two curves in the figure. However, as shown in the figure, the U range covered by
Phase I is smaller.
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Figure 5. The solid curves show the expected HI signal S2(U,	ν) for 	ν = 0 while the
dashed curves show the 1− σ errors for the observation time indicated in the figure. The lower
and upper sets of curves correspond to Phases I and II respectively.

predictions for Phase I are nearly identical to those for Phase II, and it is not possi-
ble to distinguish between the two curves in the figure. Based on this we conclude
that it is adequate to use eq. (17) to relate the visibility correlation S2(U, 0) to the
multi-frequency angular power spectrum C
(0) of the HI signal for the entire base-
line range at ORT. Further, we also expect this to hold for other values of 	ν, as well
as for the foreground F2(U,	ν).

We now quantify the 	ν dependence of the HI signal S2(U,	ν). We use the
frequency decorrelation function κU(	ν) (Datta et al. 2007) which is defined as

κU(	ν) = S2(U,	ν)

S2(U, 0)
. (25)

This function quantifies how quickly the HI signal decorrelates as we increase the
frequency separation 	ν. The signal is perfectly correlated at 	ν = 0 where we have
κU(0) = 1, and the correlation falls to (κU(	ν) < 1) as 	ν is increased. Figure 6
shows the variation of κU(	ν) as a function of 	ν for different values of U . Here

U = 2

U = 50
U = 100
U = 200

U = 550

Δν

κ
U
(Δ
ν)

(MHz)
 0.1  1  10 0.01

 0

 0.2

 0.4
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Figure 6. This shows the predicted frequency decorrelation function κU(	ν) as a function of
	ν at five different U values. The signal decorrelates more sharply for higher values of U.
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we have assumed the statistics of the HI signal is stationary across frequency, and
thereby only depends on 	ν. The predictions are the same for Phases I and II, and
we do not show separate curves for the two phases.

We see that at the smallest baseline U ≈ 2 the value of κU(	ν) decreases slowly
as 	ν is increased. We have κU = 0.5 at 	ν ≈ 1 MHz, beyond which the value
of κ falls further. The value of κU crosses zero at around 	ν ≈ 4 MHz, and κU
becomes negative beyond this. The decorrelation function κU (	ν) shows a similar
	ν dependence at larger baselines, with the difference that we have a steeper 	ν

dependence at larger baselines. For U = 200, we see that κU = 0.5 at 	ν ≈
0.2 MHz and κU crosses zero well before 	ν = 1 MHz. We also see that the value
of κU oscillates round zero for large values of 	ν. We have defined 	0.5 and 	0.1 as
the values of the frequency separation 	ν where the decorrelation falls to 0.5 and 0.1
respectively i.e. κU(	ν0.5) = 0.5, etc. Figure 7 shows 	ν0.5 and 	ν0.1 as functions
of U . We use 	ν0.5 to compare and quantify how rapidly the signal decorrelates at
different values of U . We see that 	ν0.5 has a nearly constant value ≈1 MHz for
U ≤ 30, and it declines as U−0.6 for larger baselines in the range of our interest.
The value of 	ν0.1 gives an estimate of the frequency separation across which the HI
signal is correlated, and the bulk of the HI signal is contained within 	ν ≤ 	ν0.1. We
see that 	ν0.1 has a nearly constant value ≈3 MHz at the small baselines (U ≤ 30),
and we have 	ν0.1 ≈ 3 ×	ν0.5 for the entire baseline range of our interest.

Figures 6 and 7 provide an estimate of two of the system parameters, namely
the total frequency bandwidth B and the frequency channel width 	νc desirable for
quantifying the HI signal. We see that the HI signal remains correlated to frequency
separations as large as 3 MHZ at the small baseline. It is thus desirable to have a
bandwidth B larger than this, which is well within the specifications of both Phases I
and II (Table 1). Considering the channel width, we see that 	νc = 10 kHz or 20 kHz
is small enough to adequately quantify the decorrelation of the HI signal at even the
largest baseline of our interest. A larger channel width of 	νc = 200 kHz will be
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Figure 7. This figure shows how 	ν varies with functions of U for a given value of κU(	ν).
The upper and lower solid curves correspond to κU (	ν0.1) = 0.1 and κU(	ν0.5) = 0.5 respec-
tively. The definition of 	ν0.1 and 	ν0.5 are given in the text. The dotted lines are power-law
fitting for 	ν0.1 and 	ν0.5 to quantify how rapidly the signal decorrelates at different U values.
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adequate for baselines U ≤ 200, however some of the signal would be missed out at
the large baselines (U ∼ 500).

4.2 Noise and error estimates

We first consider the noise contribution N2(Un,	ν) to the visibility correlation
(eq. (19)). The noise in the visibilities measured at different antenna pairs is uncorre-
lated. As noted earlier, the ORT has a high degree of redundancy and there are many
independent antenna pairs corresponding to the same baseline. Further, an observa-
tion spanning a total observing time of tobs provides tobs/	t different measurements
of each visibility. The noise in the visibilities measured at two different time instants
is uncorrelated. It is possible to avoid the noise contribution N2(Un,	ν) in the visi-
bility correlation V2(Un,	ν) by correlating only the visibility measurements where
the noise is uncorrelated (eg. Begum et al. 2006; Ali et al. 2008). For a fixed base-
line U we only correlate the visibilities measured by different antenna pairs or the
visibilities measured at different time instants. We therefore do not include the noise
contribution to the visibility correlation in subsequent analysis, and use

V2(Un,	ν) = S2(Un,	ν)+ F2(Un,	ν) . (26)

The noise however contributes to uncertainty in the visibility correlation
√
(	V2)2

which we discuss below.
We now calculate the expected statistical fluctuations (errors) or uncertainty in the

estimated visibility correlation V2(U,	ν). It is assumed that the foregrounds have
been completely removed from the visibilities whereby the residuals after foreground
subtraction contain only the HI signal and system noise. Therefore the total error in
the residual visibility correlation has two parts arising from the cosmic variance and
the system noise respectively. The expected uncertainty or statistical fluctuations in
the visibility correlation is√

(	V2)2 =
√
(	S2)2 + (	N2)2 , (27)

where (	S2)
2 and (	N2)

2 are the cosmic variance and the system noise contribu-
tions respectively.

We have (	N2)
2 = (2σ 2)2 and (	S2)

2 = (S2)
2 for a single estimate of

the visibility correlation. The system noise contribution reduces to (	N2)
2 =

(2σ 2	t/tobs)
2 if we combine the measurements at different time instants. The redun-

dant baselines provide many estimates of the visibility correlation V2(U,	ν) at the
same U. Each estimate has an independent system noise contribution, but the sig-
nal however is the the same. We also bin the data by combining the estimates of
V2(U,	ν) at the different U values within a finite bin width of our choice. The
different baselines U provide independent estimates of both the signal and the sys-
tem noise. We use NP and NE respectively to denote the number of independent
estimates of the system noise and the signal in V2(U,	ν) for each bin.

The frequency bandwidth B also provides several independent estimates of the
visibility correlation. The value of 	ν0.5 provides an estimate of the frequency
separation over which the HI signal remains correlated. For the purpose of the esti-
mates presented here we assume a channel width of 	νc = 	ν0.5 in eq. (10) for
σ 2 and also assume that the frequency bandwidth B provides us with B/(	ν0.5)
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independent estimates of the visibility correlation. Combining all the effects dis-
cussed above we have

(	N2)
2 =

(
2σ 2 	t

tobs

)2
	ν0.5

NPB
(28)

and

(	S2)
2 = (S2)

2	ν0.5

NEB
(29)

which we use in eq. (27) to calculate the error estimates
√
(	V2)2 for S2(U, 0) and

also the signal to noise ratio SNR= S2(U, 0)/
√
(	V2)2. We have calculated NP and

NE by dividing the baseline range Umin to Umax into 6 and 9 logarithmic bins for
Phases I and II respectively.

The uncertainty
√
(	V2)2 shown in Fig. 5 is dominated by the system noise over

the entire baseline range. The SNR, shown in Fig. 8, peaks at U ∼ 100 which
corresponds to ∼30′. This peak feature is particularly prominent for Phase II which
also has a higher SNR compared to Phase I. We see that for Phase I, a 3σ detection
is possible at U ∼ 100 with ∼4,000 h of observation. The SNR scales as ∝ tobs, and
a 5σ detection is possible with ∼5,700 h of observation with Phase I.

The signal and noise in the individual visibilities are both larger for Phase II in
comparison to Phase I (Table 1). The noise contribution to a single visibility scales
as σ ∝ (bd)−1 (eq. (10)) whereas the signal scales as

√
V2 ∝ (bd)−0.5 (eq. (17)),

and a single visibility has a lower SNR in Phase II as compared to Phase I. However,
there is a substantial increase in the number of baselines for Phase II which more
than compensates for this, and we find that the binned visibility correlation has a
considerably higher SNR for Phase II in comparison to Phase I (Fig. 8). We see that a
3σ detection is possible with ∼1,000 h of observation with Phase II. A 5σ detection
is possible in the baseline range 40 ≤ U ≤ 100 with ∼2,000 h of observation. It is
possible to detect the HI signal at a significance greater than 5σ in the baseline range
10 ≤ U ≤ 200 with ∼3,000 h of observation.
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Figure 8. This figure shows the signal-to-noise ratio (SNR) as function of baseline U for
different integration times as indicated. The horizontal line is for SNR = 5 (right panel) and
SNR = 3 (left panel).
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4.3 Foregrounds

We refer to radiation from different astrophysical sources other than the cosmolog-
ical HI signal collectively as foregrounds. Foregrounds include extragalactic point
sources, diffuse synchrotron radiation from our galaxy and low redshift galaxy
clusters; free–free emission from our galaxy (GFF) and external galaxies (EGFF).
Extra-galactic point sources and the diffuse synchrotron radiation from our galaxy
largely dominate the foreground radiation at 326.5 MHz. The free–free emissions
from our galaxy and external galaxies make much smaller contributions though
each of these is individually larger than the HI signal. All the foreground compo-
nents mentioned earlier are continuum sources. It is well accepted that the frequency
dependence of the various continuum foreground components can be modelled by
power laws, and we model the multi-frequency angular power spectrum for each
foreground component as

C
(ν1, ν2) = A

(
1000




)γ (
νf

ν1

)α (
νf

ν2

)α

, (30)

where A is the amplitude in mK2, and γ and α are the power-law indices for the

 and the ν dependence respectively. In the present analysis, we are interested in a
situation where ν2 = ν1 +	ν with 	ν � ν1, and we have

C
(	ν) ≡ C
(ν1, ν1 +	ν) ≈ A

(
1000




)γ (
νf

ν1

)2α (
1 − α 	ν

ν1

)
(31)

which varies slowly with 	ν. For the foregrounds, we expect C
(	ν) to fall by
less than 10% if 	ν is varied from 0 to 3 MHz, in contrast to the ∼90% decline
predicted for the HI signal (Fig. 7). The frequency spectral index α is expected to
have a scatter 	α in the range 0.1−0.5 for the different foreground components in
different directions causing less than 2% additional deviation in the frequency band
of our interest. We only consider the mean spectral indices for the purpose of the
foreground predictions presented here. In a nutshell, the 	ν dependence of C
(	ν)

is markedly different for the foregrounds as compared to the HI signal and we hope
to use this to separate the foregrounds from the HI signal.

There are, at present, no observational constraints on the 	ν dependence of
C
(	ν) for any of the foreground components at the angular scales and frequencies
of our interest. We do not attempt to make any model predictions for the 	ν depen-
dence beyond assuming that C
(	ν) varies slowly with 	ν across the frequency
separations of our interest. For the present work, we focus on C
(0) which we have
modelled as

C
(0) = A

(
1000




)γ

, (32)

and we assume that the 	ν dependence is very slow whereby the foregrounds can
be separated from the HI signal. In the subsequent discussion we focus on model
predictions for A and γ which are tabulated in Table 3 for the different foreground
components. The values of A, whenever used in this paper, have all been scaled (A ∝
ν−2α) to the nominal frequency of νo = 326.5 MHz using the α values tabulated in
Table 3.
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Table 3. Values of the parameters used for characterizing different foreground
contributions at 326.5 MHz.

Foregrounds A (mk2) α γ

Point source (Poisson) 288
(
Sc
Jy

)1.36 + 0.01 2.7 0

Point source (clustered) 453
(
Sc
Jy

)0.72 − 112
(
Sc
Jy

)0.36 + 161 2.7 0.9

Galactic synchrotron 10.2 2.52 2.34
Galactic free–free 1.7 × 10−3 2.15 3.0
Extragalactic free–free 2.3 × 10−4 2.1 1.0
HI signal 1.1 × 10−6 – –

Extragalactic point sources are expected to dominate the 326.5 MHz sky at the
angular scales of our interest. The contribution from extragalactic point sources
is mostly due to the emission from normal galaxies, radio galaxies, star forming
galaxies and active galactic nuclei (Santos et al. 2005). Predictions of the point
source contribution are based on the measured source count function and the angular
correlation function.

There are different radio surveys that have been conducted at various frequencies
ranging from 151 MHz to 8.5 GHz, and these have a wide range of angular resolu-
tions ranging from 1′′ to 5′ (e.g. Singal et al. 2010, and references therein). There

is a clear consistency among the differential source count functions
(

dN
dS ∝ S−ε

)
at 1.4 GHz for sources with flux S > 1 mJy. The source counts are poorly con-
strained at S < 1 mJy. Based on the various radio observations (Singal et al. 2010),
we have identified four different regimes for the 1.4 GHz source counts: (a) >∼1 Jy
which are the brightest sources in the catalogs. These are relatively nearby objects
and they have a steep, Euclidean source count with ε ∼ 2.5; (b) 1 mJy–1 Jy where
the observed differential source counts decline more gradually with ε ∼ 1.7 which
is caused by redshift effects; (c) 15μJy–1 mJy where the source counts are again
steeper with ε > 2 which is closer to Euclidean, and there is considerable scat-
ter from field to field; and (d) <∼ 15μJy, the source counts must eventually flatten
(ε < 2) at low S to avoid an infinite integrated flux. The cut-off lower flux where the
power law index ε falls below 2 is not well established, and deeper radio observations
are required.

If we extrapolate the 1.4 GHz source counts to 326.5 MHz, the power law index
ε remains unchanged, but the flux range and the constant of proportionality change.
This change depends upon the value of the frequency spectral index used to
extrapolate from 1.4 GHz to 326.5 MHz.

The first turnover or flattening in the 1.4 GHz differential source count has been
reported at ∼ 1 mJy (Condon 1989; Rowan-Robinson et al. 1993; Hopkins et al.
1998; Richards 2000; Hopkins et al. 2003; Seymour et al. 2004; Jarvis & Rawlings
2004; Huynh et al. 2005; Simpson et al. 2006; Owen & Morrison 2008). The flaten-
ning is attributed to the emergence of a new population of radio sources (star-forming
galaxies and low-luminosity AGN) below ∼ 1 mJy. The turnover flux of 1 mJy at
1.4 GHz is equivalent to ∼3 mJy at 325 MHz assuming a spectral index of 0.7. This is
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consistent with 325 MHz GMRT observations (Sirothia et al. 2009). These features
have also been observed at S ∼ 1.9 mJy in 610 MHz GMRT observations (Garn
et al. 2007; Bondi et al. 2007; Garn et al. 2008).

We have modelled the 326.5 MHz source count function using a double power
law

dN

dS
=

⎧⎪⎨
⎪⎩

4000
Jy·Sr ·

(
S

1 Jy

)−1.64
for 3 mJy ≤ S ≤ 3 Jy,

134
Jy·Sr ·

(
S

1 Jy

)−2.24
for 10μJy ≤ S ≤ 3 mJy . (33)

Here we have fitted the 325 MHz differential source count measured by Sirothia
et al. (2009) to obtain the power law for S ≥ 3 mJy. This measurement, which
is the deepest till date at this frequency, does not adequately cover sources fainter
than 3 mJy. For sources below 3 mJy, we fit 1.4 GHz source counts from extremely
deep VLA observations (Hubble Deep Field-North; Biggs & Ivison 2006) in the flux
range 30μJy to 1153μJy by a single power law with slope ε = 2.24. We scale this
to 326.5 MHz using an average spectral index of 0.7 (Jackson 2005; Randall et al.
2012). As mentioned earlier, the lower cut-off below which the source count flattens
is not well determined. For the purpose of this paper, we assume that the power law
behaviour S−2.24 holds for S ≥ 10μJy, and the source count is flatter than S−2 (we
use ε = 1.5, Condon et al. 2012) for sources fainter than this. The choice of 10μJy
is motivated by the fact that the total contribution from sources with flux S ≤ 10μJy
to each pixel in the sky converges to ∼ 10μJy for a pixel size of ∼ 2′ which is
comparable to the N–S resolution of the ORT.

Point sources make two distinct contributions to the angular power spectrum, the
first being the Poisson fluctuation due to the discrete nature of the sources and the
second arising from the clustering of the sources. The Poisson contribution, which is
independent of 
, is calculated using

C
(0) =
(
∂B

∂T

)−2 [∫ sc

0
S2 dN

dS
dS

]
, (34)

where Sc (≤ 3 Jy) is the cut-off flux, all point sources brighter than this are assumed
to have been identified and subtracted out from the data. The Poisson contribution is
dominated by the brightest sources (S ∼ Sc), and the 10μJy lower cut-off does not
make a significant contribution to the amplitude A listed in Table 3.

The analysis of large samples of nearby radio-galaxies has shown that the point
sources are clustered. Cress et al. (1996) have measured the angular two point corre-
lation function at 1.4 GHz (FIRST Radio Survey, Becker et al. 1995) across angular
scales of 1.2′ to 2◦, equivalent to a U range of 14 < U < 1430. The measured
two-point correlation function can be well fitted with a single power law

w(θ) = (θ/θ0)
−β, (35)

where β = 1.1 and θ0 = 17.4′. They have also reported that the double and multi-
component sources tend to have a larger clustering amplitude than the whole sample
on small scales (≤12′). Further, the sources with flux below 2 mJy have a shallower
slope (β ∼ 0.97).
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For the purpose of this paper we have modeled the angular power spectrum due to
the clustering of point sources as

C
(0) =
(
∂B

∂T

)−2 [∫ sc

0
S

dN

dS
dS

]
w
 , (36)

where w
 ∝ 
β−2 is the Legendre transform of w(θ). In this case, the amplitude
A listed in Table 3 is sensitive to both the upper cut-off Sc and the lower cut-off
of 10μJy. However, in reality the faint sources have a weaker clustering as com-
pared to the single power law adopted here, and we do not expect a very significant
dependence on the lower cut-off of 10μJy.

The galactic diffuse synchrotron radiation is believed to be produced by cosmic
ray electrons propagating in the magnetic field of the galaxy (Ginzburg & Syrovatskii
1969; Rybicki & Lightman 1979). La Porta et al. (2008) have determined the angular
power spectra of the galactic synchrotron emission at angular scales greater than 0.5◦
using total intensity all-sky maps at 408 MHz (Haslam et al. 1982) and 1.42 GHz
(Reich 1982; Reich & Reich 1986; Reich et al. 2001). They found that the angular
power spectrum of synchrotron emission is well described by a power law (eq. (32))
where the value of γ varies in the range 2.6 to 3.0 depending on the galactic latitude.
Further, they have analysed the frequency dependence to find A ∝ ν−2α with α

varying in the range 2.9 to 3.2.
The angular power spectrum of the galactic synchrotron radiation has been

recently measured at angular scales less than 0.5◦ in three different 150 MHz obser-
vations. Bernardi et al. (2009) have estimated γ = 2.2 and A = 253 mK2 using
WSRT observations in a field with galactic latitude b = 8◦. Ghosh et al. (2012) have
estimated γ = 2.34 and A = 513 mK2 using GMRT observations in a field with
galactic latitude b = 14◦. Iacobelli et al. (2013) have estimated γ = 1.84 using
LOFAR observations in the same field as Bernardi et al. (2009). The mean spectral
index of the synchrotron emission at high galactic latitude has been recently con-
strained to be α = 2.52 in the 150−408 MHz frequency range (Rogers & Bowman
2008) using single dish observations. For the purpose of this paper we have used A

and γ from Ghosh et al. (2012) and extrapolated this to 326.5 MHz using α from
Rogers & Bowman (2008). The parameters for the galactic and extra-galactic free–
free emission have been extrapolated from 130 MHz (Santos et al. 2005), and are
listed in Table 3. For comparison, the value of C
(0) at 
 = 1,000 for the HI signal
is also shown in Table 3.

Figure 9 shows the total expected sky signal assuming that the brightest source in
the field has a flux of Sc = 1 Jy. The predictions are shown for Phase II, and F2(U, 0)
can be scaled by a factor of 6 to obtain the predictions for Phase I. The baseline
range U ≤ 10 is dominated by the synchrotron radiation, whereas 10 ≤ U ≤ 300
is dominated by the clustering of the point sources and U ≥ 300 is dominated by
the Poisson contribution. The contributions from the galactic and extra-galactic free–
free emission are considerably smaller across the entire U range. We find that the
total foreground contribution to each visibility is around 104−105 times larger than
the HI signal.

It is very important to correctly identify the point sources and subtract these out at
a high level of precision (∼10−100 mJy) in order to detect the HI signal (Ali et al.
2008; Bowman et al. 2009; Bernardi et al. 2011; Pindor et al. 2011; Ghosh et al.
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Figure 9. This shows the foreground model predictions for Phase II under the assumption that
the brightest source in the field has a flux of Sc = 1 Jy. The left and bottom axes respectively
show F2(U, 0) as a function of U, while the right and top axes respectively show C
(0) as
a function of 
. In addition to the total foregrounds, the individual components are namely
Point Source Clustering (PSC), Point Source Poisson (PSP) and Galactic Synchrotron Emission
(GSE). The Galactic Free–Free (GFF) and the Extra-Galactic Free–Free (EGFF) components
which are relatively much weaker, have not been shown but they have in total foreground
predictions.

2012). Here we assume that sources with flux density S ≥ Sc are visually identified
and perfectly subtracted out from the data. The left and right panels of Fig. 10 shows
the foreground predictions for Sc = 100 mJy and 10 mJy respectively. The galactic
synchrotron radiation is the most dominant component at U ≤ 50 (i.e. θ ≥ 34′)
and ≤100 (i.e. θ ≥ 17′) for Sc = 100 mJy and 10 mJy respectively. The point
source clustering component dominates at larger baselines or small angular scales.
The Poisson contribution falls faster than the clustering contribution as Sc is reduced,
and it is sub-dominant at all U .
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Figure 10. Same as Fig. 9 except that we assume that the point sources-brighter than Sc =
100 mJy (left panel), and Sc = 10 mJy (right panel) have been identified and subtracted out
from the data. The GFF and EGFF components, which are relatively much weaker, have not
been shown.
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The confusion limit is predicted to be ∼175 mJy for ORT (Phase II). However,
we do not propose to identify and subtract point sources using one dimensional ORT
images. We plan to use existing 325 MHz source catalogues (e.g. the Westerbork
Northern Sky Survey (WENSS); Rengelink 1997) or GMRT observations to identify
point sources in the ORT field-of-view and subtract their contribution for the ORT
visibility data. The WENSS survey has a thresold flux density of 18 mJy, whereas
the deepest GMRT observation (Sirothia et al. 2009) has achieved a thresold flux
density of 0.27 mJy at this frequency.

The residual foregrounds, after point source subtractions, are still ∼104 times
the HI signal. As mentioned earlier, we expect F2(U,	ν) to have a smooth 	ν

dependence and remain correlated across 	ν ∼ 5 MHZ whereas the HI signal is
expected to decorrelate within this frequency interval. It is thus, in principle, possi-
ble to use the distinctly different 	ν dependence to separate the HI signal from the
foregrounds. This foreground removal technique has been demonstrated to work in
610 MHz GMRT observations where it was possible to completely remove the fore-
grounds so that the residuals were consistent with the cosmological HI signal and
noise (Ghosh et al. 2011b). We propose to use a similar technique for foreground
removal from the ORT data.

5. Summary and conclusions

The ORT is currently being upgraded to operate as a radio-interferometer. The
upgrade is being carried out in two different stages with two nearly independent sys-
tems, namely Phase I and Phase II, being expected at the end of the upgrade. We
have briefly discussed these two phases and the relevant parameters are presented in
Table 1. The telescope has a nominal frequency of 326.5 MHz which corresponds to
the HI signal from the redshift z = 3.35.

Phases I and II respectively cover the angular multipole range 80 ≤ 
 ≤ 3100 and
10 ≤ 
 ≤ 3500, which correspond to the Fourier modes in the range 1.2 × 10−2 ≤
k⊥ ≤ 5.0 × 10−1 Mpc−1 and 2.0 × 10−3 ≤ k⊥ ≤ 5.4 × 10−1 Mpc−1 for the 3D HI
power spectrum (Fig. 3). We see that Phases I and II are both sensitive to the BAO
feature which has the first peak at k = 4.5×10−2 Mpc−1. The successive oscillations
also are well within the k range that will be probed.

We have made detailed predictions for both, the HI signal and the foregrounds
expected in Phases I and II. The foregrounds, we found, are dominated by the galac-
tic synchrotron emission at large angular scales whereas the contribution from the
clustering of point sources dominates at small angular scales. It is very important
to correctly identify the point sources and subtract them from the data. We find
that the galactic synchrotron emission dominates at 
 ≤ 630 and the contribution
from the clustering of point sources dominates at 
 > 630 if we assume that it is
possible to identify and subtract all the point sources brighter than Sc = 10 mJy
(Fig. 10). The foreground contribution to the individual visibilities is predicted to be
around 104−105 times larger than the HI signal (Fig. 5). Foreground removal is a
big challenge for detecting the HI signal.

The HI signal at a fixed angular multipole 
 but at two different frequencies ν and
ν + 	ν, we found, decorrelates rapidly as 	ν is increased (Fig. 6). The HI signal
is found to be totally decorrelated for 	ν ≥ 3 MHz for the entire 
 range of our
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interest (Fig. 7). In contrast, the foregrounds originate from continuum sources, and
we expect the foregrounds to remain correlated across 	ν ∼ 3 MHz. We propose to
use this property to extract the HI signal from the foregrounds.

We have investigated the SNR for detecting the HI signal under the assumption
that it is possible to completely remove the foregrounds. For both Phases I and II, the
SNR peaks around the baseline U ∼ 100 which corresponds to the angular multipole

 ∼ 630 (Fig. 8). We see that for Phase I, a 3σ detection is possible with ∼4,000 h
of observation and a 5σ detection is possible with ∼5,700 h of observation. A 3σ
detection is possible with ∼1,000 h of observation with Phase II, and a detection
better than > 5σ is possible with ∼2,000 h of observation.

The present paper primarily introduces the ORT as an instrument for exploring
the high redshift cosmological HI signal, and presents the expected signal and fore-
ground contributions. Preliminary SNR estimates have been presented, and these
have been used to estimate the observing time required to detect the HI signal. We
plan to perform a more rigorous analysis of power spectrum and parameter esti-
mation in subsequent work, and also address the possibility of detecting the BAO
feature.
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