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Abstract. The problem of self-gravitational instability of an infinite,
homogeneous stratified gaseous medium with finite thermal conductiv-
ity and infinite electrical conductivity, in the presence of non-uniform
rotation and magnetic field in the Chandrasekhar’s frame of reference,
is studied. It is found that the magnetic field, whether uniform or non-
uniform, has no effect on the Jeans’ criterion for gravitational instability
and remains essentially unaffected. However, the thermal conductivity has
the usual stabilizing effect on the criterion that the adiabatic sound veloc-
ity occurring in the Jeans criterion is replaced by the isothermal sound
velocity. Thus, the present analysis extends the results of Chandrasekhar
for the case of heat conducting medium and for non-uniform rotation and
magnetic field.
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1. Introduction

In astrophysical scenarios, the simplest theory that describes the aggregation of
masses in space is the Jeans instability. The system comprises of particles that
can aggregate together depending on the relative magnitude of the gravitational
force to pressure force. Whenever the internal pressure of a gas is too weak to bal-
ance the self-gravitational force of a mass density perturbation, a collapse occurs.
Such a mechanism was first studied by Jeans (1929). In terms of the wavelengths
of a fluctuation, the Jeans criterion says that instability follows for all perturba-

tions of wave number less than a critical value k j , where k j =
√

4πGρ0
c2 (here

G is the universal gravitational constant, ρ0 is the unperturbed matter density and
c is the velocity of sound). In astrophysical fluids, the collapse of an object is
attributed to a self-gravitational force that is responsible for producing the Jeans
instability. The Jeans instability is of central importance in understanding the pro-
cess of formation of stars, planets, and other astrophysical objects. For latest and
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broader view on the formation of stars and gravitational instability, one may refer to
Chandrasekhar (1961), Spiegel & Thiffeault (2003), Larson (2003) and McKee &
Ostriker (2007).

The gravitational instability of an infinite homogenous self-gravitating medium
under varying assumptions of hydrodynamics and hydromagnetics has been stud-
ied by many authors. Chandrasekhar (1961) proved that the Jeans criterion remains
unaffected whether the uniform rotation and the uniform magnetic field acts simul-
taneously or individually. Nakamura (1984) studied the stability of disks with both
rotation and magnetic fields and showed that the effects of rotation and magnetic
fields on the growth rate of perturbations are additive in the linear (small amplitude)
approximation and showed that a magnetic field, like rotation, always has a stabiliz-
ing effect and that shorter-wavelength perturbations are more strongly stabilized. The
stability of various kinds of magnetized configurations including sheets, filaments
and disks has been studied by many authors including Pacholczyk and Stodolkiewicz
(1960), and Nakamura et al. (1993).

It is a well-established fact that thermal effects play a very crucial role in
astrophysical medium. Field (1965) suggested that the observed filamentary conden-
sations in nebulae may be due to thermal effects. Abbassi et al. (2008) considered
the possibility of the thermal conduction in the presence of toroidal magnetic field
– which had been a largely neglected ingredient before – could affect the global
properties of the hot accretion flows substantially and investigated the effect of ther-
mal conduction on the physical structure of advection-dominated accretion flow
(ADAF) like accretion flow around a black hole in the presence of a toroidal mag-
netic field. Brüggen (2003) pointed out that the role of thermal conduction in the
Intra-Cluster Medium (ICM) has been the subject of a long debate and, owing to the
complex physics of MHD turbulence, the value of the effective conductivity remains
uncertain. Originally it has been thought that the magnetic field in clusters strongly
suppresses the thermal conductivity because the magnetic fields prevent an efficient
transport perpendicular to the field lines. This paradigm has been supported by a
number of observations, such as sharp edges at cold fronts, small-scale temperature
variations in mergers and sharp boundaries around radio bubbles. However, the theo-
retical works by Narayan and Medvedev (2001), Malyshkin and Kulsrud (2001) and
Rechester and Rosenbluth (1978) have shown that a turbulent magnetic field is not
as efficient in suppressing thermal conduction as previously thought.

The analysis of gravitational instability has also been studied by numerous authors
under the effect of thermal conductivity. Kato and Kumar (1960) studied the Jeans’
problem of gravitational instability to include the effect of thermal conductivity
of the medium. They remarked that the original Jeans criterion of instability was
modified due to the presence of thermal conductivity with the only difference that
adiabatic sound velocity c is replaced by the isothermal sound velocity c′. Nayyar
(1961) considered the effect of finite electrical and thermal conductivity on magneto-
gravitational instability and showed that the adiabatic speed of sound is being
replaced by the isothermal one, much similar to what happens in the absence of
magnetic field. Anand and Khushwaha (1962) extended the problem considered by
Bel and Schatzman (1958) to include the effect of heat conduction on the medium
and showed that the Bel and Schatzman criterion of gravitational instability for
non-uniformly rotating self-gravitating medium remains unaffected. Kumar (1960,
1961) also studied the effects of uniform rotation and uniform magnetic field on the
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problem of gravitational instability of heat conducting medium and found that this
modified Jeans criterion is valid for these cases also.

Recently, the role of non-uniform magnetic field and rotation in arresting the Jeans
collapse has also been studied in detail by Dhiman & Dadwal (2010, 2011) in a
thermally conducting/non-conducting axisymmetric gaseous medium.

A central idea in the study of the instability by including various factors is to
find ways of arresting the gravitational collapse. All the studies which are mostly
based on hydrodynamic models of stratified medium have considered the rota-
tion and magnetic field to be uniform. However, it is a well-known fact that there
are many astrophysical situations wherein the rotation and magnetic field may be
regarded as non-uniform or variable. Thus, in the light of the above discussion and
the importance of various parameters in the process of star formation and gravi-
tational collapse, we discuss the joint effect of thermal conductivity, non-uniform
magnetic field and rotation on the gravitational instability of an infinite, homoge-
neous stratified gaseous medium. The frame of reference chosen here is the same as
that considered by Chandrasekhar (1961) in his analysis. The propagation of wave
is taken along the longitudinal direction. Since the system of linearized perturbation
equations governing the present problem contains variable coefficients, the sufficient
condition for local instability following Anand and Khushwaha (1962) and Bel and
Schatzman (1958) has been obtained.

2. Mathematical formulation of the problem

Consider an infinite homogeneous, self-gravitating stratified gaseous medium under
the simultaneous action of a non-uniform rotation and a non-uniform magnetic field.
The medium is assumed to be finitely heat and infinitely electrically conducting. Let
�u = (

ux , uy, uz
)
, �H = (

Hx , Hy, Hz
)

and �� = (
�x , �y, �z

)
respectively denote

the components of the velocity, magnetic field intensity and rotation in the x, y and
z directions, in a rectangular co-ordinate system.

The basic hydrodynamical equations that govern the above physical problem for
the non-viscous and non-resistive gaseous medium are given by (cf. Chapter V and
Chapter XIII of Chandrasekhar (1961) and Dhiman & Dadwal (2011))

ρ

(
∂ux

∂t
+ (�u · grad) ux

)
− μe

4π

(
( �H · grad)Hx − 1

2

∂

∂x
(H2

x + H2
y + H2

z )

)

= ρ
∂φ

∂x
− ∂p

∂x
+ 2ρ(�zuy − �yuz), (1)

ρ

(
∂uy

∂t
+ (�u · grad) uy

)
− μe

4π

(
( �H · grad)Hy − 1

2

∂

∂y
(H2

x + H2
y + H2

z )

)

= ρ
∂φ

∂y
− ∂p

∂y
+ 2ρ (�x uz − �zux ), (2)

ρ

(
∂uz

∂t
+ (�u · grad) uz

)
− μe

4π

(
( �H · grad)Hz − 1

2

∂

∂z
(H2

x + H2
y + H2

z )

)

= ρ
∂φ

∂z
− ∂p

∂z
+ 2ρ(�yux − �x uy), (3)
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∂ Hx

∂t
+ (�u · grad)Hx − ( �H · grad)ux + Hx (∇ · �u) − ux (∇ · �H) = 0, (4)

∂ Hy

∂t
+ (�u · grad)Hy − ( �H · grad)uy + Hy (∇ · �u) − uy(∇ · �H) = 0, (5)

∂ Hz

∂t
+ (�u · grad)Hz − ( �H · grad)uz + Hz(∇ · �u) − uz(∇ · �H) = 0, (6)

∂ρ

∂t
+ (�u · grad) ρ + ρ (∇ · �u) = 0, (7)

∇2φ = −4πGρ, (8)

∂ Hx

∂x
+ ∂ Hy

∂y
+ ∂ Hz

∂z
= 0, (9)

ρcp
∂T

∂t
− ∂p

∂t
= κ∇2T, (10)

p = ρRT . (11)

Here,

�u · grad = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z
, (12)

�H · grad = Hx
∂

∂x
+ Hy

∂

∂y
+ Hz

∂

∂z
(13)

and

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(14)

In the above equations, p, φ, μe, ρ, T R, cp, κ and G respectively denote the
pressure, gravitational potential, magnetic permeability, density, temperature, gas
constant, specific heat at constant pressure, thermal conductivity (assumed constant)
and the gravitational constant.

3. Initial stationary state and its solutions

Initially, �� is the non-uniform rotation given by �� = (�x , �y, �z) and the non-
uniform magnetic field is given by �H = (0, Hy, Hz), where Hy , Hz , �x , �y and �z
are the functions of z only.

The equilibrium state under discussion is clearly characterized as follows:

�u = (0, 0, 0) , �H = (0, Hy, Hz), �� = (�x , �y, �z),

ρ = ρ0, φ = φ0, p = p0, T = T0. (15)

The propagation of waves is assumed to be in the z-direction (longitudinal propaga-
tion), thus for such a solution ∂/∂z is the only non-zero component of the gradient.
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Under these conditions, equations (1)–(11) allow a stationary (steady) state solution
of the form

μe Hz

4π

(
∂ Hy

∂z

)
= 0, (16)

ρ0
∂φ0

∂z
− ∂p0

∂z
+ μe Hy

4π

(
∂ Hy

∂z

)
= 0, (17)

∂2φ0

∂z2
= 0, (18)

∂ Hz

∂z
= 0. (19)

Remark 1. One can observe from equation (19) that Hz is a constant and conse-
quently equation (16) implies that Hy is also a constant.

Also, it is to be noted that the above equilibrium solution is considered to be valid
under the hypothesis of Jeans (i.e. Jeans swindle).

4. Linearized perturbation equations

Let the initial (basic) state described by equations (15)–(19) be slightly perturbed so
that the perturbed state is given by

u′ = (0 + u′
x , 0 + u′

y, 0 + u′
z), H ′ = (0 + h′

x , Hy + h′
y, Hz + h′

z),

p′ = p0 + δp; T ′ = T0 + δT, φ′ = φ0 + δφ, ρ′ = ρ0 + δρ, (20)

where (u′
x , u′

y, u′
z), (h′

x , h′
y, h′

z), δp, δρ δT and δφ are the respective perturbations
from basic state values in velocity, magnetic field, pressure, density temperature and
gravitational potential.

Substituting (20) in equations (1)–(11), using equations (15)–(19) and retaining
the only non-zero component ∂/∂z of the gradient, as the propagation of waves is
taken along the longitudinal direction (z-direction), ignoring the terms of second and
higher orders in the perturbations and treating Hy and Hz as constants as defined
in Remark 1, we have the following linearized perturbed equations (in component
forms):

(
∂ux

∂t
− 2�zuy + 2�yuz

)
− μe

4πρ0

(
Hz

∂hx

∂z

)
= 0, (21)

(
∂uy

∂t
+ 2�zux − 2�x uz

)
− μe

4πρ0

(
Hz

∂hy

∂z

)
= 0, (22)

(
∂uy

∂t
− 2�yux + 2�x uy

)
+ μe

4πρ0

(
Hy

∂hy

∂z

)
= ∂δφ

∂z
− 1

ρ0

∂δp

∂z
, (23)

∂hx

∂t
− Hz

∂ux

∂z
= 0, (24)
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∂hy

∂t
− Hz

∂uy

∂z
+ Hy

∂uz

∂z
= 0, (25)

∂hz

∂t
= 0, (26)

∂

∂t
δρ + ρ0

∂uz

∂z
= 0, (27)

∂2δφ

∂z2
= −4πGδρ, (28)

∂hz

∂z
= 0, (29)

ρ0cp
∂δT

∂t
− ∂δp

∂t
= κ∇2δT, (30)

δp

p0
= δρ

ρ0
+ δT

T0
. (31)

Using the value of δT obtained from equation (31) in equation (30), we get

∂

∂t
(δp − c2δρ) = κ̄

∂2

∂z2
(δp − c′2δρ), (32)

where c2 = γ
p0
ρ0

, c′2 = p0
ρ0

, κ̄ = κ
ρ0cv

and γ = cp
cv

.

Here, cv and cp respectively denote specific heat capacity at constant volume and
pressure and are taken as constants throughout the medium, κ̄ is the thermometric
conductivity, c and c′ the adiabatic and thermal velocities of sound; γ is the ratio of
specific heats of a gas at a constant pressure to a gas at a constant volume and is also
known as the isentropic expansion factor and arises because a classical sound wave
induces an adiabatic compression, in which the heat of the compression does not
have enough time to escape the pressure pulse, and thus contributes to the pressure
induced by the compression. It is important to note here that the approximate numer-
ical values of γ ranges from 1 to 1.4. Further, in the above equations the dashes have
been dropped for convenience.

5. Gravitational instability

In order to investigate the stability of the foregoing stationary state, we shall consider
the dependence of the perturbations on z and t of the form

ψ (z, t) = ψ∗(z) exp (σ t) . (33)

Here, σ is the frequency of perturbation.
For this type of dependence of perturbations on z and t , we have

∂

∂t
≡ σ and

∂

∂z
ψ∗(r) = d

dz
ψ∗(r) . (34)
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Using the above dependence of the perturbations ux , uy , uz , hx , hy , hz , δp, δρ δT
and δφ in equations (21)–(29) and (32), we obtain the following equations:

σux − 2�zuy + 2�yuz − μe

4πρ0

(
Hz

dhx

dz

)
= 0, (35)

σuy + 2�zux − 2�x uz − μe

4πρ0

(
Hz

dhy

dz

)
= 0, (36)

σuz − 2�yux + 2�x uy + μe Hy

4πρ0

dhy

dz
− dδφ

dz
+ 1

ρ0

dδρ

dz
= 0, (37)

σhx − Hz
dux

dz
= 0, (38)

σhy − Hz
duy

dz
+ Hy

duz

dz
= 0, (39)

σhz = 0, (40)

σδρ + ρ0
duz

dz
= 0, (41)

d2δφ

dz2
= −4πGδρ, (42)

dhz

dz
= 0, (43)

σ(δp − c2δρ) = κ̄
d2

dz2
(δp − c′2δρ). (44)

In the above equations the asterisks have been dropped for convenience.

Remark 2. In the above equations, �x , �y and �z are functions of z, so the condi-
tions for global instability cannot be obtained for this system of equations. Following
Anand and Khushwaha (1962) and Bel and Schatzman (1958), we shall investigate
the local stability of the above system in the neighborhood of z = z0.

In such a situation, the coefficients of ux , uy , uz in equations (35)–(44) are to be
evaluated at z = z0. For this, let us assume that the perturbations have a periodic
form in the neighborhood of z = z0, as

f̄ exp (−ikz) , (45)

where k is the wave number.
For this type of dependence, we have

d

dz
= −ik.
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Using (45) in equations (35)–(44), we obtain the following system of algebraic
equations for amplitudes (marked with bars):

σ ūx − 2�z ū y + 2�yūz + ik
μe Hz

4πρ0
h̄x = 0, (46)

σ ū y + 2�z ūx − 2�x ūz + ik
μe Hz

4πρ0
h̄ y = 0, (47)

σ ūz − 2�yūx + 2�x ū y − ik
μe Hy

4πρ0
h̄ y + ikδφ̄ − ik

ρ0
δ p̄ = 0, (48)

σ h̄x + ik Hzūx = 0, (49)

σ h̄ y + ik Hzū y − ik Hyūz = 0, (50)

σ h̄z = 0, (51)

σδρ̄ − ikρ0ūz = 0, (52)

k2δφ̄ − 4πGδρ̄ = 0, (53)

−ikh̄z = 0, (54)

(σ + k̄k2)δ p̄ − ikρ0

σ
(c2σ + k̄k2c′2)δρ̄ = 0. (55)

Equations (51) and (54), and equations (52) and (53) respectively yield

h̄z = 0, δρ̄ = ikρ0

σ
ūz, δφ̄ = 4πGρ0

σk
i ūz . (56)

Eliminating δφ̄, δρ̄ and h̄z from the above equations, we have the following system
of homogeneous equations:

σ ūx − 2�z ū y + 2�yūz + ik
μe Hz

4πρ0
h̄x = 0, (57)

σ ū y + 2�z ūx − 2�x ūz + ik
μe Hz

4πρ0
h̄ y = 0, (58)

−2�yūx + 2�x ū y + 1

σ

(
σ 2 − 4πGρ0

)
ūz − ik

μe Hy

4πρ0
h̄ y − ik

ρ0
δ p̄ = 0, (59)

σ h̄x + ik Hzūx = 0, (60)

σ h̄ y + ik Hzū y − ik Hyūz = 0, (61)
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(σ + k̄k2)δ p̄ − ikρ0

σ
(c2σ + k̄k2c′2)ūz = 0. (62)

Since equations (57)–(62) possess constant coefficients in the vicinity of z = z0,
therefore the above system of homogenous equations can be put in the following
matrix notation:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ −2�z 2�y ik μe Hz
4πρ0

0 0

2�z σ −2�x 0 ik μe Hz
4πρ0

0

−2�y 2�x
1
σ
(σ 2 − 4πGρ0) 0 −ik

μe Hy
4πρ0

− ik
ρ0

ik Hz 0 0 σ 0 0

0 ik Hz −ik Hy 0 σ 0

0 0 − ikρ0
σ

(σc′2 + k̄k2c′2) 0 0 (σ + k̄k2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ūx

ū y

ūz

h̄x

h̄ y

δ p̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(63)

For a non-trivial solution of equation (63), the determinant of the matrix on the
left-hand side should vanish; and thus on expanding the determinant, we obtain the
following dispersion relation:

σ 7+(k̄k2)σ 6+VI σ
5+(k̄k2)V ′

I σ
4+VJ σ 3+(k̄k2)V ′

J σ 2+VK σ+(k̄k2)V ′
K = 0, (64)

where
VI = (c2k2 + 4|�|2 + 2k2V 2

A + k2V 2
B − 4πGρ0), (65)

V ′
I = (c′2k2 + 4 |�|2 + 2k2V 2

A + k2V 2
B − 4πGρ0), (66)

VJ = k4V 2
A |H |2 + 2c2k2(2�2

z + k2V 2
A) + 4k2(V 2

A�2
x + V 2

B�2
z + V 2

C�2
y)

− 8k2V 2
C�z�y − 2 (4πGρ0) (k2V 2

A + 2�2
z ), (67)

V ′
J = k4V 2

A |H |2 + 2c′2k2(2�2
z + k2V 2

A) + 4k2(V 2
A�2

x + V 2
B�2

z + V 2
C�2

y)

− 8k2V 2
C�z�y − 2 (4πGρ0) (k2V 2

A + 2�2
z ), (68)

VK = k4V 4
A(k2c2 − 4πGρ0), (69)

V ′
K = k4V 4

A(k2c′2 − 4πGρ0). (70)

Here, V 2
A = μe H2

z
4πρ0

, V 2
B = μe H2

y
4πρ0

and V 2
C = μe Hy Hz

4πρ0
are the Alfven’s wave velocities.

Also, |�|2 = (�2
x + �2

y + �2
z ) and |H |2 = (H2

x + H2
y ).

Equation (64) is of seventh degree in σ with all the coefficients real in the neigh-
bourhood of z = z0. If the seventh degree polynomial is a Hurwitz polynomial, then
the real part of σ will be negative and consequently the system under study will be
stable. Guillemin (1950) gave the necessary and sufficient conditions under which
any polynomial behaves like a Hurwitz polynomial. One of the necessary conditions
for this is that, all coefficients must be positive. If one or more coefficients are nega-
tive, then the real part of σ will be positive and the system will be unstable. Now, in
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equation (64) the constant term (V′
K ) is negative and we have a sufficient condition

of instability.
Thus, the condition for gravitational instability for the present problem is given by

V ′
K < 0 (71)

which implies that
k2c′2 < 4πGρ0. (72)

6. Conclusions

A study of gravitational instability of a homogenous, self-gravitating, conducting
stratified gaseous medium has been carried out to study the simultaneous effect of
non-uniform rotation and magnetic field. We obtain from inequality (72) that self-
gravitation leads to instability for all wave numbers

k < k j =
√

4πGρ0

c′2 , (73)

which is a similar criterion as obtained by Chandrasekhar (1961) for the gravitational
instability of an isothermal medium when both rotation and magnetic field were
uniform with the only difference that c here is replaced by c′ for the case of a heat
conducting medium.

It is evident from the above result that when the medium is considered to be
heat conducting, the thermal conductivity plays its role by replacing c with c′ in the
instability criteria.

From the definitions of c and c′ it is clear that c2 > c′2 and hence from expression
(73), we conclude that thermal conductivity has a stabilizing effect on the onset of
gravitational instability.

Further, it can be easily seen from inequality (73) that non-uniform rotation and
magnetic field have no effect on the onset of gravitational instability of a heat con-
ducting medium, which also validates the results of Kumar (1960, 1961) and Nayyar
(1961) for a heat conducting medium, and confirms the view point of Brüggen (2003)
and others; that the effect of thermal conductivity cannot be neglected in compari-
son to the magnetic field as it has some effect on the stability of the self-gravitating
medium.

Thus, the present analysis extends the results of Chandrasekhar (1961) for the case
of heat conducting medium and for non-uniform rotation and magnetic field.
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