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Abstract. The present study deals with spatially homogeneous and
anisotropic axially symmetric Bianchi type-I cosmological model with
time variable cosmological term A in the presence of bulk viscous fluid.
The Einstein’s field equations are solved explicitly by time varying decel-
eration parameter g. Consequences of the four cases of phenomenological
decay of A have been discussed which are consistent with observations.
Physical and kinematical parameters of the models are discussed.
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1. Introduction

The cosmological picture that emerges after the observations of SN 1a by the HZT
and SCP teams reveals that at present we are residing in an accelerating Universe
(Perlmutter et al. 1998; Riess et al. 1998), whose geometry is Euclidean in nature
(Sievers et al. 2003). This speeding up of the Universe started about 7 Gyr ago
(Kirshner 2003) and some kind of repelling forces, termed as dark energy is supposed
to be responsible for catapulting the once decelerating Universe into an accelerating
one. Recently, there are many variants of dark energy which can be responsible for
this accelerated Universe and variation in the forms of dark energy also exhibit vari-
ation in expansion rate in different eras. So, there may be more than one candidate
which can be stamped as dark energy. For example, one may select the so called
cosmological constant, introduced and later abandoned by Einstein, as dark energy.
But selection of the cosmological constant as dark energy faces a serious fine-tuning
problem which demands that the value of A must be 123 orders of magnitude and
55 orders of magnitude larger respectively in the Planck scale (T ~ 10" GeV) and
(T ~ 102 GeV) than its presently observed value. Some of the recent discussions
on cosmological constant ‘problem’ and consequence on cosmology with a time-
varying cosmological constant are investigated by Ratra & Peebles (1988), Dolgov
(1983, 1997) and Sahni & Starobinsky (2000). Cosmological scenarios with a time
varying A have been proposed by several researchers. A number of models with
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different decay laws for the variation of cosmological term were investigated during
the last two decades (Chen & Wu 1990; Pavon 1991; Carvalho ef al. 1992; Lima
& Maia 1994; Lima & Trodden 1996; Arbab & Abdel-Rahman 1994; Vishwakarma
2001; Cunha & Santos 2004; Carneiro & Lima 2005).

Most cosmological models assume that the matter in the Universe can be described
by ‘dust’ (a pressure-less distribution) or at best a perfect fluid. A realistic treatment
of the problem requires the consideration of material distribution other than the per-
fect fluid. Nevertheless, there is a good reason to believe that at the early stage of
the Universe when the radiation in the form of photons as well as neutrons decou-
pled from matter, it behaved like a viscous fluid (Weinberg 1971; Nightingle 1973;
Heller & Klimek 1975). Misner (1967a, b), investigated the electron—neutrino scat-
tering and the subsequent decoupling of neutrinos, and came to the conclusion that
the viscosity of neutrinos can essentially reduce the initial anisotropy of the Uni-
verse. Bulk viscosity associated with the Grand Unified Theory (GUT) may lead
to an inflationary cosmology. Grgn (1990) studied inflationary Bianchi type mod-
els with bulk viscosity and shear. The model presented by Murphy (1973) has an
interesting feature in that the Big Bang type of singularity of infinite space time cur-
vature does not possess a finite past. However, the relationship assumed by Murphy
between the viscosity coefficient and the matter density is quite not acceptable for
large density. Collins & Stewart (1971) have studied the effect of viscosity on the
formation of galaxies. Ribeiro & Sanyal (1987) have presented Bianchi type VI
models containing a viscous fluid in the presence of an axial magnetic field. Bianchi
type-I solutions in the case of stiff matter with shear viscosity being the power func-
tion of energy density were obtained by Banerjee et al. (1985). Banerjee & Santos
(1984) have studied nonviscous and viscous fluids in Bianchi type-II, VIII and IX
space-times under the assumption that the ratio of shear scalar and expansion be con-
stant. The solutions for open, closed and flat Universe models have been founded by
Santos et al. (1985) under the assumption that the bulk viscosity (¢) is a power func-
tion of energy density (p). Costa & Makler (2008) have discussed the connection
among three distinct classes of models in the presence of decaying cosmological
term, bulk viscous pressure and non linear fluids. Bulk viscosity in Brans—Dicke the-
ory, leading to an accelerated phase of the Universe today have been investigated by
Mak & Harko (2003) and Sen et al. (2001). The effect of bulk-viscosity leading to
an accelerated phase of the Universe today has been studied by Fabris et al. (2006).
Lima & Germano (1992), Belinskii & Khalotnikov (1976, 1977), Banerjee et al.
(1986), Banerjee & Sanyal (1986, 1988), Zimdahl & Pavon (1993, 1994), Silva et al.
(2002), Gariel & Denmat (1995) and Zimdahl ef al. (1996) have studied the effect
of bulk viscosity on cosmological evolution in the framework of general theory of
relativity.

The simplest model of the observed Universe is well represented by Friedmann—
Robertson—Walker (FRW) models, which are both spatially homogeneous and
isotropic. These models in some sense are good global approximation of the present
day Universe. But on smaller scales, the Universe is neither homogeneous nor
isotropic. There are theoretical arguments (Chimento 2004; Misner 1968) and recent
experimental data regarding cosmic background radiation anisotropies which sup-
port the existence of an anisotropic phase that approaches an isotropic one (Land
& Magueijo 2005). Spatially homogeneous and anisotropic cosmological models
which provide a richer structure, both geometrically and physically, than the FRW
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model play a significant role in the description of early Universe. Axially symmet-
ric Bianchi type-I models being anisotropic generalization of flat FRW models are
interesting to study. These models are favoured by the available evidences for low
density Universe. An axially symmetric Bianchi type-I cosmological model have
been investigated by Reddy & Rao (2006) and Reddy et al. (2006a) in Brans—Dicke
theory while Reddy et al. (2006b) have discussed the same in Saez—Ballester scalar—
tensor theory. Reddy et al. (2007) have studied an axially symmetric Bianchi type-I
space-time cosmological model with a negative constant deceleration parameter in
scale-covariant theory of gravitation. Singh & Kale (2009) have discussed an axi-
ally symmetric Bianchi type-I, Kantowski-Sachs and Bianchi type-III cosmological
models filled with bulk viscous fluid together with variables G and A. Recently,
Pradhan et al. (2006) proposed the variation law of the deceleration parameter (DP),
which generates scale factor as increasing functions of time in FRW space-time in
Lyra’s manifold. Also, Amirhashchi et al. (2011) have studied an interacting and
non-interacting two fluid dark energy model in FRW Universe with time variable DP.

Motivated by the above discussions, in this paper, the Einstein’s field equa-
tions have been solved with variation law of DP in an axially symmetric Bianchi
type-I space-time in the presence of bulk viscous fluid source and time varying cos-
mological term A, which provides a scale factor as increasing functions of time.
Consequences of the following four cases of phenomenological decay of A have
been discussed:

Casel: A~ H?.
Casell: A~ H.
Case IlIl: A ~ p.
CaseIV: A ~ S~2.

Here H, p and S are respectively, the Hubble parameter, matter energy density and
average scale factor of the axially symmetric Bianchi type-I space-time. The dynam-
ical laws for decay of A have been widely studied by Arbab (1997, 1998), Carvalho
etal. (1992), Chen & Wu (1990), Schutzhold (2002a, b), Vishwakarma (2000), Singh
et al. (2008), Singh & Baghel (2009) to name a few.

2. The metric and field equations

We consider the homogeneous and anisotropic, axially symmetric Bianchi type-I
space-time which is given by the line element

ds? = —dr® + A% (1) dx? + B>(1) (dy* + dz?), (1)

where A(¢) and B(t) are cosmic scale factors.
We assume the cosmic matter consisting of bulk viscous fluid given by the energy
momentum tensor as

Tij = (p+ p)vivj + pgij, 2

with ‘
p=p-tv, (3)
where p is the effective pressure, ¢ is the coefficient of bulk viscosity, p is the
isotropic pressure, p is the energy density of matter and v* is the fluid four-velocity
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vector satisfying v;v’ = —1. The semicolon stands for covariant differentiation. On
thermodynamical grounds bulk viscous coefficient ¢ is positive, assuring that the vis-
cosity pushes the dissipative pressure p towards negative values. But correction to
the thermodynmical pressure p due to bulk viscous pressure is very small. Therefore,
the dynamics of cosmic evolution does not change fundamentally by the inclusion
of viscous term in the energy momentum tensor. The Einstein’s field equations with
time varying A (¢) are given by

R LR = 8nGTI 1 Ag! 4
i T8t =em i TAg- )
The field equations (4) for the metric (1) are
ZAB + B 8nGp + A (5)
_ — = 87T s
AB " B2 P
ZE + B’ 8nGp+ A (6)
J— — = —O87T s
B B2 P
B + AB + A 8nGp+ A @)
J— —_ — = =087 s
BT AB A P

where an overhead dot (-) denotes ordinary differentiation with respect to cosmic
time ¢. In view of the vanishing divergence, Einstein tensor gives

)+ (p+ p) A+2B + A 0 ®)
PEWTPINAT ) 826~

From (8), we observe that in case of constant A, we recover the continuity equa-
tion of matter. In order to satisfy energy conservation, a decaying vacuum term A
transfers energy continuously to the matter component. The effective time-dependent
cosmological term is regarded as second fluid component with energy density p, =
A (t)/8m G, where py is the vacuum energy density. We assume that the non-vacuum
component of matter obeys the equation of state

p=wp, wel01]. 9)

We define the average scale factor S as

§3 = /—g = AB%. (10)
From equations (6) and (7) we get

A B K an
A B S§¥
where k1 is a constant of integration.

We introduced the volume expansion 6 and shear scalar o as

. s 1 .
o =0, o°=300", (12)
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o'/ being the shear tensor. For axially symmetric Bianchi type-I metric, expressions
for dynamical scalars are

S
6= 35, (13)
ko
MV, (14

where k> (> 0) is a constant.
The Hubble parameter H and the deceleration parameter ¢ are defined as

S
H=—=, 15
3 (15)
S§
Equations (5), (6), (7) and (8) can be written in terms of H, o and g as
87Gp + A =3H? — o2, (17)
87Gp—A=Q2q—1)H>—0¢? (18)
and
. _ A
p+3(p+p H+—=0. (19)

871G

For constant value of A, it is to note that energy density of the Universe is a positive
quantity. It is believed that at the early stages of the evolution when the average scale
factor S was close to zero, the energy density of the Universe was infinitely large.
On the other hand, with the expansion of the Universe i.e. with increase of S the
energy density decreases and an infinitely large S correspond to a p close to zero.
Also, equation (17) yields

= — . (20)

2
Therefore, 0 < g—z < % and 0 < 8”920” < % for A > 0. Thus, the presence of

a positive A puts restriction on the upper limit of anisotropy whereas a negative A
contributes to the anisotropy. From equations (17) and (18), we obtain

T —47G(p +3p) — 20 —59 + 12707 G + A, 21
which is the Raychaudhuri equation for the given distribution. We observe that for
A < 0 and ¢ = 0, the Universe will always be in decelerating phase provided the
strong energy condition (Hawking & Ellis 1975) holds. In this case, we have

2
‘;—f < —%, 22)
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which integrates to give
1 ! n 1
0~ 3 6
where 6 is the initial value of 6. If 6y < 0, 8 will diverge (6 — —o0) fort < 3/|6p]|.
From equation (21), one also concludes the presence of viscosity and a positive Awill
slow down the rate of decrease of volume expansion. Also, from equation (14), we
get

(23)

o =—0b. (24)

Thus, the energy density associated with the anisotropy o decays rapidly in an
evolving Universe and it becomes negligible for infinitely large S. The pressure and
density are intimately connected to the motion of the fluid which they describe. This
can be appreciated by looking at the general equation of motion. From equations
(17) and (18), we obtain

S TG o +3p) - 20% +4720G + 2

- = — -0 o4 —.

s 3 PTIPTS ¢ 3
We observe that the positive cosmological term and bulk viscosity contribute posi-
tively in driving the acceleration of the Universe. Also, from equation (17), we get

(25)

3$r

= =° +87Gp + A. (26)
When A > 0, each term on the right-hand side of (26) is non-negative. Thus S does
not change sign and we get ever-expanding models. For A < 0, however, we can get

Universe models that expand and then recontract. From equation (8), we obtain

d A
S—3(1+a))_ S3(1+a)) =9 H2 _ . 27
P }=9¢ G (27)
Thus, decaying vacuum energy and viscosity of the fluid lead to matter creation.
We define the deceleration parameter g as

SS H + H?
q = ==\ —7

%= B > =b(t), say. (28)

The motivation to choose such time-dependent DP is behind the fact that the Uni-
verse has accelerated expansion at present as observed in recent observations of type
la supernova (Riess er al. 1998, 2004; Perlmutter et al. 1998; Tonry et al. 2003;
Clocchiatti 2006), CMB anisotropies (Bennett et al. 2003; de Bernadis et al. 2000;
Hanany et al. 2000) deceleration expansion in the past. Also the transition redshift
from deceleration expansion to accelerated expansion is about 0.5. Now for a Uni-
verse which was decelerating at past and accelerating at present, the DP must show
signature flipping (see Padmanabhan & Roychowdhury 2003; Amendola 2003; Riess
et al. 2001). So, there is no scope for a constant DP at the present epoch. In general,
the DP is not constant but varies with time.

Equation (28) may be rewritten as

—+b—> =0 (29)
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In order to solve equation (29), we assume b = b(S). It is important to note here
that one can assume b = b(t) = b(S(¢)), as S is also a time-dependent function. It
can be done only if there is a one-to-one correspondence between ¢ and S. But this
is only possible when one avoids singularity like Big Bang or Big Rip because r and
S are increasing functions.

The general solution of (29) with the assumption that b = b (S) is given by

/ef $9545 = 1 +m, (30)
where m is an integrating constant.
One cannot solve (30) in general as b is a variable. So, in order to solve the prob-

lem completely, we have to choose f %dS in such a manner that equation (30) is
integrable without any loss of generality. Hence, we consider

/%dS:InL(S), (31)

which does not affect the nature of generality solution. Hence, from (30) and (31),
we obtain

/L(S) s =1+m. (32)

Of course, the choice of L(S) in (32) is quite arbitrary but, since we are looking for
physically viable models of the Universe consistent with observation, we consider

1
L(S) = —F——=. (33)
a1+ 52
where « is an arbitrary constant.
In this case, on integrating, (32) gives the exact solution
S (t) = sinh (aT), (34)
where T = t + m. From equations (10), (11), (13) and (34), we get
. 2k / dT :|
A = kysinh (aT)exp| — | ——— 35
ssinh (o) p[ 3 J {sinh @) G
and
k dr
B = ky sinh (@T) exp [——1/ —3} (36)
3 J {sinh (aT)}

where k3 and k4 are integration constants such that kgkf =1.
For this solution, the metric (1) is reduced to the following form using suitable
transformation of co-ordinates

4k dr
ds> = —dT? + K {sinh (aT)}* exp [—‘/—3] dx?
3 {sinh («T)}
2% a7

21 2 2 2
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3. Discussion

We now discuss the models resulting from different dynamical laws for the decay
of A.

The deceleration parameter g, volume expansion €, Hubble parameter H and
shear scalar o for this model are

g = —tanh?(aT), (38)

6 = 3H = 3a coth (aT), (39)
ka

- 40

? V/3sinh3 (aT) “0)

For this model, 0/60 — 0 as T — oo. Therefore, the model approaches isotropy
asymptotically.

3.1 Case I. We consider
A =3BH>, (41)

where B is a constant of the order of unity. Here S represents the ratio between
vacuum and critical densities. From equations (9), (17) and (18), we obtain

87Gp = 3a>(1 — B) coth®(@T) — L (42)
3sinh®(@7)’
247Gt = a coth(aT) [Bw + 1) =38 (1 + w)]
2a (1 — w) k3 sech (aT)

, 43

* coth(aT) 3 sinh’ (@ T) 43

A = 3Ba’ coth®(@T) . (44)

We observe that the model has singularity at 7 = 0. It starts with a Big Bang from its
singular state at 7 = 0 and continues to expand till 7 = c0. At T =0, p, p, A, ¢
are all infinite and they become negligible for large values of 7. Therefore, for large
times the model represents a non-rotating, shearing and expanding Universe which
approaches isotropy asymptotically. In this case density parameter 2 for the model
(37) yields
o_ P 1 p_ k%sechz(aT)‘
Pe 902 sinh* (T

The ratio between vacuum and critical densities is given by

Py
Pe
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3.2 Case Il. 'We consider
A =aH, (45)

where « is a positive constant of order m> where m ~ 150 MeV is the energy scale
of the chiral phase transition of QCD (Borges & Carneiro 2005). In this case, we get

k2
87Gp = a [3a coth(aT) — a] coth(aT) — ——2——, 46
p=al (@) —a]coth(@l) — = g o0 (46)
247G = a coth(aT) (3w+1)—a(1+w)+ﬁ
(1 -w) kg sSech (@T) )
3a sinh” (aT)
A = aa coth(aT). (48)

This model also has singularity at 7 — 0. It evolves from its singular state at 7 — 0
with p, p, A, ¢ alldiverging, and expansion of the model becomes zero for T — oo.
In this case the vacuum energy decays slowly with time. The density parameter €2 is

Q- P {3 coth(aT) — a} B k% sec h2(aT)
Oc 3o coth(aT) 9¢2 sinh*(«T)

and the ratio between vacuum and critical densities is given by

& a

pe  3acoth(T)’

3.3 Case IIIl. 'We now consider

8t G
A = 71—)/,0’ (49)
3
where y is a constant. From equations (9), (17) and (18) we obtain
14 2 2 k%
87G (1 + 2 p =302 coth®(@T) — ——2——, 50
3)'0 @) = T 0
200 (3
UGt (G+y) = Ow+3—2y)a coth@T) + 25TV
coth(aT)
3—3w+2y)kisech (aT
i v sechel) (51)
3o sinh” (aT)
3 2 2 k%
(1 + —) A =3a” coth”(aT) — — (52)
4 3sinh®(aT)

In this case also our model starts expanding with a Big Bang singularity at 7T — 0
with p, p, A and ¢ all infinite, and expansion in the model ceases at T — oco. The
bulk viscosity coefficient ¢, matter density o and cosmological term A also decrease
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due to expansion and become zero for large times. The density parameter €2 for this
model is given by

3 —1 k% sechz(ozT)_

T G+y | 3elsini*@n)
and the ratio between vacuum and critical densities is obtained as
pv_ 3 '1 K sech?(@T) i
pe  B+y)|  9aZsinh*(l) | ’

3.4 Case IV. Finally, we consider the case

where § is a constant. In this case from (9), (17) and (18), we obtain

2 2 k% 8
81 Gp = 3a” coth”(aT) — — g - — , 54
3sinh®(a¢T) sinh“(aT)
(1 — w) k3 sech(aT)
241Gt = QBw+ 1)acoth (aT) + ——
3o sinh” (aT)
(1 4+ w)dsech(aT)
2 tanh (aT') — 55
20 tanh (o T) wsinh(@?l) (53)
A= ) (56)
B sinhz(aT).

Here we observe that this model also has singularity at 7 = 0. It starts from a
Big Bang singularity with p, p, ¢ and A all infinite. The bulk viscosity coefficient
¢, matter density p, cosmological term A and pressure p decrease as cosmic time
increases and they become zero for large times. The density parameter €2 for this
model is given by

k3 sec h>(aT) 8

Q=1-— _ _
9¢2sinh*(«T) 32 cosh®(aT)

The ratio between vacuum and critical densities is given by

Py )

pe  3a2cosh®(aT)’

4. Conclusion

In this paper, we have investigated homogeneous and anisotropic, axially symmetric
Bianchi type-I space-time with bulk viscous matter and time-dependent cosmolog-
ical term A in general relativity. The field equations have been solved explicitly
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Figure 1. The plot of deceleration parameter g vs. T for o = 1.

by choosing time-dependent deceleration parameter ¢g. Four different decays for the
cosmological term have been discussed in the context of models obtained. The cos-
mological term in this model is a decreasing function of time and this approaches
a small value as time increases (i.e. present epoch). The value of the cosmologi-
cal ‘term’ for this model is found to be small and positive which is supported by
the results from recent supernovae observations obtained by the high-Z supernova
team and supernova cosmological project (Perlmutter ez al. 1997, 1998, 1999; Riess
et al. 1998, 2004; Garnavich et al. 1998a, b; Schmidt ef al. 1998). These observa-
tions on magnitude and red-shift of type 1a supernova suggest that our Universe may
be an accelerating one with induced cosmological density through the cosmological
A-term. From equation (40), one concludes that the value of deceleration parame-
ter ‘g’ is negative, and it gives rise to an accelerating Universe. Recent observations
(Perlmutter et al. 1997, 1998, 1999; Riess et al. 1998, 2004; Tonry et al. 2003; John
2004, Knop 2003) reveal that the value of deceleration parameter (g) is confined in
the range —1 < g < 0 and the present day Universe is undergoing an accelerated
expansion. Figure 1 shows that the value of ¢ lies in the range —1 < g < 0 which
is consistent with recent observations. Thus, the derived model (37) represents a
non-rotating, shearing and accelerating Universe which becomes isotropic for large
times.
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