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Abstract.  We present connections between global and local parame-
ters in a realistic dynamical model, describing motion in a barred galaxy.
Expanding the global model in the vicinity of a stable Lagrange point,
we find the potential of a two-dimensional perturbed harmonic oscillator,
which describes local motion near the centre of the global model. The fre-
guencies of oscillations and the coefficients of the perturbing terms are not
arbitrary but are connected to the mass, the angular rotation velocity, the
scale length and the strength of the galactic bar. The local energy is also
connected to the global energy. A comparison of the properties of orbits in
the global and local potential is also made.
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1. Introduction

We consider the barred galaxy model described by the potential
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wherer, ¢ are polar coordinates. HeM, is the massy is the scale length of the
disk while M, , ¢, andb > 1 is the mass, the scale length and the strength of the
bar, respectively. In the system of galactic units used in this paper, the unit of length
is 1kpc the unit of time is 07746x 108 yr and the unit of mass is.225 x 10’ Mo.
The velocity and the angular velocity units are 10 km/s and 10 km/s/kpc, respectively
while G is equal to unity. Our test particle is a star of mas&. Therefore, the energy
unit (per unit mass) is 100 (km/s)In these units the values of the parameters are
a = 12kpc b = 2, ¢, = 1.5kpc M; = 9500 andM, = 3000. It is evident that we
consider a galaxy with a massive bar.

We shall consider the case when the bar rotates clockwise at a constant angular
velocity ©,. The corresponding Hamiltonian, which is known as the Jacobi integral,
in rectangular cartesian coordinatesy, reads
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wherep,, p, are the momenta, per unit mass, conjugate amdy
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is the effective potential andl; is the numerical value of the Jacobi integral. If we
expand the effective potential (3) in a Taylor series near the centre we shall find a
potential describing local motion.

The aim of the present work is:

e to find connections between global and local parameters and

¢ to study and compare the properties of global and local motion.

In particular, we shall express the coefficients of the local potential in terms of the
global physical quantities entering potential (3). A connection of the global to local
energy will be also presented.

The properties of orbits in the global model are studied in section 2. In section 3
we present the local potential, the connection between the local and global parameters
and the properties of the local motion. We close with a discussion and the conclusions
of this work, which are presented in section 4.

2. Orbits in the global model

Figure 1 shows contours of the constant effective potential (3), Whegs 1.25 in the
above mentioned galactic units, which is equivalent td ktn/s/kpc. One observes

Figure 1. Contours of the constant effective potential (3) wiisn= 1.25. The values of the
parameters are = 12kpc,b = 2, ¢, = 1.5kpc, M; = 9500 andM, = 3000. One observes
that there are five stationary points markedto Ls.
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Figure 2. Thex — p, phase plane for the global Hamiltonian (2) whep = —1000. The
values of the parameters are as in Fig. 1.

that there are five stationary points, markedto Ls, at which
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These points are called “Lagrange points”. The central stationary pqing a
minimum of ®¢¢. In the other four pointd.,, L3, L4, Ls it is possible, for the test
particle, to travel in a circular orbit while appearing to be stationary in the rotating
frame. For this orbit the centrifugal and gravitational force precisely balance. The
stationary pointd.4, Ls on thex-axis are saddle points while,, L, are maxima of
the effective potential. The annulus bounded by the circles thrayghs andL,4, Ls
is known as the “region of corotation” (see Binney & Tremaine 1987). It is important
to note that the region of corotation is located somewhere at the end of the galaxy
described by the model (3).

We now proceed to study the properties of orbits in the potential (3). Orbits are
found by integrating numerically the equations of motion

8‘:I)eff . . aq’eff
ox dy

where the dot indicates derivative with respect to the time.

In order to visualise the properties of motion we useihe p,,y =0, p, > 0
Poincare phase plane of the Hamiltonians (2). The resultg foe —1000 are shown
in Fig. 2. There are regular orbits, forming the nearly circular invariant curves, as well
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Figure 3(a—d). Orbits in the global Hamiltonian (2).The values of parameters are as in Fig. 2.

//T S|I9POIN Axeles) paueg ul sig1awered [e207 0 [eqo|s Bunosuuod



178 N. D. Caranicolas

as sets of islands and chaotic orbits producing a chaotic region. The outermost curve
is the limiting curve defined by the equation

1
SPL+ Pert(x) = Ey. (6)

Figure 3(a—d) shows four typical orbits. The orbits shown in Fig. 3(a) produce the
set of the three outer islands. It is evident that those elongated orbits support the bar.
The orbit shown in Fig. 3(b) produces two of the inner islands while the orbit given in
Fig. 3(c) produces the central invariant curves that are topologically circles. The chaotic
region are produced by the orbit shown in Fig. 3(d). It is clear that the three last types
of orbits support the disk. It is important to note that for the values of the parameters
used, chaotic motion is present only whgn< 1.7 kpc while forc, = 1.7 kpc the
chaotic region is negligible (see Caranicolas & Innanen 1991).

For small values of the energy the phase plane is quite different. Fig. 4 shows the
x — p, phase plane wheB; = —2700. Itis evident that, here, we have motion taking
place near the stable Lagrange pdint The motion is regular and one observes only
one kind of invariant curves. The invariant curves are topological circles closing around
one unigue invariant point. The corresponding orbits are box-orbits. Those forming
the outer invariant curves belong to elongated boxes that support the bar while, as we
approach the “central” invariant point, the boxes become more rectangular.

3. Orbits in the local potential

The local potential can be found by expanding the effective potential (3) ina Mc-Laurin
series near the stable Lagrange pdint which coincides with the origin. Doing so,
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Figure 4. Same as Fig. 2 wheh; = —2700.
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we obtain the local effective potential which reads
Uett (Ax, Ay) = Uit (0, 0) + ]E'A(Ax)z + %B(Ay)z
- g[almx)“ + 202(A0)4(A)? + aa(Ay)*] 7
— QF[(AX)” + (A0)7/2,
where we have set

o
Ueff = Vd q)eff ) (8)

in order to avoid large numbers. Writing, for conveniences Ax,y = Ay, Veg =
Ueii (x, ¥) — Ueg (0, 0), equation (7) becomes

1 1 3
Vet = —Ax?+ ZBy? — é[alx“ + 200x%y? + gy’ — Q52 +¥H/2,  (9)
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One observes, from equation (10), that the coefficients of the local effective potential
are functions of the physical quantities entering the global effective potential.
The local Hamiltonian is

1
HLZE(X2+Y2)+Veff(x»y):hL’ (11)

whereX, Y are the local momenta, per unit mass, conjugatedndy while /1, is the
numerical value of the local energy. We now come to connect the global efgrgy

to the local energy, . Note thatE ;o = ®e(0, 0) defines a point in thex( y) plane

while E; = ®(x, y) defines a curve in the same plane. The global motion takes
place inside this curve which is known as the zero velocity curve. At the same time
hro = Ver(0, 0) defines a point in thex( y) plane whileh; = Uegs(x, y) defines a
curve inside which the local motion takes place. This second curve is the local zero
velocity curve. We consider only bounded motion, that is the zero velocity curves are
always closed curves. The local enefgyis connected to the global energy through
the relation

hL = Ueff(x» )’) - Ueff(oa 0) = Mid[cDEff(-x’ y) - q)eff(ov O)]

= Mid(EJ — Ejo). (12)
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Figure 5. Thex — X phase plane for the local Hamiltonian (11) whee- h; = 0.11578.

We now come to study the properties of local motion. For the adopted values of the
global parameters arfe}, = 1.25, we findA = 1.13,B = 4.50,0; = 0.50,a» = 2.00,
az = 7.98, Q¢ = 0.044. Using the valu&; = —2700 we findz; = 0.11578. Fig.

5 shows thex — X (y = 0, Y > 0) phase plane for the local motion. The motion is
regular and one observes invariant curves that are topologically circles closing around
a “central” invariant point. It is clear, that no resonant orbits are present although the
ratio of the unperturbed frequencies is a rational number, namefy B1/? = 1/2.

As the similarity between Figs 4 and 5 is obvious one can say that the behaviour of
orbits in the local system Hamiltonian (11) is similar to that of orbits in the global
Hamiltonian (2).

Figure 6 shows the — X phase plane for the local motion when= 0.36 > h;.

Here things look quite different. In addition to the invariant curves closing around the
“central” invariant point, one observes four sets of islands. These islands are produced
by quasi periodic orbits starting near the corresponding stable periodic orbits. These
periodic orbits are the well known figure-eight periodic orbits. We shall come to this
point later in this section.

It is natural for the reader to ask: why for this value of local energy the properties
of orbits of the local system are different from those of the corresponding global
potential? The answer is the following: The expansion (9) is valid only when

x? 4 b?y?
<
Whenh; = 0.11578 we haver < xmax = 0.47,y < ymax = 0.23. For the above
values ofx andy (13) is always true wheh = 2, ¢, = 1.5kpc. On the other hand, if
one chooses = 0.36, thenx < xmax = 0.95,y < ymax = 0.48 and relation (13) is
not valid for the same values bfandc,. Therefore, it is obvious that the properties of

<< 1 (13)
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Figure 6. Same as Fig. 5 whein= 0.36.

orbits in the local system are the same to the properties of orbits, in the global system,
only when the local energy is small enough such as relation (13) to hold. If we increase
the value of energy then resonant periodic orbits appear. These orbits are stable figure-
eight orbits. Near these orbits start the figure-eight quasi periodic loop orbits, which
support the bar structure in the central parts of the galaxy.

Itis also important to note that, for a given value of global energy, there corresponds
avalue of local energy through relation (12). Itis obvious that this local energy does not
have a meaning, if relation (13) is not satisfied. In order to observe the resonant figure-
eight orbits, one must use larger values of energy for the local potential. Numerical
experiments suggest that the figure-eight orbits appear for valuealadut twice as
large ag1, . On the other hand we must emphasise that the chaotic regions, if any, are
negligible. Indeed we made many numerical calculations for energies up to the energy
of escape in the local potential. Our numerical calculations have shown that the area
of the phase plane covered by the quasi periodic figure-eight orbits increases while no
chaotic phenomena were observed. The energy of escape for the local potential (see
Caranicolas & Varvoglis 1984) is given by the relation

(B — Q2)?

o 14)

hesc =

Note that, because we always study bounded motion, we mustihaweh < hego

4. Discussion

During the last decades a large number of papers have been devoted to the study of
dynamics of barred galaxies (see e.g. Freeman 1966; Zang & Hohl 1978; Miwa &
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Noguchi1981; Toomre 1981; Carnevali 1983; Papayannopoulos & Petrou 1983; Petrou
1984; Sparke & Sellwood 1987; Combetsal. 1990; Sundin & Sandelius 1991).

In the present work we have tried to find connections between the parameters of a
model describing global motion in a barred galaxy and the corresponding parameters
of the local potential. The local potential comes by expanding the global effective
potential near the centre of the galaxy. It was shown that the local parameters and
the corresponding local energy are functions of the global parameters and the global
energy.

Numerical calculations in the global model suggest that, in addition to the regular
orbits, there is a significant part of orbits that is chaotic. It was observed that chaotic
orbits to appear need small values of the scale length of the bar. For small values of the
global energy the motion is regular and all orbits are box orbits. The same is true for
the local motion when relation (13) is satisfied. In other words, the properties of global
and local motion are similar for small values of the global energy, which consequently
give, through (12), small values for the local enekgy

Furthermore, we must note that in the global model the resonant orbits obtype
as well as the chaotic orbits of typkcarry stars in the central parts of the galaxy.
Therefore we have an increasing density nearlt is interesting to observe that a
large number of high energy stars passing rigaaire in chaotic orbits. The other two
types of orbits a and b do not contribute in the central density.

Increasing the value of energy in the local model gives rise to resonant figure-eight
orbits. The present and previously derived results support the idea that these orbits
seem to be important for the local barred galaxy models. With the term local barred
galaxy models we mean those that are made from perturbed harmonic oscillators. The
following reasons make these orbits important for galactic bars:

e Itis evident that the figure-eight orbits support the barred structure.

e Starting from the figure-eight orbits and using the theory of the Inverse Problem,
one can construct a local potential based on perturbed harmonic oscillators which
reproduce the above orbits (see Caranicolas 1998; Caranicolas & Karanis 1998).

e Figure-eight orbits were observed not only in self consistent models (Miller &
Smith 1979) but also in the present local model which comes from the realistic
potential (1).

It is also important to notice that the figure-eight orbits appear for values of the

energykh much more larger than the local enefgy. Looking this fact from a physical
point of view, one can say that the figure-eight orbits can be considered as a product
of a particular activity near the centre of barred galaxies.
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