J. Astrophys. Astr. (2013) 34, 41-60 © Indian Academy of Sciences

Cosmological Solutions of Tensor—Vector Theories of Gravity
by Varying the Space-Time-Matter Coupling Constant

A.lIzadi"*, A.Shojai’* & M. Nouradini?

' Department of Physics, K. N. Toosi University of Technology, Tehran, Iran.
2Department of Physics, University of Tehran, North Karegar Ave., Tehran, Iran.
*e-mail: azamizadi@alumni.ut.ac.ir

Received 9 February 2012; accepted 16 January 2013

Abstract. We consider tensor—vector theories by varying the space-
time—matter coupling constant (varying Einstein velocity) in a spatially
flat FRW universe. We examine the dynamics of this model by dynamical
system method assuming a ACDM background and we find some exact
solutions by considering the character of critical points of the theory and
their stability conditions. Then we reconstruct the potential V (A?) and the
coupling Z(A?) by demanding a background ACDM cosmology. Also
we set restrictions on the varying Einstein velocity to solve the horizon
problem. This gives a selection rule for choosing the appropriate stable
solution. We will see that it is possible to produce the background expan-
sion history H (z) indicated by observations. Finally we will discuss the
behavior of the speed of light (cg) for those solutions.
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1. Introduction

Late-time cosmic acceleration, reported in 1998 (Riess et al. 1998; Perlmutter et al.
1999) based on the type Ia Supernovae (SN Ia) observations, has led cosmologists to
anew field of research. The source of this acceleration, called dark energy (Huterer &
Turner 1999), is still an unsolved problem. Independent observational data such as
SN Ia (Astier et al. 2006; Riess et al. 2004, 2007; Wood-Vasey et al. 2007; Davis
et al. 2007; Kowalski et al. 2008), cosmic microwave background (CMB) (Spergel
et al. 2003, 2007; Komatsu et al. 2009), and baryon acoustic oscillations (BAO)
(Eisenstein et al. 2005; Percival et al. 2007, 2010) have confirmed that about 70 per
cent of total content of the present Universe consists of dark energy. Cosmological
constant A is the simplest candidate for dark energy. In the standard theory the cold
dark matter model with cosmological constant ACDM describe an effective epoch.
Therefore assuming spatial flatness, the predicted cosmic history is given by
éz—Hz[sz (1+2°+ Qo1 +2* +Q 1
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which offers the best fit to the observational data. In the above equation, a(t) is the
scale factor and ¢ is the cosmic time. The redshift z is defined by z = (%) -1,

where ag is the scale factor at present. Also H = ;—’ is the Hubble parameter and

Qor = % ~ 1074, Qom = p/?—;“ ~ 0.3 and Qp = 1 — Qom — Qo are the density
parameters. Despite the fact that the above-proposed model can explain the late-time
acceleration of the Universe, it suffers from the cosmological constant problem. Two
classes of models have been proposed in the hope of solving this problem. In the first
class, dark energy is responsible for the accelerating expansion (Fujii 1982; Ford
1987; Fujii & Nishioka 1990; Copeland ef al. 1993) and its role can be played by
some scalar fields (like quintessence model) or vector dark energy or by Chaplygin
gas, topological defects, holographic dark energy, etc. In the second class, modifica-
tion of general relativity on cosmological scales tries to explain recent accelerating
expansion. Scalar—tensor theories (Boisseau er al. 2000; Esposito-Fare ‘se & Polarski
2001; Uzan 1999; Gannouji et al. 2006; Capozziello et al. 2006; Riazuelo & Uzan
2002), f(R) modified gravity theories (Nojiri & Odintsov 2004; Soussa & Woodard
2004; Faraoni & Nadeau 2007) and braneworld models are some examples of these
models. Models of present dark energy based on f(R) gravity were first proposed
in Capoziello et al. (2003) and Carroll et al. (2004). However, first viable models of
such type satisfying most present observational data were constructed only in Hu &
Sawicki (2007), Appleby & Battye (2007) and Starobinsky (2007).

Vector fields are recognized as a mediator for some of the non-gravitational inter-
actions. Therefore, it is possible that a vector field could be the source of the present
cosmic acceleration. Various cosmological models based on vector fields propose a
suitable model for both the inflationary and the recent acceleration eras (Koivisto &
Mota 2008; Armendariz-Picon 2004; Boehmer & Harko 2007; Jimenez & Maroto
2008, 2009). Vector fields also play a key role in different extensions of general rela-
tivity, with the vector-tensor theories and so on (Hellings & Nordtvedt 1973; Will &
Nordtvedt 1972; Will 1993).

On the other hand, there is a claim that the effective fine structure constant « = %
has a temporal variation. The variation of «, which is constrained by the Oklo natural
fission reactor is given by —0.9x 1077 < Aa/a = (a—0g) /ag < 1.2x 1077 (according
to Damour and Dyson (1996)) at the redshift z & 0.16, where « is the value of « at
present (Fujii e al. 2000). Other constraints obtained from the absorption line spectra
of distant quasars are Aa/a = (0.57440.102) x 107> over the redshift range 0.2 <
z < 3.7 (Murphy et al. 2001; Webb et al. 2001) and Aa /o = (0.0640.06) x 10~ for
0.4 < z < 2.3 (Chand et al. 2004). These claims may provide important conclusions
for the existence of a light scalar or vector field related with dark energy. However
the possibility of systematic errors still remains (Murphy et al. 2003).

Furthermore there are many theoretical and experimental proposals that claim that
the values of fundamental constants are not actually constant and may be space and
time dependent (Shlyakhter 1976; Uzan 2003; Bekenstein 1982; Barrow 2003). One
of these constants, which have attracted model makers’ attention is the speed of
light (Magueijo 2003) that has arisen from the possibility of varying fine structure
constant. These results imply the question: which of e, i and ¢ might be responsible
for any observed change in «?

The first modern varying speed of light (VSL) theory was by Moffat (1993).
Albrecht & Magueijo (1999) and Barrow (1999) took these models as an alternative



Cosmological Solutions of Tensor—Vector Theories 43

to the inflation theory in order to solve some puzzles of the Big-Bang cosmological
models (Albrecht & Magueijo 1999; Magueijo & Baskerville 2000).

VSL can be attained via a pre-set function for the speed of light (Barrow 1999;
Barrow & Magueijo 1999), or by considering a dynamical term in the Lagrangian for
the varying speed of light (Magueijo 2000). Magueijo has suggested a generalized
varying speed of light theory, having general covariance and local Lorentz invariance
by introducing a time-like coordinate x° which is not necessarily equal to cz. The
physical time 7 can only be defined when dx”/c is integrable.

As a matter of fact there are different constants, which can be interpreted as
the velocity of light. Ellis & Uzan (2005) have shown that one has to discriminate
between cgy (the electromagnetic wave velocity), cst (the space—time causal struc-
ture constant), cgw (the gravitational wave velocity) and cg (the space—time—matter
coupling constant appearing at the right hand side of Einstein’s equations). Taking
the standard Lagrangian of the electromagnetism and general relativity and having
the correct Newtonian limit, one has cg/co = cgw/co = cem/co = cst/co = 1,
where ¢ is a constant of dimension velocity and is equal to 3 x 108 m/s in the MKS
units. All these velocities except for the Einstein velocity have been investigated
for some modified gravities in Palatini formalism in Izadi & Shojai (2009) and we
have shown that they are not equal to each other in the local inertial frame. In other
words, after relaxing the constancy of the speed of light, different facets of ¢ will not
coincide necessarily. Therefore considering any modified gravity and/or electromag-
netism theory involves in re-examining the meaning and the relation between these
different concepts of the speed of light. In addition, in order to formulate a theory in
which the speed of light is varying, it is crucial to specify which kind of speeds is
going to vary. For that reason it is significant to express clearly which quantities are
kept fixed when one or the other aspects of ¢ is assumed to vary.

In what follows, we will take the Einstein velocity as a field that varies like what
we have done in Izadi & Shojai (2010). Here we will examine a vector field as the
candidate for this field. Vector-like dark energy displays a series of properties that
make it phenomenologically interesting. We will assume such a VSL model with a
nonminimal coupling to gravity, just like what we have done in Izadi & Shojai (2009,
2010). However, we assume that the Einstein speed of light is obtained by dynamical
properties expressed through the coupling Z(A?) in the action

1
S = /d4x./_—g |:§Z(A2)R +EF W FM — V(A + Lm(gu, <I>)} . @

where F,, = 0,A, — 0,A, and A% = g AL A,. Also Lyv(guy, ®) stands for
matter fields. As a matter of fact letting a constant vary implies substituting it by a
dynamical field consistently. In reality we must consider only the variation of dimen-
sionless quantities. Before we proceed further with the speed of light, let us make
some general comments about tensor—vector theories of gravity. In such theories, one
considers a Lagrangian like what we proposed in the above form. The function Z is
a dimensionless dynamical field. The dynamics of A depends on Z, V and a kinetic
term that by a redefinition of the field A2 can be set equal to 1. Putting potential term
may seem rather ad hoc, but we will reconstruct it in such a way that the dynamics of
A? produce the desired cosmic history. Although, only the variation of dimension-
less constants is physically acceptable and this action can represent 87 G /c* varying
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theory, but setting 871G = cg = 1, it is equivalent to having Z(A?) = (%)4 as a
varying quantity and thus representing a VSL model.

In actual fact several observational puzzles can be solved by VSL. With appropri-
ate additional observations, the redshift dependence in « could be taken as a result
of the varying Einstein velocity cg. However, there are some obstacles in all tests of
a varying c. One of them is that the predicted effects are either out of the reach of the
present technology, or on the threshold.

One of the best observations wich is relevant to VSL, is the evidence for a redshift
dependence in the fine structure constant, which claims that the value of o was lower
in the past. Another evidence is the recent observational data for SN Ia and so on.
As a matter of fact with a higher ¢ in the past, objects with the same look-back
time is further away. Therefore, in VSL theories it looks as though the Universe is
accelerating. In addition there is a strange coincidence between the redshifts at which
the Universe starts accelerating and those based on variations in «. VSL theories
can explain this coincidence. In Barrow & Magueijo (2000), both the Webb and
supernovae results are fitted using the same set of parameters.

In section 2, we will investigate the equations governing VSL cosmology in the
framework of vector—tensor theories. In section 3, we will examine the dynamics
of this theory via the dynamical system method assuming a ACDM cosmic history.
Considering the character of the critical points of the theory and their stabilities,
we find the generic evolution of the system. The forms of the potential V and the
coupling Z is reconstructed in section 4. One can set restrictions on the varying
speed of light to solve the horizon problem. This gives a selection rule for choosing
the appropriate stable solution. Also observational constraints put some restriction
on the parameters appeared in the ¢ function.

2. The model
Starting from (2), variation with respect to the metric gives the modified Einstein
equations:
2 (m) (A) (Z)
Z(A )Gl“)= T;,Lu‘f_ T;u)‘f_ Tl“}‘ (3)

Since the matter fields are minimally coupled to the metric, the weak equivalence
principle holds and therefore

(m)ﬂ
V, T ", =0, )

v

where the energy momentum tensor of matter is defined as usual:

(m) 2 5Sn
Tw=— . %)
- A/ —888uv

The other parts of the energy momentum tensor are defined as

() o s AV
T v = 8uv(EFpo F'" — V(A7) —4EF,F, +2mAMAv (6)
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and

2) , 5 dz
Tuv = (Vo = guvV V) Z(A%) = RS Ay A (7)

Varying the action with respect to the vector field A, one obtains
EV,F L4z —R-2— v AP (8
~ 4|da? dA?

which is a generalization of Maxwell equations.
Let us confine ourselves to the case of a spatially flat, homogeneous and isotropic
FRW universe with metric

ds? = —d)co2 + a(xo)z(dr2 + r2d522). ®

Using the above field equations and assuming the matter field as a perfect fluid in
this cosmological context, we will obtain the cg-variable Friedman equations and the
conservation law respectively as

(my (A (D)

3Z(ADH?>=p + P + P, (10)
) (A A (2D (@)
—2ZH=(P +P)+ (P +P)+(P+7P), (1)
(m) (m)  (m)
p +3H(p + p)=0, (12)

where a dot over any quantity indicates derivative with respect to the time-like coor-
dinate x°. R = 6(H + 2H?) is the Ricci scalar, the parameter H x% = 1 (gfo 18
the Hubble parameter, and p and p are the 00 and ii components of the energy—
momentum tensor. The time-like coordinate x° is related to the cosmic time by the

relation

dx? dx?
dt = — = . (13)
¢ Z(A%)1
In the cosmological context, since dico is integrable, the physical time will be
obtained simply. In addition, the physical Hubble parameter Hp(t) = %((11—‘; can be

evaluated as H,(1) = H (x())d . Replacing 7 (x in eq. (12) gives

0) dx by H, (t) dz

dp™m (m)  (m)
+3Hy(P 4+ P)=0 (14)

which shows the validity of the conservation equation of matter in terms of the cos-
mic time in this model. We are restricted to consider either a purely time-like vector,
Ay = (A(x9),0), or a space-like vector with A, = (0, A(xY)) since the symme-
tries of the metric (9) do not permit a velocity field 7p;. The existence of a spatially



46 A. Izadi et al.

non-vanishing vector can break the isotropy of a FRW universe. If a vector field was
introduced as a candidate for the dark energy, as long as it remains subdominant,
this violation would be observationally irrelevant. Once dark energy becomes dom-
inant, one would expect an anisotropic expansion of the Universe, in conflict with
the remarkable isotropy of the CMB. Due to this fact, in order to avoid violations of
isotropy, the vector has to be part of a cosmic triad or in spherical coordinates; this
means that it should have only the radial component.

Let us now investigate the explicit forms of the equations for these two cases
separately.

2.1 Time-like vector model A, = (A(xY), 0)

At first we consider the time-like case, namely:

Ay = A5, (15)
The energy densities and pressures are given by
(4) ) av
o =V(A 2—A°, 16
(A7) +2 3 (16)
(4) 5
p =—-V(AY) a7
and
B = snz - p (18)
- da2”’
(2) . .
P =7Z+3HZ. (19)

Moreover the generalized Maxwell equations for this model would get the form
dz dv
dA2 dA?

Substituting these equations back in the generalized Friedman equations, we have

=0. (20)

3Z(A*)H? = pm + pr + V(A®) —3HZ, 1)
2 4 ..
—2ZANH = pm+ 3pr + Z, (22)

in which p, and p; are matter and radiation contributions to pm.

Dynamical system method is a way to find out some exact solutions of cosmo-
logical models (Goliath & Ellis 1999). Choosing appropriate variables, the field
equations of the desired theory can be converted to a set of autonomous differential
equations. Afterwards the critical points of this autonomous system describe inter-
esting exact solutions. Furthermore this method can be used to check the stability
conditions. In section 3 this method will be used to obtain some exact solutions of
this model.



Cosmological Solutions of Tensor—Vector Theories 47

2.2 Space-like vector model A, = (0, A(xo))

For the case of a space-like vector model, isotropy and homogeneity of the space-
time forces one to the following form of the vector field:

Ap =aAE")s),. (23)
The energy densities and pressures are given by

(A)

P =—26(A+ AH)? +V(AY), (24)
A . dv
P = +426(A+ AH)? — V(A + 2dA A%(xY) (25)
and
(2) .
0 =-3HZ, (26)
@z .. ) iz , &
P :z+3Hz—RmA (x%). (27)

Substituting these equations in the generalized Friedman equations, we have

3Z(ADH? = pm+ pr — 26(A+ HA)? + V(A®) —3HZ (28)
2Z(AHH = pm + LN PRl e (x9). (29)
= omT 3P aa? Ko

Also the generalized Maxwell equations for this model is given by

dz dv
A+3HA+ AH +2H?*A R-2 Ax°
E[A+3HA + + 1= [dAl dAZ} (x7). (30)

3. Dynamics of the models

As mentioned previously, the dynamical system method describes the cosmological
dynamics of these models. Since here we have two arbitrary functions, i.e. Z(A?%)
and V(Az), there is one degree of freedom, m in time-like model and two degrees of
freedom, m and n in space-like model that we will introduce in the next subsection. In
reality, if we do not try to reconstruct the function Z(A?), this function can be fixed at
first. In such a case H (N) would be determined by the autonomous system. However,
in our reconstruction approach, it would be fixed at first. Adopting the dynamical
system method, we have to use the Hubble parameter of ACDM cosmology, given
by eq. (1) as an input parameter of the model and in addition to the cg-variable
Friedmann equation (21) or (28), the following conservation equations have to be
considered:

pm + 3Hpm =0, 3D

pr 4+ 4Hp, = 0. (32)
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To study the cosmological dynamics implied by Friedmann equation we express it as
an autonomous system of first-order differential equations. For the case of time-like
vector field, equation (21) can be written in the dimensionless form as

vt 7
= s b o + ) _z (33)

1 b
3ZH* 3ZH? Z

while for space-like vector field equation (28) has the form

26 (A'+A)? V(AH 7
o P EWEHA? VA 7 )
3ZH* 3ZH? 3 V4 3ZH? Z
where
, d d 1 d 1 d
= =— = — = —. (35)
dlna  dN  H@%dx*  H,(@t)dr
The average effective equation of state is
2H 1 (36)
Weff = —= — —
eff 3 H

which describes the general expansion rate of the Universe.

3.1 Time-like model

For this model according to (33) we can define the dimensionless variables
X1, X2, X3 as

-7/
X1 = Z (37
V(A?)
Xy = W, (38)
pr
X3 = W = Qr. (39)

In fact x3 is 2; and x1 + xp = Qpg is the curvature dark energy. Defining Qp, =

%, eq. (33) can be written as

Qn=1-—x1—x2— x3. (40)

Using the defined dimensionless variables, eq. (22) can be expressed as

/

H
x| =3—3x —3x24x3 +x12+(2—x1)ﬁ. (41)

Differentiating x;, x3 with respect to N we have

/

Xy = —4x3 4 x3x] — 2X3g (42)
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and
xh=x|x1(1 —m) — 22/ (43)
2 H ’
where
bk
_ Vada
m= 17 (44)
Z dA?

The potential V (A?) is restricted to satisfy the equation (44), where m is an arbi-
trary constant in order to study the dynamical features of the model with a general
coupling Z(A?). With the above assumption, it is worthy of attention that without
specifying neither the coupling nor the potential, it is possible to find analytically the
class of inflationary attractors. As a matter of fact potentials like exponential, power-
laws and so on have been chosen in different models, based either on simplicity or
on some particle physics model. However there are no observations or fundamental
principles to lead our investigation.

The cosmological dynamics of the model is described by the autonomous dynam-
ical system (41), (42) and (43). It should be emphasized that in our reconstruction

z
approach, H (N) is taken fixed, while % (and its perturbations) are allowed to vary.

.. . . . . . . / . .
In addition, it is significant to bear in mind that % is not always constant and for this
reason the dynamical equations are not generally autonomous. On the other hand

for ACDM background is approximately constant in the radiation (wegr = 1/3),

matter (were = 0) and de Sltter (wegr = —1) eras and therefore the dynamical sys-
tem method can be used for these three different eras. This approach comes up with
the form of both the coupling and the potential. In addition, exact solutions can be
derived by first integrals of motion. The results of our investigation do not depend
on using any particular form of H (z), except that the Universe should go through the
radiation, matter and acceleration eras. In order to achieve the definiteness, a specific
form for H(z) corresponding to a ACDM cosmology (1) will be assumed, which in
terms of N will take the form

H(N)? = HZ[Qome N + Qore ™V + Q4] (45)

where N =Ina = —In(1 + z) and QA = 1 — Qom — Qor.

If a ACDM behavior for H is applied, the model will agree with observation. As a
matter of fact, observations from SN Ia, CMB and BAO are all based on the determi-
nation of 7 (z), where r is the comoving distance to a certain object located at redshift
z. The comoving distance is obtained from the null geodesics of the Robertson—
Walker metric as r(z) = f a(xo) = f %, where H(z) is the standard Hubble
parameter. Therefore in order to reproduce the background expansion history indi-
cated by observations, it would be appropriate to impose condition on H(z) rather
than on H,(z). In order to find the critical points and their stability in each one of
these three eras, dynamics of the system can be described by setting x! = 0.

Equation (45) can be used to find 71((1]\,\’)) , which is a quantity needed in our relations
H'(N) —3Qome N — 4Qp eV

H(N) — 2[1 — Qom — Qor + Qome 3N + Qe V]’
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The values of the above term in the three different eras are

H'(N
(V) = -2, N < Ni_p
H(N)
H'(N) -3 N N
= —, _ < —
H(N) ) r—m m—A
H'(N)
=0, N > Np_a
H(N)
in which n,_, =~ —ln%—‘g‘ and Np_p =~ _T]lng—o‘r\n are the N radiation—matter

and matter—de Sitter transition values. For Qo = 0.3 and Qo = 1074, N takes
these values respectively: Ny_p >~ —8 and Ny, =~ —0.3. Although the transition
between these three eras is model dependent, this transition is rapid and so it will
not play an important role in our analysis. It is remarkable to emphasize that this
dynamical system can be approximated as such during the radiation, matter and de
Sitter eras when I;I/((IIVV)) is roughly constant, even though this dynamical system is not
autonomous at all times. The results for time-like model are shown in Table 1.

In general, any other parameter which could be related to Z 4 and Z 42 should
be added beside the above m. In actuality such a function could be fixed from the
beginning, if we did not try to reconstruct the function Z(A?), and the corresponding

Table 1. The critical points of the system and their eigenvalues in each one of the three eras. In the

2 2
_ 8 4(5—m) _ 1 3(5—m) 18(3—m)
above table ¢ —\/<l—|—m) _4(l_m)<(lfm)2 — 1) and x = f\/(z(l—m)) - U=m)

Era Critical point (x1, x2, x3) Eigenvalues
Radiation R1 =1(0,0,1) (4, _1%\/5’ #)
H 1++/5 145 (1=m)  1+4/5
ﬁ:_z R2:<T\f:0v0) (ﬁ’4+( 2)( m)’ 2f)
R = (15%,0,0) (—ﬁ,4+ A—vHdom) 1-/5
8 8
Ry = (; 1 (4(5*’") - 1) 0> =4 7<1+m>+§ *(]er)*{
4 T=m> 3 \ (1-m)? ’ T—m> 2 ' 2
Matter My =(0,0,0) (—1,-3/2,3)
H' 3 3 1 3 9-3
=73 MQ:(Z’O’O) (3.3, %)
My =(1,0.4) (@=m.15)
_ (=3 3G-m) —4tm 3(m=5) 3m=5)
My = (l—m’ 2(1,,,1)2!0) ( T=m > a(=m) T X> I(1=m) X)
de Sitter d; = (0,1,0) (4, S0EEn=D S30n-D)

=0 dy = (4,0,-7) (40— m), T3, 3203
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Z . S
parameter would be, for example, A—Aj. In this approach, which is different from
our reconstruction approach, H (N) would not be fixed but the autonomous system
would have to determine it.

According to the above table, it is obvious that for m < (ffsf)’ R3 is an attractor
and also Ry is an attractor provided thatm < land ¢ < 1 + %. Additionally for

m < 4and x < ZE’I"__n% My is an attractor. As a matter of course for m < 1, the

critical point d; is an attractor.

In the stability analysis of the cosmological dynamical systems, a specific cosmo-
logical model (e.g. a particular form of Z(A?) or m) is usually assumed and then
the stability of the cosmic history, H (N), is investigated. In this circumstance a sta-
ble cosmic history is the one chosen by the model. However, the stability analysis
has a very different meaning in the reconstruction approach. The model functions
VA (Az) and V (A?) are not fixed, but we fix the cosmic history and permit the func-
tions Z(A2) and V (A?) to be specified so that the model predict the desired cosmic
history. Critical points are the physically interesting quantities in each era in the con-
text of the ACDM cosmic history. These lead us to the possible forms of Z(A?) and
V (A?) that can produce a ACDM cosmic history.

Although some critical points are not stable, this does not indicate that these points
are cosmologically irrelevant. In actual fact these instabilities are not instabilities of
the trajectory H(N) (which we kept fixed). On the contrary these are instabilities
of the Z(A?) and V (A?) forms which are permitted to vary. Thereby they are not
so relevant physically for the reason that Z(A?) is assumed to be fixed from the
beginning in a physical context.

The effective equation of state wer is applied on the dynamical system, acquired
from (36) using (45).

An interesting characteristic of the critical points of Table 1 is that in all the sit-
uations, which differ from GR, dark energy (DE = 1) induce the expansion rate in
each era, which implies that having the proper perturbation properties at early times,
the vector field could also play the role of dark matter.

We could follow the behavior of critical points for this model to verify the dynam-

ical evolution indicated by the attractors of table 1 by using ansatz 71,((11\\,/)) with

Qom = 0.3 and o, = 10~*. This ansatz gives rise to the wegr (V) as shown in Fig. 1.
If the system initially were set up, on R4 in the radiation era, with m = 4—1‘, it would
follow the evolution from R4 to the matter era (M4) and ultimately to the de Sitter
Era (dy). It is examined that if we did not choose the initial conditions exactly coin-
ciding with any of the other critical points then the system would be captured by the
Ry attractor and then follows the above trajectory (see Fig. 2). In the literature, it
is common to use the power-law or exponential forms for the potential V (A%) and
coupling Z(A?) which also give a constant m.

3.2 Space-like model
According to (34) dimensionless variables xp, x2, x3, x4 can be defined as

7'
S 46
Xy ~ (46)
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Figure 1. The effective equation of state wegr imposed on the dynamical system.
\%4
X2 = —, 47
2= 5o 47)
2(A + A)?
2
X3 = — 48
3 37 “%)
Pr
X4 = ) 49
4= 3o (49)
Considering Qp = % we can write (34) as
1=Qm+x1+x2—$x32+X4. (50)

As one can see x4 is in fact Q; and x| + x2 — §x32 = QpE is again related to the
curvature dark energy. Using the defined dimensionless variables, we can express
eq. (29) as

, ) A2 [ dv dz\ H' , H
x1=3(1—x1—x2+§x3)+x4+m Zm—Rm —g)(1+x1+2g. (51)

Also, differentiating x», x3 and x4 with respect to N we have

! = 1 ZH/ 52
xz—xz[xl( —m) — E]’ (52)

4(A+ A)Y(A'+ AT
(3)" = x1x3 + 7

(53)
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Figure 2. The evolution of the variables x{(N), x2(N) and x3(N). The system follows the
evolution of the attractor through the three eras.

and ,

xy = —4x4 + x4x1 — ZX4g. (54)

As it is mentioned earlier, we are going to investigate the dynamical characteristics
of models with a general coupling Z(A?), without restricting ourselves to a par-
ticular choice, except for the condition that the potential V (A?) satisfies equation
(44), where m is an arbitrary constant. Using R = 6(H + 2H 2) and the general-
ized Maxwell equation as a constraint equation, these forms for xi and (x32)’ will be
given as

X — X1 —X + X +x —X] — mx» —6— — +_ —X +x

(55)
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and

H’ 1 A H’
(xg)/ = x1x32 — 2x32 (E + 2) 63;“ (1 + > <6mx2 — 6? — 12> x1. (56)

Again we impose the general form for physical Hubble parameter (ACDM cosmol-
ogy), as eq. (1). Also we confine ourselves to a specific choice in which % =n
where 7 is an arbitrary constant. This assumption makes the equations much easier
to solve.

The autonomous dynamical system (55), (52), (56) and (54) describes the cosmo-
logical dynamics of the space-like vector model. It is straightforward to study the
dynamics of this system by setting x/ = 0 to find the critical points. Putting x/ = 0,
one obtains Table 2.

A specific cosmological model is taken in the typical stability analysis of the cos-
mological dynamical systems (e.g. a form of Z(A?), m or n) and in the context
of this physical law, the stability of cosmic histories H (N) is examined. Here the
cosmic history has been fixed and Z (A%) and V (A?) are allowed to vary in order
to anticipate the required cosmic history. In the context of the ACDM cosmic his-
tory the values of the critical points in each era are represented in Table 2. These
points denote the possible physical functions Z(A?) and V (A?) that can reproduce a

Table 2. The critical points of the system in each one of the three eras. Here

¢ =V1-2482(1+n) +6n+9n2 x = —4 + (5-36%m + B&2 — hm?* + (12— 36> mn +
32 —nym?n, § = 31242 — (T4 2E2)m+ (1 +£2)ym> + (2 —dn+ (522 )ymn + (62 — 1ym>n)
and x| and x3 in de-Sitter era satisfies these equations: 3(1 — x + £72) + 6nx +x% = 0 and
=4 = F1+nx =0,

Era Critical point (x1, x7, x32, X4)
1

R (0, 0, e 0)
Radiation R, (0, 0.~z 0)
H _ 14+4/5
=2 Ry (152,0,0,0)

R4( =5 0,0, 0)

R 4 —19+4Tm—48m>+16m3 =m(LEm) (—19+4Tm—48m>+16m)
5.0\ T=m’ 3(—1+m2(14n)+mn(G+m))’ 3E(—1+m2(14+n)+mn(3+m))
M;(0,0,0,0)
Matter Mok (5+3n-2.0, $2r\/1+3n+652(1+n)+{)
H=-3 My (5+3n+¢.0. F 5z 1 +3n + 6621 +m) —¢)
=3 38 V3E2+/ (14n)(1—11m+4m?)
Me.7 <l—m’ 2m-Dy° T N )

de Sitter d1(0,1,0,0)

% = dy(x1, 0, x3,0)
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ACDM cosmic history. Calculations of eigenvalues for this model are too long, but
in what follows we do not need them. Therefore we will skip them.

4. Reconstruction of Z(A2), V(A?)

We can now reconstruct the form of the functions Z(A?) and V (A?) corresponding
to each one of the critical points of the system shown in Tables 1 and 2 for these two
models. These reconstructions are effectively an approximation of these functions in
the neighborhood of each critical point.

4.1 Time-like model

Consider a critical point of the form (X, X2, x3). Using (37), we find that
Z(N) = Zoe 51V, (57)

where Z is the present value of Z. Now we have to find the relation between N
and AZ in order to reconstruct Z(A2). Due to the fact that in the time-like case, we
have Fj,, = 0, the field A, does not appear as a dynamical variable in the action
(2). As a result it is not possible to determine the function N (A?). Since, now the
Maxwell equation (20) is a non-dynamical equation, it puts only a constraint on the
fixed points

(2= p)x1 = x20x1 +28) (58)

in which B is 2, 3/2 and 0 for radiation, matter and de Sitter era respectively. Under
these conditions, only some of the fixed points in Table 1 are acceptable. In fact
in radiation era, Ry, Ry and Rj3 are acceptable but R4 is acceptable provided that
m = 0. In addition, in matter era, M is acceptable but M, is acceptable provided

that m = % V105 Finally in de Sitter era, d; is acceptable.
As we mentioned earlier, there is no limitation in determination of functional form
of N(A?). Using the relation

dN  dN dx° dx?
a2 - moax - Hap (59)

and equation (45), we can find N in terms of x” and using equation (57) one obtains
Z in terms of x° for each era:

Z(xO) = oexoj , (60)

where
A =2 (radiation era) (61)
—% (matter era) (62)

0 (de-Sitter era) (63)
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and

a =7 [(A _ %h) Ho\/SZT),} =

where €2¢; is related to each era, namely Qq;, Q0m and pa. It has to be noted,
that since the Maxwell equation does not fix the form of A we have the freedom in
choosing any form A = g(xp). The field A now can be assumed as a clock field and
thus naturally we can choose it as A2 = x°, thus

al
1-
11

b

(64)

_‘fl

2(—5—)
Z(A%) = @A an (65)
Since % = Z%, we have
c 1 =5
< =ZiaT (66)
€o

Depending on the value of x; given in the table, this can lead to a constant, decreasing
or increasing speed of light with respect to the scale factor.

Horizon problem is one of the cosmological problems, which motivated physi-
cists to suggest some models like inflation and VSL theories. The story of horizon
problem goes back to the fact that the present causally connected comoving horizon,
breaks down to several causally connected regions, which were completely discon-
nected to one another in the past. These disconnected regions in the early Universe
can not describe the large-scale properties that can be observed today. Mathemati-
cally the comoving horizon is r = %, and one should put forward r as an increasing
function of cosmic time in order to have a causally connected large region observed
now. Hence L

af ~S20

a c
that is indicated by an accelerating expansion, or a decreasing speed of light, or a
combination of both. Using the horizon criteria, some restrictions on x; and thus
on m can be obtained. As a means to solve the horizon problem of the standard
cosmology, the horizon criteria for the early Universe (see Shlyakhter 1976; Uzan
2003; Bekenstein 1982; Barrow 2003) should be set and one has @ > 0 as well. For
the radiation era this condition leads to x; > 4. In addition we have x; > 2 for
the matter era, and in the end x; > —4 for the de-Sitter era. This can be used as a
selection rule for the model parameter m. The result is shown in Table 3.

In fact My satisfies both Maxwell equation and horizon problem provided that

= %ﬁ and only d satisfies them in de Sitter era.

Furthermore the observational constraints such as SN Ia data put some extra
constraints on Z.

Finally let us reconstruct the form of the potential V. From equation (38) we have

V(N) = 35 Z(N)H?(N). (67)
Using (65), we can write V(A?) as

1 1 2B
V(A%) = 3Zo%2 H Q0 [HOQSZ. (x - Z;ﬁ) A2] , (68)
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Table 3. The horizon problem sets some selection
rules on the model.

Critical point Horizon problem
Ry Not Okay
Ry Not Okay
R3 Not Okay
Ry Okay, provided m < 2
(see the text)
M Not Okay
M, Not Okay
M3 Not Okay
My Okay, provided m < %
(see the text)
dy Okay (see the text)
dy Okay (see the text)
where
—8—x o
B = ———— (radiation era)
8 —x
—6 — X1

(matter era)

6 — x|
1 (de-Sitter era).
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(69)

(70)
(71)

If we put these reconstructed functions, Z (A?) and V(A?) in (21) and (22), equation

(45) will consistently satisfy these modified Friedman equations.

4.2 Space-like model

Here we consider a critical point of the form (X1, X2, X3, X4). Using (46), we find that

Z(N) = Zope 1V,

where Z is the present value of Z. And from (47) we have

V(N) = 35 H2 Zge 251V

(72)

(73)

For reconstructing Z (Az), we have to find the relation between N and AZ. Using the

definition of x% we get

24'+ 472 _ 20+ 1)
37 37

3z0 X3 —2 _lzn
AN) = [ 220 TZe N 4o
() 2 A+n) 5 +

2 _
X3—

and thus
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The above relation allows us to eliminate N in favor of A and hence

2 - 2
HA5=Q%¥L<%)(A—Cﬂ (74)

The form of V (A2) can be obtained using equation (45) as

A-C)? a1\’ |
V(A?) = 3H; Zo%2 Qi [ga +n)? (ﬂ) } , (75)
620 X3
where
A =4 (radiation era) (76)
3 (matter era) 77
0 (de-Sitter era). (78)

Again if we put these reconstructed functions Z (A%) and V(A?) in (28) and (29),
we will find out that equation (45) consistently satisfies these modified Friedman

. . 1
equations. Since % = Z4,we have

C
— =17

a7, (79)
co

SN

This can lead to a constant, decreasing or increasing speed of light with respect to
the scale factor depending on the value of x| given in the table.

Using the horizon criteria, some limitations on x; and thus on n and m can be
obtained. For the radiation era this condition results in x; > 4. Moreover for the

Table 4. The horizon problem sets some selection
rules on the model.

Critical point Horizon problem

Ry Not Okay

Ry Not Okay

R3 Not Okay

Ry Not Okay

Rs Okay, provided m < 2
Rg Okay, provided m < 2
M Not Okay

My Not Okay

M3 Not Okay

My Okay, provided n > 1 + %S
Ms Okay, provided n > 1 — %5
Mg Okay, provided m < %
M7 Okay, provided m < %
dy Okay

d Okay, provided x| > —4
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matter era we have x; > 2, and for the de-Sitter era it is x; > —4. Again this can be
used as a selection rule for model parameters m and n. The result is shown in Table 4.

5. Conclusion

We saw that it is possible to interpret tensor—vector gravitational models as a VSL
theory. It has to be stressed that at least four different velocities can be distinguished
when one lets the velocity of light to vary according to Ellis & Uzan (2005) and
Izadi & Shojai (2009). In the standard theory all these four velocities are equal to
the constant ¢co = 3 x 10® m/s. The first one appears in the coupling constant of
gravity and matter and this is what is chosen to be varying and related to the dynam-

ical vector field here. Calling it cg we have i—‘; — Z7. The other velocities are the
gravitational wave velocity cgw, the electromagnetic wave velocity cgm, and the
space—time causal structure constant or the information velocity that we have not
considered here.

Here we have investigated analytically the behavior of tensor—vector gravity with
varying space-time—matter coupling constant. We have shown that producing the
background expansion history H (z) indicated by observations is possible. We inves-
tigate the dynamics of this model by dynamical system method and find some exact
solutions by considering the character of the critical points of the theory. After recon-
struction we saw that the form of the speed of light is a power-law with respect to the
scale factor. In addition, using the horizon criteria some restrictions on the critical
points were obtained.
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