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Abstract. The frequency intervals in which O VI ions get in resonance
with ion–cyclotron waves are calculated using the kinetic model, for the
latest six values found in literature on O VI ion number densities in
the 1.5R–3R region of the NPCH. It is found that the common reso-
nance interval is 1.5 kHz to 3 kHz. The R-variations of wave numbers
necessary for the above calculations are evaluated numerically, solv-
ing the cubic dispersion relation with the dielectric response derived
from the quasi-linear Vlasov equation for the left-circularly polarized
ion-cyclotron waves.
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1. Introduction

Heating of solar corona is still an active research area. It has recently been suggested
that the ion–cyclotron resonance could play a key role in the problem of coronal
heating. It is generally argued that various electromagnetic plasma waves including
Alfvén waves, slow magneto-acoustic waves and their dissipation at small scales and
play an important role in this heating process both in the inner and the outer corona
(Deforest & Gurman 1998; Ofman et al. 1999; Bemporad & Abbo 2012). Most of
the waves responsible for the fluctuations in the solar corona can be described using
the magnetohydrodynamics (MHD) formulation, which is usually based on a col-
lisional closure (Chmielewski et al. 2013). However especially in the outer corona
(i.e. r > 1.5R) and for the scales responsible for coronal heating, where resonances
such as the ion cyclotron resonance are thought to be important, a collisional closure
is not well justified. In addition, predictions for various physical observables seem
to be in better agreement with observations when the interactions between MHD
waves propagating from solar base and the particles in the North Polar Coronal Hole
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(NPCH) is considered in the context of a kinetic model. Vocks & Marsch utilized
this success of the kinetic model in confronting the heating problem of solar coronal
plasma (Vocks & Marsch 2002). Solar and Heliospheric Observatory (SOHO) data
also showed an important temperature anisotropy for the ions in the NPCH region,
that is, much bigger values of T⊥ were measured compared to those of T‖ for the O
VI, Mg X and Si VIII ions (Marsch 1999). These facts suggest a kinetic approach for
the problem of coronal heating and in particular the ion cyclotron resonance interval
dependence may be justified.

It is usually argued that solar corona can be divided into two main regions, the
inner corona or the coronal base, where all species are collisionally coupled via
Coulomb collisions, and the outer corona or the extended corona, which includes the
supersonic wind and is nearly collisionless. The difference between the two regions
is also visible in the structure of the magnetic fields, with dynamic loop-like struc-
tures in the coronal base and a uniform flux expansion in the extended corona (Parker
1991; Spruit et al. 1991; Cranmer 2002). The first work on SOHO/UVCS spec-
tral data on the Mg X and O VI ions argue that the plasma properties in NPCH in
the 1.75–2.1R regions (Doyle et al. 1999; Cranmer et al. 1999) correspond to colli-
sionless plasmas. However after 1999, Doyle et al. started this region at 1.5R. This
means that beyond 1.5R, plasma transport processes cannot be explained by classical
collisional processes.

The consideration of the low value of plasma beta together with temperature
anisotropy in NPCH means that the cause of higher T⊥ is the ion–cyclotron reso-
nance, which acts primarily in the perpendicular direction. On the other hand, when
the perpendicular temperature values for various ion species are compared, it is seen
that heavy ions are heated more (Wilhelm et al. 1998). Besides the temperature
anisotropy for each ion, the priority of heavy ions in heating is another important
observational data obtained from SOHO which suggests the ion–cyclotron resonance
(Marsch & Tu 1997; Doyle et al. 1999; Cranmer et al. 1999).

In the kinetic model, Vlasov equation governs the time evolution of the distri-
bution function of the plasma as a result of the energy transfer from ion–cyclotron
waves to particles. Vocks & Marsch (2001) studied the distribution function in the
solar corona up to 0.57R (R = r/R�) by solving the Vlasov equation in the context
of quasilinear approximation. They showed that T⊥ rises up to 3×107 K for O VI ions.

Pekünlü et al. (2004) solved dispersion relation by using the Vlasov equation
in the NPCH 1.5R–3.5R region by assuming that the numerical density of O VI
ions equals 10−3 Np; Ne varies with R as given by Feldman et al. (1997) and solar
coronal plasma is neutral. With their results they supported the proposal that in the
2.5 kHz–10 kHz frequency interval, the ion–cyclotron resonance is one of the basic
alternatives which can explain heating of solar coronal plasma.

It is known that in NPCH the plasma parameters remain the same only for a few
years (Kohl et al. 2006). To reduce this indefiniteness in the plasma parameters, one
must use their newest values. The frequency interval in which dispersion occurs in
the ion–cyclotron waves also changes with these parameters.

In this work, we calculate the frequency intervals in which O VI ions get in res-
onance with ion–cyclotron waves for six different O VI ion number density values.
For this we solve the dispersion relation in the NPCH 1.5R–3.5R region under the
following assumptions: (i) NPCH plasma is neutral (Wilhelm et al. 1998); (ii) the
relations connecting the lower and upper limits of O VI to proton number density
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are as given by Cranmer et al. (2008) and (iii) the analytical models of Doyle et al.
(1999), Feldman et al. (1997) and Esser et al. (1999) determine the electron number
density.

2. Properties of NPCH plasma

We start by presenting the physical properties of the NPCH plasma that are impor-
tant for our work. The ion plasma and ion–cyclotron frequencies are ωip =√

NOVIq2
i /ε0mi and ωic = (qi B/mi) respectively, where qi is the ion charge, ε0 is

the vacuum permittivity, mi is the mass of O VI ions and B is the magnetic field
strength (Seshadri 1973). In the region that we are going to work, the magnetic field
strength is given by Hollweg (1999) as B(R) = 1.5( fmax − 1)R−3.5 + 1.5R−2 in
Gauss, fmax = 9. Moreover we need the relations connecting the lower and upper
limits of O VI to proton number density. For these limits we use Cranmer’s values:
8 × 10−7 Np and 2.4 × 10−6 Np. In the literature three analytical models for electron
number densities given by Doyle, Feldman and Esser exist. We shall use all of these
models for comparison. They are as given below:

Ne = 106
(

1 × 108

R8
+ 2.5 × 103

R4
+ 2.9 × 105

R2

)
m−3, (1)

Ne = 106
(

3.2 × 108

R15.6
+ 2.5 × 106

R3.76
+ 1.4 × 105

R2

)
m−3, (2)

Ne = 106
(

3.7 × 108

R16.86
+ 1 × 107

R9.64
+ 2.4 × 106

R3.76

)
m−3. (3)

To find the R dependence of T‖ and T⊥ for O VI ions we used the work of Cranmer
(2009). By using the numerical analysis techniques from that work, we generated the
following polynomial representations of T‖ and T⊥ as

T⊥(R) = −a R2 + bR − c, (4)

T‖(R) = dR6 − eR5 + f R4 − gR3 + h R2 − k R + l (5)

with the coefficients

a = 3089565, b = 112140917, c = 165236923;
d = 346836459, e = 5417086469, f = 34628809623,

g = 115913467671, h = 214129741099,

k = 206844054714, l = 81605668892. (6)

3. Dispersion relation in NPCH 1.5R–3R interval for O VI ions

The wave equation

k × (k × E) + ω2

c2
εE = 0 (7)
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obtained under the cold plasma approximation governs the interaction between the
ion cyclotron waves and plasma particles in NPCH (Stix 1962). The dielectric tensor
ε appearing in the wave equation is calculated using the following quasi-linearized
Vlasov equation:

−i (k · v − ω) f + q

m
(v × B0) · ∂ f

∂v
= − q

m
(E + v × B) · ∂ f0

∂v
(8)

which defines the deviation of the distribution function f from the Maxwellian distri-
bution function f0. Here B0 is the solar coronal magnetic field and ω is the frequency
of the plane wave. In this case, calculations show that both Jx /Ex and Jy /Ey ratios
take the same constant value (Schmidt 1966). Hence σ is a scalar and ε = εI, where
I is the unit matrix and

ε ≡ 1 + σ

iωε0
= 1 + q2π

mω2ε0

∞∫

−∞

∞∫

0

[
(ω − kv‖) ∂ f0

∂v⊥ + kv⊥
(

∂ f0
∂v‖

)]

ω − ωic − kv‖
v2⊥dv⊥dv‖. (9)

Since for the left circularly polarized ion–cyclotron waves

n2 = ε = c2

ω2
k2, (10)

the dispersion relation becomes

k2
(

c2 − ω2

k2

)
=

∞∫

−∞

q2π
mε0

∞∫
0

[(
ω
k − v‖

) ∂ f0
∂v⊥ v2⊥ + ∂ f0

∂v‖ v
3⊥
]

dv⊥
ω
k − v‖ − ωic

k

dv‖. (11)

The exact value of this integral contains a residual contribution; however since this
contribution diminishes at ω = ωic, in this work we omit it. For simplification, we
assume that Maxwell velocity distribution is valid in both directions (parallel and
perpendicular to the magnetic field) at the first approximation. That is

f0 = NOVIα
2⊥α‖π

3
2 exp

[−(
α2⊥v2⊥ + α2‖v2‖

)]
. (12)

Here α⊥ = (2kBT⊥/m)− 1
2 and α‖ = (2kBT‖/m)− 1

2 . Expanding

1

ω − kv‖ − ωic
(13)

in power series up to third order and using this into the integral, we get the following
cubic dispersion relation:

ω2
ip

(ω−ωic)
3 α3‖

√
π

[
T⊥
T‖

−1

]
k3 +

[
ω2

ip

2(ω − ωic)2α2‖

(
ω

ω − ωic
+ T⊥

T‖
− 1

)
+ c2

]
k2

+
[

ω2
ip√

π (ω − ωic) α‖

(
ω

ω − ωic
+ T⊥

T‖
− 1

)]
k + ω2

ipω

(ω − ωic)
− ω2 = 0, (14)

by integrating term by term.
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Figure 1. Variation of wave number k versus R. Red line indicates ω = 1.5 kHz and blue line
indicates ω = 3 kHz. Here Doyle’s electron number density formula and the upper and lower
limits of O IV to proton number densities (a) 2.4 × 10−6 and (b) 8 × 10−7 by Cranmer are
used.

4. Results and discussion

Pekünlü et al. (2004), in their paper showed that ion–cyclotron resonances may
be an important mechanism to heat corona in the NPCH 1.5R–3R region. Their
results were based on the quasi-neutrality of the plasma; two O VI number den-
sity values, recorded in 1997 and 1998, 6.8 × 10−5 NP (Raymond et al. 1997) and
10−3 NP (Wilhelm et al. 1998) respectively and the Feldman’s electron number den-
sity. They determined the frequency interval in which O VI ions get in resonance
with ion–cyclotron waves as 2.5–10 kHz.

Since after 2008 new data on NOVI/Np are available, we wish to see how these will
affect the frequency intervals in which O VI ions get in resonance with ion–cyclotron
waves. We also want to search the other two electron number density analytic mod-
els, Doyle’s and Esser’s models on the resonance interval. We calculated six different
number densities for O VI ions. For each number density we solved the dispersion
relation using the data given in section 2. Solutions of the dispersion relation give us
the frequency intervals in which resonance occurs.

Figure 2. Variation of wave number k versus R. Red line indicates ω = 1.5 kHz and blue
line indicates ω = 3 kHz. Here Feldman’s electron number density formula and the upper and
lower limits of O IV to proton number densities (a) 2.4 × 10−6 and (b) 8 × 10−7 by Cranmer
are used.



354 Özgür Gültekin et al.

Figure 3. Variation of wave number k versus R. Red line indicates ω = 1.5 kHz and blue line
indicates ω = 3 kHz. Here Esser’s electron number density formula and the upper and lower
limits of O IV to proton number densities (a) 2.4 × 10−6 and (b) 8 × 10−7 by Cranmer are
used.

Substituting the numerical values of ωip and ωic, the upper and lower limits of
NOVI/Np, the R-variation formulas for Hollweg’s magnetic field strength, T⊥ and T‖
temperatures and Ne(R) given by Doyle, Feldman and Esser, respectively we numer-
ically solved the k variation versus R from the dispersion relation. The k curves
show infinite discontinuities at certain R values where left-circularly polarized ion-
cyclotron waves propagating along the magnetic field line direction from the base of
solar corona get in resonance with O VI ions at ω = ωic. The results are shown in
Figures 1–3(a) and (b). For ω values less than 1.5 kHz and for those values larger
than 3 kHz we could not obtain infinite discontinuity in the NPCH 1.5R–3R region
for all O VI ion number densities. Therefore we say that the common resonance fre-
quency interval is 1.5 kHz to 3 kHz. In all the figures the red curves indicate ω =
1.5 kHz and the blue curves indicate ω = 3 kHz. The R values where ion–cyclotron
wave resonance occurs naturally change from figure to figure.

The Doyle’s, Feldman’s and Esser’s electron number density models differ from
each other in the 1.5R–2.5R region although they have almost the same in the
2.5R–3R region. To see if this deviation would have any effect on the ion–cyclotron
resonance interval we solved the dispersion relation for each one and saw that they
did not have any significant effect as we had expected (Figures 1a, 2a, 3a). However,
the upper and lower NOVI/Np ratio values yielded reasonable results ((a) and (b) in
all figures).

5. Conclusions

We find the common frequency interval that resonance occurs for the six different
O VI ion number densities in the 1.5R–3R region of NPCH by solving numerically
the k variation versus R from the dispersion relation. Our results also depend on the
observed T⊥ and T‖ temperature values. The Doyle’s, Feldman’s and Esser’s electron
number density models are almost equivalent to each other in calculating the fre-
quency interval in which O VI ions get in resonance with ion–cyclotron waves even
if they differ in the 1.5R–2.5R region. However, the newest upper and lower limits of
NOVI/Np given by Cranmer et al. (2008) play a role in the numerical values related
to this interval. This work improves the limits of ion–cyclotron resonance according
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to the new data available. In future this work may be reconsidered according to the
newest data.
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